
Proprietary + Confidential

Load Balancing and
Autoscaling

In this module we focus on load balancing and autoscaling.

Cloud Load Balancing gives you the ability to distribute load-balanced compute
resources in single or multiple regions to meet your high availability requirements, to
put your resources behind a single anycast IP address, and to scale your resources
up or down with intelligent autoscaling.

Using Cloud Load Balancing, you can serve content as close as possible to your
users on a system that can respond to over 1 million queries per second. Cloud Load
Balancing is a fully distributed, software-defined, managed service. It isn’t instance- or
device-based, so you don’t need to manage a physical load balancing infrastructure.

Proprietary + Confidential

Types of load balancers

HTTP(S)
Layer 7 load balancing

TCL/SSL/Other
Layer 4 load balancing

EXTERNAL
Internet facing

INTERNAL
Within private networks

Application Load Balancers

Network Load Balancers

Proxy Network Load Balancers

Passthrough Network Load Balancers

Application Load Balancers and Network Load Balancers are two primary types of
load balancers offered by Google Cloud, each designed for specific use cases.

Application Load Balancers operate at the application layer (Layer 7) of the OSI
model. They are ideal for applications that require load balancing based on HTTP(S)
headers, cookies, or URL paths. Application Load Balancers provide features like
SSL/TLS termination, session affinity, and content-based routing.

Network Load Balancers operate at the network layer (Layer 4) of the OSI model.
They are suitable for load balancing based on IP addresses and ports. Network Load
Balancers are often used for TCP and UDP traffic, as well as for scenarios where low
latency and high throughput are critical. They support features like TCP/UDP load
balancing and health checks.

For more information on load balancers, please refer to Cloud Load Balancing
Overview.

https://cloud.google.com/load-balancing/docs/load-balancing-overview
https://cloud.google.com/load-balancing/docs/load-balancing-overview

Proprietary + Confidential

Agenda

01 Managed Instance Groups

02 Application Load Balancers

Lab: Configure an Application Load Balancer
with Autoscaling

03 Cloud CDN

04 Network Load Balancing

05
Internal Load Balancing

Lab: Configure an Internal Network Load Balancer

06 Choosing a Load Balancer

In this module, we cover the different types of load balancers that are available in
Google Cloud. We also go over managed instance groups and their autoscaling
configurations, which can be used by these load balancing configurations.

You explore many of the covered features and services throughout the two labs of this
module. The module wraps things up by helping you determine which Google Cloud
load balancer best meets your needs.

Proprietary + Confidential

Managed Instance
Groups

01
Let’s start by talking about managed instance groups.

Proprietary + Confidential

● Deploy identical instances based on
instance template

● Instance group can be resized

● Manager ensures all instances are
RUNNING

● Typically used with autoscaler

● Can be single zone or regional

Managed instance groups

A managed instance group is a collection of identical VM instances that you control as
a single entity, using an instance template. You can easily update all the instances in
the group by specifying a new template in a rolling update. Also, when your
applications require additional compute resources, managed instance groups can
automatically scale the number of instances in the group.

Managed instance groups can work with load balancing services to distribute network
traffic to all of the instances in the group. If an instance in the group stops, crashes, or
is deleted by an action other than the instance group’s commands, the managed
instance group automatically recreates the instance so it can resume its processing
tasks. The recreated instance uses the same name and the same instance template
as the previous instance. Managed instance groups can automatically identify and
recreate unhealthy instances in a group to ensure that all the instances are running
optimally.

Regional managed instance groups are generally recommended over zonal managed
instance groups because they allow you to spread the application load across multiple
zones instead of confining your application to a single zone or you having to manage
multiple instance groups across different zones. This replication protects against
zonal failures and unforeseen scenarios where an entire group of instances in a
single zone malfunctions. If that happens, your application can continue serving traffic
from instances running in another zone of the same region.

Proprietary + Confidential

Create an instance template

In order to create a managed instance group, you first need to create an instance
template. Next, you're going to create a managed instance group of N specified
instances. The instance group manager then automatically populates the instance
group based on the instance template.

You can easily create instance templates using the Google Cloud console. The
instance template dialog looks and works exactly like creating an instance, except
that the choices are recorded so that they can be repeated.

Proprietary + Confidential

01 02 03

04 05

06

Create a managed instance group

When you create an instance group, you define the specific rules for the instance
group.

● First, decide which type of managed instance group you want to create. You
can use managed instance groups for stateless serving or batch workloads,
such as a website frontend or image processing from a queue, or for stateful
applications, such as databases or legacy applications.

● Second provide a name for the instance group.
● Third, decide whether the instance group is going to be single or multi-zoned,

and where those locations will be. You can optionally provide port name
mapping details..

● Fourth, select the instance template that you want to use.
● Fifth, decide whether you want to autoscale, and under what circumstances.
● Finally, consider creating a health check to determine which instances are

healthy and should receive traffic.

Essentially, you're still creating virtual machines, but you're applying more rules to that
instance group.

Proprietary + Confidential

Dynamically add/remove instances:

● Increases in load
● Decreases in load

Autoscaling policy:

● CPU utilization
● Load balancing capacity
● Monitoring metrics
● Queue-based workload
● Schedule-based

Managed instance groups offer autoscaling capabilities

Let me provide more details on the autoscaling and health checks of a managed
instance group.

As I mentioned earlier, managed instance groups offer autoscaling capabilities that
allow you to automatically add or remove instances from a managed instance group
based on increases or decreases in load. Autoscaling helps your applications
gracefully handle increases in traffic and reduces cost when the need for resources is
lower.

You just define the autoscaling policy, and the autoscaler performs automatic scaling
based on the measured load. Applicable autoscaling policies include scaling based on
CPU utilization, load balancing capacity, or monitoring metrics, or by a queue-based
workload like Pub/Sub or schedule such as start-time, duration and recurrence.

For example, let’s assume you have 2 instances that are at 100% and 85% CPU
utilization as shown on this slide. If your target CPU utilization is 75%, the autoscaler
will add another instance to spread out the CPU load and stay below the 75% target
CPU utilization. Similarly, if the overall load is much lower than the target, the
autoscaler will remove instances as long as that keeps the overall utilization below the
target. Now, you might ask yourself how do I monitor the utilization of my instance
group.

Proprietary + Confidential

VM graph helps set CPU utilization

When you click on an instance group (or even an individual VM), you can choose to
view different metrics. By default you’ll see the CPU utilization over the past hour, but
you can change the time frame and visualize other metrics like disk and network
usage. These graphs are very useful for monitoring your instances’ utilization and for
determining how best to configure your Autoscaling policy to meet changing demand.

If you monitor the utilization of your VM instances in Cloud Monitoring, you can even
set up alerts through several notification channels.

A link to more information on autoscaling can be found in the Course Resources for
this module.

https://cloud.google.com/compute/docs/autoscaler/

Proprietary + Confidential

Create a health check

health check #1 starts

wait

Elapsed time
(seconds)

Event duration
(seconds)

health check #1 fails

health check #2 starts

health check #2 fails

wait
wait
wait
wait

wait
wait

wait

wait
wait

Unhealthy threshold reached

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
1
2
3

1
2
3

Another important configuration for a managed instance group and load balancer is a
health check. A health check is very similar to an uptime check in Cloud Monitoring.
You just define a protocol, port, and health criteria, as shown in this screenshot.
Based on this configuration, Google Cloud computes a health state for each instance.

The health criteria define how often to check whether an instance is healthy (that’s the
check interval); how long to wait for a response (that’s the timeout); how many
successful attempts are decisive (that’s the healthy threshold); and how many failed
attempts are decisive (that’s the unhealthy threshold). In the example on this slide, the
health check would have to fail twice over a total of 15 seconds before an instance is
considered unhealthy.

Proprietary + Confidential

Configuring stateful IP addresses

Preserve the unique state of each MIG VM instance on machine restart, recreation,
auto-healing, or update event. Useful in the following scenarios:

Configuration depends on specific IP addresses.

IP address to remain static after it has been assigned.

Server is accessed through a dedicated static IP address.

Migrate workloads without changing network configuration.

Configure IP addresses as stateful for all existing and future instances in the group.

Update the existing stateful configuration for IP addresses.

Configuring stateful IP addresses in a Managed Instance Group (MIG) ensures that
applications continue to function seamlessly during autohealing, update, and
recreation events. Both internal and external IPv4 addresses can be preserved. You
can configure IP addresses to be assigned automatically or assign specific IP
addresses to each VM instance in a MIG.

Preserving an instance’s IP addresses is useful in many different scenarios:

● Your application requires an IP address to remain static after it has been
assigned.

● Your application’s configuration depends on specific IP addresses.
● Users, including other applications, access a server through a dedicated static

IP address.
● You need to migrate existing workloads without changing network

configuration.

You can do the following operations by configuring stateful policy on an existing MIG:
● Configure IP addresses as stateful for all existing and future instances in the

group. This will promote the corresponding ephemeral IP addresses of all
existing instances to static IP addresses.

● Update the existing stateful configuration for IP addresses.

Proprietary + Confidential

Application Load
Balancing02

Now, let’s talk about Application Load Balancing, which acts at Layer 7 of the OSI
model. This is the application layer, which deals with the actual content of each
message, allowing for routing decisions based on the URL.

Proprietary + Confidential

Overview of an Application Load Balancer

Deployment
mode Network service tier Load balancing scheme IP address Frontend ports

Global external Premium Tier EXTERNAL_MANAGED IPv4
IPv6

Can reference exactly
one port from 1-65535

Regional external Premium or
Standard Tier EXTERNAL_MANAGED IPv4

Classic Global in Premium Tier
Regional in Standard Tier EXTERNAL

IPv4
IPv6 (requires
Premium Tier)

The Application Load Balancer distributes HTTP and HTTPS traffic to backends
hosted on a variety of Google Cloud platforms—such as Compute Engine, Google
Kubernetes Engine (GKE), Cloud Storage, and Cloud Run—as well as external
backends connected over the internet or by using hybrid connectivity.

Application Load Balancers are available in the following deployment modes, external
and internal. You will learn about internal Application Load Balancers later in this
module.

Proprietary + Confidential

Architecture of an external Application Load Balancer

External Application Load Balancer

 Web clients

Client traffic terminates here

New connection from load balancer to backends

Backends

Cloud Storage App Engine Cloud Run

Google Kubernetes
Engine

Backends external to
Google Cloud

Cloud Run
functions

Compute Engine

HTTP or HTTPS

External Application Load Balancers are implemented using Google Front Ends
(GFEs) or managed proxies. Global external Application Load Balancers and classic
Application Load Balancers use GFEs that are distributed globally, operating together
by using Google's global network and control plane. GFEs offer multi-region load
balancing in the Premium tier, directing traffic to the closest healthy backend that has
capacity and terminating HTTP(S) traffic as close as possible to your users. Global
external Application Load Balancers and regional external Application Load Balancers
use the open source Envoy proxy software to enable advanced traffic management
capabilities.

These load balancers can be deployed in one of the following modes: global, regional,
or classic.

Let me walk through the architecture of an Application Load Balancer, by using this
diagram:

● An external forwarding rule specifies an external IP address, port, and target
HTTP(S) proxy. Clients use the IP address and port to connect to the load
balancer.

● A target HTTP(S) proxy receives a request from the client. The HTTP(S) proxy
evaluates the request by using the URL map to make traffic routing decisions.

● The proxy can also authenticate communications by using SSL certificates.
● A backend service distributes requests to healthy backends. The global

external Application Load Balancers also support backend buckets. One or
more backends must be connected to the backend service or backend bucket.

Proprietary + Confidential

● Health check

● Session affinity (optional)

● Time out setting (30-sec default)

● One or more backends
○ An instance group (managed or unmanaged)
○ A balancing mode (CPU utilization or RPS)
○ A capacity scaler (ceiling percentage of CPU/Rate targets)

Backend services

The backend services contain a health check, session affinity, a timeout setting, and
one or more backends.

A health check polls instances attached to the backend service at configured
intervals. Instances that pass the health check are allowed to receive new requests.
Unhealthy instances are not sent requests until they are healthy again.

Normally, Application Load Balancing uses a round-robin algorithm to distribute
requests among available instances.

This can be overridden with session affinity. Session affinity attempts to send all
requests from the same client to the same virtual machine instance.

Backend services also have a timeout setting, which is set to 30 seconds by default.
This is the amount of time the backend service will wait on the backend before
considering the request a failure. This is a fixed timeout, not an idle timeout. If you
require longer-lived connections, set this value appropriately.

The backends themselves contain an instance group, a balancing mode, and a
capacity scaler.

● An instance group contains virtual machine instances. The instance group
may be a managed instance group with or without autoscaling or an
unmanaged instance group.

● A balancing mode tells the load balancing system how to determine when the
backend is at full usage. If all the backends for the backend service in a region
are at full usage, new requests are automatically routed to the nearest region
that can still handle requests. The balancing mode can be based on CPU
utilization or requests per second (RPS).

● A capacity setting is an additional control that interacts with the balancing
mode setting. For example, if you normally want your instances to operate at a
maximum of 80% CPU utilization, you would set your balancing mode to 80%
CPU utilization and your capacity to 100%. If you want to cut instance
utilization in half, you could leave the balancing mode at 80% CPU utilization
and set capacity to 50%.

Now, any changes to your backend services are not instantaneous. So, don’t be
surprised if it takes several minutes for your changes to propagate throughout the
network.

Proprietary + Confidential

Application Load Balancing resources

Guestbook Project

Application Load Balancer

US-Central1-a

Managed Instance Group

guestbook servers
Compute Engine

Europe-West1-d

Managed Instance Group

guestbook servers
Compute Engine

guestbook-backend-service
Backend Service

guestbook-na-backend
Backend Configuration

guestbook-emea-backend
Backend Configuration

guestbook-health-check
Health Check

guestbook-target-proxy
HTTP Target Proxy

guestbook-map
URL Map

guestbook-forward
Global forwarding rule

NA Users

EMEA Users

Let me walk through an Application Load Balancer in action. The project on this slide
has a single global IP address, but users enter the Google Cloud network from two
different locations: one in North America and one in EMEA.

First, the global forwarding rule directs incoming requests to the target HTTP proxy.
The proxy checks the URL map to determine the appropriate backend service for the
request. In this case, we are serving a guestbook application with only one backend
service.

The backend service has two backends: one in us-central1-a and one in
europe-west1-d. Each of those backends consists of a managed instance group.
Now, when a user request comes in, the load balancing service determines the
approximate origin of the request from the source IP address. The load balancing
service also knows the locations of the instances owned by the backend service, their
overall capacity, and their overall current usage. Therefore, if the instances closest to
the user have available capacity, the request is forwarded to that closest set of
instances.

In our example, traffic from the user in North America would be forwarded to the
managed instance group in us-central1-a, and traffic from the user in EMEA would be
forwarded to the managed instance group in europe-west1-d. If there are several
users in each region, the incoming requests to the given region are distributed evenly
across all available backend services and instances in that region.

If there are no healthy instances with available capacity in a given region, the load
balancer instead sends the request to the next closest region with available capacity.
Therefore, traffic from the EMEA user could be forwarded to the us-central1-a
backend if the europe-west1-d backend does not have capacity or has no healthy
instances as determined by the health checker. This is referred to as cross-region
load balancing.

Proprietary + Confidential

Zone A

Instance group 1
/ (default handler)

Instance group 2
/video

HTTP
traffic

split by
content

Browser Browser Application
Load Balancer

Backend
www-service

Backend
video-service

Example: Content-based load balancing

Another example of an Application Load Balancer is a content-based load balancer. In
this case, there are two separate backend services that handle either web or video
traffic.

The traffic is split by the load balancer based on the URL header as specified in the
URL map. If a user is navigating to /video, the traffic is sent to the backend
video-service, and if a user is navigating anywhere else, the traffic is sent to the
web-service backend. All of that is achieved with a single global IP address.

Proprietary + Confidential

● Target HTTP(S) proxy

● One signed SSL certificate installed (minimum)

● Client SSL session terminates at the load balancer

● Support the QUIC transport layer protocol

Application Load Balancing -
Target HTTPS proxy

An Application Load Balancer that configured to use HTTP(S) has the same structure
basic structure when configured to balance using HTTP, but differs in the following
ways:

● An Application Load Balancer uses a target HTTPS proxy instead of a target
HTTP proxy.

● An Application Load Balancer requires at least one signed SSL certificate
installed on the target HTTPS proxy for the load balancer.

● The client SSL session terminates at the load balancer.
● Application Load Balancer supports the QUIC transport layer protocol.

QUIC is a transport layer protocol that allows faster client connection initiation,
eliminates head-of-line blocking in multiplexed streams, and supports connection
migration when a client's IP address changes. For more information on the QUIC
protocol, refer to the documentation - https://www.chromium.org/quic.

https://www.chromium.org/quic

Proprietary + Confidential

● Required for Application Load Balancing

● Up to 15 SSL certificates (per target proxy)

● Create an SSL certificate resource

SSL certificates

To use HTTPS, you must create at least one SSL certificate that can be used by the
target proxy for the load balancer.

You can configure the target proxy with up to fifteen SSL certificates.

For each SSL certificate, you first create an SSL certificate resource, which contains
the SSL certificate information. SSL certificate resources are used only with load
balancing proxies such as a target HTTPS proxy or target SSL proxy, which we will
discuss later in this module.

Proprietary + Confidential

User in
Oslo

User in
New York

Application
Load Balancer

Cloud Load
Balancing

Cloud
Storage

Cloud
Storage

Region: europe-north1

Region: us-east1

URL map sends
/love-to-fetch/ requests
to the europe-north1
backend bucket

URL map sends all other
requests to the us-east1
backend bucket

Backend buckets

Backend buckets allow you to use Cloud Storage buckets with Application Load
Balancing.

An external Application Load Balancer uses a URL map to direct traffic from specified
URLs to either a backend service or a backend bucket.

One common use case is:

● Send requests for dynamic content, such as data, to a backend service.
● Send requests for static content, such as images, to a backend bucket.

In this diagram, the load balancer sends traffic with a path of /love-to-fetch/ to a Cloud
Storage bucket in the europe-north region. All other requests go to a Cloud Storage
bucket in the us-east region. After you configure a load balancer with the backend
buckets, requests to URL paths that begin with /love-to-fetch are sent to the
europe-north Cloud Storage bucket, and all other requests are sent to the us-east
Cloud Storage bucket.

Proprietary + Confidential

A network endpoint group (NEG) is a configuration object that specifies
a group of backend endpoints or services.

There are four types of NEGs:
● Zonal
● Internet
● Serverless
● Hybrid connectivity

Network endpoint groups (NEG)

A network endpoint group (NEG) is a configuration object that specifies a group of
backend endpoints or services. A common use case for this configuration is deploying
services in containers. You can also distribute traffic in a granular fashion to
applications running on your backend instances.

You can use NEGs as backends for some load balancers and with Traffic Director.

Zonal and internet NEGs define how endpoints should be reached, whether they are
reachable, and where they are located. Unlike these NEG types, serverless NEGs
don't contain endpoints.

A zonal NEG contains one or more endpoints that can be Compute Engine VMs or
services running on the VMs. Each endpoint is specified either by an IP address or an
IP:port combination.

An internet NEG contains a single endpoint that is hosted outside of Google Cloud.
This endpoint is specified by hostname FQDN:port or IP:port.

A hybrid connectivity NEG points to Traffic Director services running outside of Google
Cloud.

A serverless NEG points to Cloud Run, App Engine, Cloud Run functions services
residing in the same region as the NEG.

For more information on using NEG’s, please refer to the Network endpoint groups
overview page.

https://cloud.google.com/load-balancing/docs/negs
https://cloud.google.com/load-balancing/docs/negs

Proprietary + Confidential

Lab Intro
Configure an Application Load
Balancer with Autoscaling

Let’s apply what we just covered.

Proprietary + Confidential

Lab objectives

Create HTTP and health check firewall rules01

Create a custom image for a web server02

Create an instance template based
on the custom image03

Create two managed instance groups04

Configure an Application Load Balancer
with IPv4 and IPv605

Stress test an Application Load Balancer 06

In this lab, you will configure an Application Load Balancer with autoscaling.

Proprietary + Confidential

Anycast IP

Cloud Load
Balancing

Virtual Private
Cloud

Global Forwarding Rule

Target Proxy

URL Map

Backend Service Health Check

Internet

Firewall
RulesNetwork: Default

Region 1

SubNetwork 1

Backend/Instance Group:
us-1-mig

Compute
Engine

Region 2

SubNetwork 2

Backend/Instance Group:
notus-1-mig

Compute
Engine

Specifically, you create two managed instance groups that serve as backends in two
different regions. Then, you create and stress test a load balancer to demonstrate
global load balancing and autoscaling.

Proprietary + Confidential

Lab Review
Configure an Application Load
Balancer with Autoscaling

In this lab, you configured an Application Load Balancer with backends in us-central1
and europe-west1. Then you stress-tested the load balancer with a VM to
demonstrate global load balancing and autoscaling.

You can stay for a lab walkthrough, but remember that Google Cloud’s user interface
can change, so your environment might look slightly different.

Proprietary + Confidential

Cloud CDN

03
Cloud CDN, or Content Delivery Network, uses Google's globally distributed edge
points of presence to cache HTTP(S) load-balanced content close to your users.

Proprietary + Confidential

Regions and
CDN nodes

CDN Current region
with 3 zones

Future region
with 3 zones*Exception: region has 4 zones.

São Paulo

Oregon

Las Vegas

Salt Lake City

Los Angeles

Iowa*
Montréal

N. Virginia

S. Carolina

London

Netherlands

Belgium Frankfurt
Warsaw

Finland

Zurich

Mumbai

Singapore

Jakarta

TaiwanHong Kong

Tokyo

Osaka

Seoul

Sydney

Doha

Melbourne

Delhi

Toronto

Santiago

Paris

Madrid
MilanTurin

Columbus

Berlin

Dammam
Dallas Tel Aviv

Johannesburg

Queretaro

Norway
Sweden

Phoenix

Specifically, content can be cached at CDN nodes as shown on this map.

There are over 90 of these cache sites spread across metropolitan areas in Asia
Pacific, Americas, and EMEA.

For an up-to-date list, please refer to the Cloud CDN documentation link in the course
resources.

Now, why should you consider using Cloud CDN?

Well, Cloud CDN caches content at the edges of Google's network providing faster
delivery of content to your users while reducing serving costs.

You can enable Cloud CDN with a simple checkbox when setting up the backend
service of your Application Load Balancer.

So it’s easy to enable and benefits you and your users but how does Cloud CDN do
all of this?

[Additional reading: For Cloud CDN performance measured by Cedexis, please refer
to these reports: https://itm.cloud.com/google-reports/]

https://cloud.google.com/cdn/docs/locations
https://itm.cloud.com/google-reports/

Proprietary + Confidential

Caching content with Cloud CDN

User in
San Francisco

User in
Los Angeles

User in
New York

Cloud CDN

Application Load
Balancer

Monitoring and
Logging

us-central1

Frontend
Autoscaling

asia-east1

Frontend
Autoscaling

us-east1

Cloud Storage

Let’s walk through the Cloud CDN response flow with this diagram.

In this example, the Application Load Balancer has two types of backends. There are
managed VM instance groups in the us-central1 and asia-east1 regions, and there is
a Cloud Storage bucket in us-east1. A URL map will decide which backend to send
the content to: the Cloud Storage bucket could be used to serve static content and the
instance groups could handle PHP traffic.

Now, when a user in San Francisco is the first to access a piece of content, the cache
site in San Francisco sees that it can't fulfill the request. This is called a cache miss.
The cache might attempt to get the content from a nearby cache, for example if a user
in Los Angeles has already accessed the content. Otherwise, the request is forwarded
to the Application Load Balancer, which in turn forwards the request to one of your
backends.

Depending on what content is being served, the request will be forwarded to the
us-central1 instance group or the us-east1 storage bucket.

If the content from the backend is cacheable, the cache site in San Francisco can
store it for future requests. In other words, if another user requests the same content
in San Francisco, the cache site might now be able to serve that content. This
shortens the round trip time and saves the origin server from having to process the
request. This is called a cache hit.

For more information on what content can be cached, please refer to the
documentation link in the course resources.

Now, each Cloud CDN request is automatically logged within Google Cloud. These
logs will indicate a “Cache Hit” or “Cache Miss” status for each HTTP request of the
load balancer. You will explore such logs in the next lab.

But how do you know how Cloud CDN will cache your content? How do you control
this? This is where cache modes are useful.

https://cloud.google.com/cdn/docs/caching

Proprietary + Confidential

● Cache modes control the factors that determine whether or not
Cloud CDN caches your content.

● Cloud CDN offers three cache modes:

○ USE_ORIGIN_HEADERS

○ CACHE_ALL_STATIC

○ FORCE_CACHE_ALL

Cloud CDN cache modes

Using cache modes, you can control the factors that determine whether or not Cloud
CDN caches your content by using cache modes.

Cloud CDN offers three cache modes, which define how responses are cached,
whether or not Cloud CDN respects cache directives sent by the origin, and how
cache TTLs are applied.

The available cache modes are USE_ORIGIN_HEADERS, CACHE_ALL_STATIC
and FORCE_CACHE_ALL.

● USE_ORIGIN_HEADERS mode requires origin responses to set valid cache
directives and valid caching headers.

● CACHE_ALL_STATIC mode automatically caches static content that doesn't
have the no-store, private, or no-cache directive. Origin responses that set
valid caching directives are also cached.

● FORCE_CACHE_ALL mode unconditionally caches responses, overriding any
cache directives set by the origin. You should make sure not to cache private,
per-user content (such as dynamic HTML or API responses) if using a shared
backend with this mode configured.

Proprietary + Confidential

Network Load
Balancing

04
Network Load Balancers are Layer 4 load balancers that can distribute traffic to
backends located either in a single region or across multiple regions. Let’s discuss
these next.

Proprietary + Confidential

Network load balancing

● Architecture:
○ Proxy
○ Passthrough

● Traffic:
○ TCP/SSL ports
○ UDP, ESP, GRE
○ ICMP, ICMPv6

Network Load Balancers are Layer 4 load balancers that can handle TCP, UDP, or
other IP protocol traffic. These load balancers are available as either proxy load
balancers or passthrough load balancers. You can pick a load balancer depending on
the needs of your application and the type of traffic that it needs to handle.

Choose a proxy Network Load Balancer if you want to configure a reverse proxy load
balancer with support for advanced traffic controls and backends on-premises and in
other cloud environments.

Choose a passthrough Network Load Balancer if you want to preserve the source IP
address of the client packets, you prefer direct server return for responses, or you
want to handle a variety of IP protocols such as TCP, UDP, ESP, GRE, ICMP, and
ICMPv6.

Let's explore these in more detail.

Proprietary + Confidential

Architecture of a Proxy Network Load Balancer

Proxy Network Load Balancer

Client traffic terminates here

New connection from load balancer to backends

Backends*

Google Kubernetes
Engine

Backends external to
Google CloudCompute Engine

TCP traffic (SSL offload available)

*Backend support differs depending on the deployment mode of the load balancer (internal or external, global or regional).

Web clients

Internal clients

Proxy Network Load Balancers are Layer 4 reverse proxy load balancers that
distribute TCP traffic to virtual machine (VM) instances in your Google Cloud VPC
network. Traffic is terminated at the load balancing layer and then forwarded to the
closest available backend by using TCP.

Proxy Network Load Balancers can be deployed externally or internally depending on
whether your application is internet-facing or internal. We will discuss internal proxy
Network Load Balancers later in this module.

External proxy Network Load Balancers are Layer 4 load balancers that distribute
traffic that comes from the internet to backends in your Google Cloud VPC network,
on-premises, or in other cloud environments. These load balancers are built on either
Google Front Ends (GFEs) or Envoy proxies.

These load balancers can be deployed in the following modes: global, regional, or
classic.

Proxy Network Load Balancers are intended for TCP traffic only, with or without SSL.
For HTTP(S) traffic, we recommend that you use an Application Load Balancer
instead.

Depending on the type of traffic your application needs to handle, you can configure
an external proxy Network Load Balancer with either a target TCP proxy or a target
SSL proxy.

Proprietary + Confidential

Proxy Network Load Balancer - Target TCP proxy

Connection-1
User in Iowa User in Boston

Connection-2

Global external proxy Network Load Balancer
(with Target TCP proxy) IP:74.125.29.101, port: 110

Zone: us-central1-b

Instance Group

Instance

Instance

Instance

Region: US Central

Zone: us-east1-b

Instance Group

Instance

Instance

Instance

Region: US East

Terminate TCP
connection here

TCP Traffic TCP Traffic

This network diagram illustrates an external proxy Network Load Balancer configured
with a target TCP proxy.

In this example, traffic from users in Iowa and Boston is terminated at the global
external proxy Network Load Balancer layer. From there, a separate connection is
established to the closest backend instance. As in the target SSL proxy example in
the next slide, the user in Boston would reach the us east region, and the user in Iowa
would reach the us central region, if there is enough capacity.

Now, the traffic between the proxy and the backends can use SSL or TCP, and we
also recommend using SSL here.

Proprietary + Confidential

Proxy Network Load Balancer - Target SSL proxy

Connection-1
User in Iowa User in Boston

Connection-2

Global external proxy Network Load Balancer
(with Target SSL proxy) IP:74.125.29.101, port: 443

Zone: us-central1-b

Instance Group

Instance

Instance

Instance

Region: US Central

Zone: us-east1-b

Instance Group

Instance

Instance

Instance

Region: US East

Terminate SSL
connection here

SSL Traffic SSL Traffic

This network diagram illustrates an external proxy Network configured with a target
SSL proxy.

In this example, traffic from users in Iowa and Boston is terminated at the global
external proxy Network Load Balancer layer. From there, a separate connection is
established to the closest backend instance. In other words, the user in Boston would
reach the us east region, and the user in Iowa would reach the us central region, if
there is enough capacity.

Now, the traffic between the proxy and the backends can use SSL or TCP. We
recommend using SSL. For HTTP(S) traffic, we recommend that you use an external
Application Load Balancer.

Proprietary + Confidential

Architecture of a passthrough Network Load Balancer

Passthrough Network Load Balancer

Direct server return

Backends

Google Kubernetes
Engine

Compute Engine

Web clients

Internal clients

TCP, UDP, and other IP protocols

Traffic terminates here Traffic terminates here

Passthrough Network Load Balancers are Layer 4 regional, passthrough load
balancers. These load balancers distribute traffic among backends in the same region
as the load balancer. They are implemented by using Andromeda virtual networking
and Google Maglev. These load balancers are not proxies. Load-balanced packets
are received by backend VMs with the packet's source and destination IP addresses,
protocol, and, if the protocol is port-based, the source and destination ports
unchanged. Load-balanced connections are terminated at the backends. Responses
from the backend VMs go directly to the clients, not back through the load balancer.
The industry term for this is direct server return (DSR).

These load balancers are deployed in two modes, depending on whether the load
balancer is internet-facing or internal: We will discuss internal passthrough Network
Load Balancers later in this module.

External passthrough Network Load Balancers are built on Maglev. Clients can
connect to these load balancers from anywhere on the internet regardless of their
Network Service Tiers. The load balancer can also receive traffic from Google Cloud
VMs with external IP addresses or from Google Cloud VMs that have internet access
through Cloud NAT or instance-based NAT. Backends for external passthrough
Network Load Balancers can be deployed using either a backend service or a target
pool. For new deployments, we recommend using backend services.

The architecture of an external passthrough Network Load Balancer depends on
whether you use a backend service or a target pool to set up the backend.

Proprietary + Confidential

● Regional backend service

● Defines the behavior of the load balancer and how it distributes
traffic to its backend instance groups

● Support for IPv4 and IPv6 traffic

● Multiple protocols

● Managed and unmanaged instance groups

● Non legacy health checks

Backend service-based architecture

New network load balancers can be created with a regional backend service that
defines the behavior of the load balancer and how it distributes traffic to its backend
instance groups.

Backend service-based external passthrough Network Load Balancers support IPv4
and IPv6 traffic, multiple protocols (TCP, UDP, ESP, GRE, ICMP, and ICMPv6),
managed and unmanaged instance group backends, zonal network endpoint group
(NEG) backends with GCE_VM_IP endpoints, fine-grained traffic distribution controls,
failover policies, and let you use non-legacy health checks that match the type of
traffic (TCP, SSL, HTTP, HTTPS, or HTTP/2) that you are distributing.

You can also transition an existing target pool-based network load balancer to use a
backend service instead. But what is a target pool resource?

Proprietary + Confidential

● Forwarding rules (TCP and UDP)

● Up to 50 per project

● One health check

● Instances must be in the same region

Target pool-based architecture

A target pool is the legacy backend supported with external passthrough Network
Load Balancers.

A target pool resource defines a group of instances that receive incoming traffic from
forwarding rules. When a forwarding rule directs traffic to a target pool, the load
balancer picks an instance from these target pools based on a hash of the source IP
and port and the destination IP and port. These target pools can only be used with
forwarding rules that handle TCP and UDP traffic.

Now, each project can have up to 50 target pools, and each target pool can have only
one health check.

Also, all the instances of a target pool must be in the same region, which is the same
limitation as for the Network Load Balancer.

Proprietary + Confidential

Internal Load
Balancing

05
Next, let’s talk about internal load balancing.

Proprietary + Confidential

Architecture of an internal Application Load Balancer

Internal Application Load Balancer

 Internal clients

Client traffic terminates here

New connection from load balancer to backends

Backends

Cloud RunGoogle Kubernetes
Engine

Backends external to
Google CloudCompute Engine

HTTP or HTTPS

Internal Application Load Balancers are Envoy proxy-based regional Layer 7 load
balancers that enable you to run and scale your HTTP application traffic behind an
internal IP address. Internal Application Load Balancers support backends in one
region, but can be configured to be globally accessible by clients from any Google
Cloud region.

You can configure an internal Application Load Balancer in either regional, or
cross-region, internal Application Load Balancer mode.

Proprietary + Confidential

Internal Application Load Balancers

Deployment
mode Network service tier Load balancing scheme IP address Frontend ports

Regional internal Premium Tier INTERNAL_MANAGED IPv4 Can reference exactly
one port from 1-65535

Cross-region
internal Premium Tier INTERNAL_MANAGED IPv4

Internal Application Load Balancers optimize traffic distribution within your VPC
network or networks connected to your VPC network. You can configure an internal
Application Load Balancer in the following modes, regional internal or cross-region.

A regional internal Application Load Balancer is implemented as a managed service
based on the open-source Envoy proxy. Regional mode ensures that all clients and
backends are from a specified region, which helps when you need regional
compliance. This load balancer is enabled with rich traffic control capabilities based
on HTTP(S) parameters. After the load balancer is configured, it automatically
allocates Envoy proxies to meet your traffic needs.

A cross-region internal Application Load Balancer is a multi-region load balancer that
is implemented as a managed service based on the open-source Envoy proxy. The
cross-region mode enables you to load balance traffic to backend services that are
globally distributed, including traffic management that ensures traffic is directed to the
closest backend. This load balancer also enables high availability. Placing backends
in multiple regions helps avoid failures in a single region. If one region's backends are
down, traffic can fail over to another region.

Proprietary + Confidential

● Regional, private load balancing
○ VM instances in same region
○ RFC 1918 IP addresses

● TCP, UDP, ICMP, ICMPv6, SCTP, ESP, AH, and GRE traffic

● Reduced latency, simpler configuration

● Software-defined, fully distributed load balancing

Internal passthrough Network Load Balancers

The internal passthrough Network Load Balancer is a regional, private load balancing
service for when you need to load balance TCP, UDP, ICMP, ICMPv6, SCTP, ESP,
AH, and GRE traffic, or when you need to load balance a TCP port that isn’t
supported by other load balancers.

In other words, this load balancer enables you to run and scale your services behind
a private load balancing IP address This means that it is only accessible through the
internal IP addresses of virtual machine instances that are in the same region.

Therefore, configure an internal passthrough Network Load Balancer IP address to
act as the frontend to your private backend instances. Because you don’t need a
public IP for your load-balanced service, your internal client requests stay internal to
your VPC network and region. This often results in lowered latency, because all your
load-balanced traffic will stay within Google’s network, making your configuration
much simpler.

Let’s talk more about the benefit of using a software-defined internal passthrough
Network Load Balancer service.

Proprietary + Confidential

Traditional proxy model of internal load balancing Internal passthrough Network Load Balancer

Software-defined, fully distributed load balancing

Google Cloud internal load balancing is not based on a device or a VM instance.
Instead, it is a software-defined, fully distributed load balancing solution.

In the traditional proxy model of internal load balancing, as shown on the left, you
configure an internal IP address on a load balancing device or instances, and your
client instance connects to this IP address. Traffic coming to the IP address is
terminated at the load balancer, and the load balancer selects a backend to establish
a new connection to. Essentially, there are two connections: one between the Client
and the Load Balancer, and one between the Load Balancer and the Backend.

Google Cloud internal passthrough Network Load Balancing distributes client instance
requests to the backends using a different approach, as shown on the right. It uses
lightweight load balancing built on top of Andromeda (Google’s network virtualization
stack) to provide software-defined load balancing that directly delivers the traffic from
the client instance to a backend instance.

For more information on Andromeda, refer to the link in the Course Resources.
[https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-p
latforms-latest-networking-stack.html]

Now, let's take a look at internal proxy Network Load Balancers.

https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html
https://cloudplatform.googleblog.com/2014/04/enter-andromeda-zone-google-cloud-platforms-latest-networking-stack.html

Proprietary + Confidential

Internal proxy Network Load Balancers

● Proxy-based load balancer

● Balances traffic within your VPC network

● Regional or Cross-region

● Software-defined, fully distributed load balancing

The Google Cloud internal proxy Network Load Balancer is a proxy-based load
balancer powered by open source Envoy proxy software and the Andromeda network
virtualization stack. It load balances traffic within your VPC network or networks
connected to your VPC network.

The internal proxy Network Load Balancer is a layer 4 load balancer that enables you
to run and scale your TCP service traffic behind a regional internal IP address that is
accessible only to clients in the same VPC network or clients connected to your VPC
network. The load balancer first terminates the TCP connection between the client
and the load balancer at an Envoy proxy. The proxy opens a second TCP connection
to backends hosted in Google Cloud, on-premises, or other cloud environments.

Internal proxy Network Load Balancers are available in regional internal or cross
region internal deployment modes.

For more use cases, see Proxy Network Load Balancer overview.

https://cloud.google.com/load-balancing/docs/proxy-network-load-balancer

Proprietary + Confidential

Architecture of a regional internal proxy
Network Load Balancer

Region

Internal proxy Network Load Balancer

Client VM Forwarding rule
regional

Target TCP proxy
regional

Backend service
regional

Backends

Instance groups
or

NEGs

Proxy-only subnet
regional

Health check
regional

Firewall rules
global

A regional internal proxy Network Load Balancer is implemented as a managed
service based on the open source Envoy proxy. Regional mode ensures that all
clients and backends are from a specified region, which helps when you need
regional compliance. This diagram shows the components of a regional internal proxy
Network Load Balancer deployment in Premium Tier.

Proprietary + Confidential

Architecture of a cross-region internal proxy
Network Load Balancer

RegionA
subnetA

Client VM
Forwarding rule

global
(regional IP address)

Proxy-only subnet
regional

Backends

Instance groups
or

Zonal NEGs
or

Hybrid NEGs

RegionB
subnetB

Client VM
Forwarding rule

global
(regional IP address)

Proxy-only subnet
regional

Backends

Instance groups
or

Zonal NEGs
or

Hybrid NEGs

Target proxy
global

Backend service
global

This diagram shows the components of a cross-region internal proxy Network Load
Balancer deployment in Premium Tier within the same VPC network. Each global
forwarding rule uses a regional IP address that the clients use to connect.

This is a multi-region load balancer that is implemented as a managed service based
on the open source Envoy proxy. The cross-region mode lets you load balance traffic
to backend services that are globally distributed, including traffic management that
ensures traffic is directed to the closest backend. This load balancer also enables
high availability. Placing backends in multiple regions helps avoid failures in a single
region. If one region's backends are down, traffic can fail over to another region.

Proprietary + Confidential

Web frontend

Project Region: asia-east1

Managed
instance group

subnet1

Region: us-central1

Region: us-west1

Internal Network
Load Balancer

Middleware

Instance group

VPC
Routing

Application
Load Balancing

Network

User in
Singapore

Web frontend

Managed
instance group

subnet2

Internal Network
Load Balancer

Middleware

Instance group

Web frontend

Managed
instance group

subnet3

Internal Network
Load Balancer

Middleware

Instance group

User in Iowa

User in San
Francisco

Internal load balancing supports 3-tier web services

Now, internal load balancing enables you to support use cases such as the traditional
3-tier web services.

In this example, the web tier uses an external Application Load Balancer that provides
a single global IP address for users in San Francisco, Iowa, Singapore, and so on.
The backends of this load balancer are located in the us-west1, us-central1, and
asia-east1 regions because this is a global load balancer.

These backends then access an internal Network Load Balancer in each region as
the application or internal tier. The backends of this internal tier are located in
us-west1-a, us-central1-b, and asia-east1-b. The last tier is the database tier in each
of those zones.

The benefit of this 3-tier approach is that neither the database tier nor the application
tier is exposed externally. This simplifies security and network pricing.

Proprietary + Confidential

Lab Intro
Configure an Internal Network
Load Balancer

Let’s apply some of the internal load balancer concepts that we just discussed in a
lab.

Proprietary + Confidential

Lab objectives

Create HTTP and health check firewall rules01

Configure two instance templates02

Create two managed instance groups03

Configure and test an internal
Network Load Balancer

04

In this lab, you will create two managed instance groups in the same region. Then,
you configure and test an internal Network Load Balancer with the instances groups
as the backends, as shown in this network diagram.

Proprietary + Confidential

Proprietary + Confidential

Review: Configure an
Internal Load Balancer

In this lab, you created two managed instance groups in the us-central1 region, along
with firewall rules to allow HTTP traffic to those instances and TCP traffic from the
Google Cloud health checker. Then, you configured and tested an internal load
balancer for those instance groups.

You can stay for a lab walkthrough, but remember that Google Cloud’s user interface
can change, so your environment might look slightly different.

Proprietary + Confidential

Choosing a Load
Balancer06

Now that we’ve discussed all the different load balancing services within Google
Cloud, let me help you determine which load balancer best meets your needs.

Proprietary + Confidential

Deployment modes available for Cloud Load Balancing

Network Load Balancer (TCP / UDP / Other IP protocols)Application Load Balancer (HTTP / HTTPS)

Proxy PassthroughExternal Internal

RegionalRegionalGlobal Internal InternalExternalExternal

Regional RegionalRegionalRegionalGlobal
Global external
Application Load
Balancer

Regional external
Application Load
Balancer

Regional internal
Application Load
Balancer

External proxy
Network Load
Balancer

Regional external
proxy Network
Load Balancer

Regional internal
proxy Network
Load Balancer

Regional external
passthrough
Network Load
Balancer

Regional internal
passthrough
Network Load
Balancer

To determine which Cloud Load Balancing product to use, you must first determine
what traffic type your load balancers must handle. As a general rule, you'd choose an
Application Load Balancer when you need a flexible feature set for your applications
with HTTP(S) traffic. You'd choose a proxy Network Load Balancer to implement TLS
offload, TCP proxy, or support for external load balancing to backends in multiple
regions. You'd choose a passthrough Network Load Balancer to preserve client
source IP addresses, avoid the overhead of proxies, and to support additional
protocols like UDP, ESP, and ICMP, or if you need to expose client IP addresses to
your applications.

You can further narrow down your choices depending on your application's
requirements: whether your application is external (internet-facing) or internal and
whether you need backends deployed globally or regionally.

Proprietary + Confidential

Load balancer Deployment mode Traffic type Network Service Tier Load-balancing scheme
Application Load Balancers Global external HTTP or HTTPS Premium EXTERNAL_MANAGED

Regional external HTTP or HTTPS Standard EXTERNAL_MANAGED

Classic HTTP or HTTPS Global in Premium
Regional in Standard

EXTERNAL

Internal
Always regional

HTTP or HTTPS Premium INTERNAL_MANAGED

Proxy Network Load Balancers Global external TCP with optional SSL offload Global in Premium
Regional in Standard

EXTERNAL

Regional external TCP Standard only EXTERNAL_MANAGED

Internal
Always regional

TCP without SSL offload Premium only INTERNAL_MANAGED

Passthrough Network Load
Balancers

External
Always regional

TCP, UDP, ESP, GRE, ICMP, and
ICMPv6

Premium or Standard EXTERNAL

Internal
Always regional

TCP or UDP Premium only INTERNAL

Summary of Google Cloud load balancers

If you prefer a table over a flow chart, we recommend this summary table.

The load-balancing scheme is an attribute on the forwarding rule and the backend
service of a load balancer and indicates whether the load balancer can be used for
internal or external traffic.

The term MANAGED in the load-balancing scheme indicates that the load balancer is
implemented as a managed service either on Google Front Ends or on the open
source Envoy proxy. In a load-balancing scheme that is MANAGED, requests are
routed either to the Google Front End or to the Envoy proxy.

For more information on Network Service Tiers, refer to the documentation link in the
Course Resources.

https://cloud.google.com/network-tiers/docs/overview

Proprietary + Confidential

Review: Load Balancing
and Autoscaling

In this module, we looked at the different types of load balancers that are available in
Google Cloud, along with managed instance groups and autoscaling. You were able
to apply most of the covered services and concepts by working through the two labs
of this module.

We also discussed the criteria for choosing between the different load balancers and
looked at a flow chart and a summary table to help you pick the right load balancers.
Remember, sometimes it’s useful to combine an internal and an external load
balancer to support 3-tier web services.

