
Networking in Google
Cloud

Hybrid Load Balancing and
Traffic Management

Welcome to the Hybrid Load Balancing and Traffic Management module.

Today’s
agenda

01 Load balancing

02 Hybrid load balancing

03 Traffic management

04 Lab: Configuring Traffic Management with a Load
Balancer

05 Quiz

In this module, we will cover the topics listed on the screen.

We’ll begin with an overview of Cloud Load Balancing. We will continue with a
discussion of hybrid load balancing. In other words, load balancing between Google
Cloud, other public clouds, and on-premises environments.

We will follow with a discussion on traffic management, which provides enhanced
features to route traffic based on criteria that you specify. After that, you will apply
what you’ve learned in a traffic management lab exercise.

Let’s get started.

● Cloud Load Balancing receives client traffic.

● The backend can be a backend service or a
backend bucket.

● Backend configuration defines:

○ How traffic is distributed.

○ Which health check to use.

○ If session affinity is used.

○ Which other services are used (such as
Cloud CDN or Identity-Aware Proxy).

Overview of Cloud Load Balancing

Backend configuration

Cloud Load
Balancing

Client

A load balancer, as the name suggests, balances load across multiple instances of
your applications.

Cloud Load Balancing receives client traffic. This traffic can be external or internal,
depending on the load balancer you use. A backend configuration distributes requests
to healthy backends.

Some load balancers also support backend buckets.

One or more backends must be connected to the backend service or backend bucket.

Backend configuration defines:
● How traffic is distributed.
● Which health check to use.
● If session affinity is used.
● Which other services are used (such as Cloud CDN or Identity-Aware Proxy).

Cloud Load Balancing can route traffic to:

● Backend Services:
○ Managed instance groups: a group of

virtual machines created from a template.
○ Network endpoint groups (NEGs): a group

of services or workloads.

● Cloud Storage backend buckets.

Backend configuration

Backend configuration

Cloud Load
Balancing

Client

Backend Service
Backend
bucketsNEG MIG

Cloud Load Balancing can route traffic to either a backend service or a backend
bucket. The backend services define how to handle the traffic. For example, backend
services define how the traffic is distributed, which health check to use, and if session
affinity is used. Backend services also define which other Google Cloud services to
use, such as Cloud CDN or Identity-Aware Proxy. On the other hand, backend
buckets direct incoming traffic to Cloud Storage buckets. Backend buckets are useful
in serving static content. We will discuss this in more detail in the upcoming section.

Some of the backend services include a managed instance group, or a network
endpoint group (NEG). In this module, we are going to look at some special features
related to network endpoint groups.

Types of load balancers
Application Load Balancer (HTTP / HTTPS) Network Load Balancer (TCP / UDP / other IP protocols)

Global
external

Application
Load

Balancer

Regional
external

Application
Load

Balancer

Regional
internal

Application
Load

Balancer

Cross-region
internal

Application
Load

Balancer

Global
external proxy
Network Load

Balancer

Regional
external proxy
Network Load

Balancer

Regional
internal proxy

Network
Load Balancer

Cross-region
internal proxy
Network Load

Balancer

Regional
external

passthrough
Network Load

Balancer

Regional
internal

passthrough
Network Load

Balancer

Global Regional

External Internal

Regional Cross-region

Global Regional Regional Cross-region Regional Regional

External Internal External Internal

Proxy Passthrough

Google Cloud Platform offers a range of load balancing solutions that can be
classified based on the OSI model layer they operate at and their specific
functionalities.

Application Load Balancers

These load balancers are designed to handle HTTP and HTTPS traffic, making them
ideal for web applications and services that require advanced features like
content-based routing and SSL/TLS termination. Application Load Balancers operate
as reverse proxies, distributing incoming traffic across multiple backend instances
based on rules you define. They are highly flexible and can be configured for both
internet-facing (external) and internal applications.

Network Load Balancers

Network Load Balancers operate at the transport layer and efficiently handle TCP,
UDP, and other IP protocols. They can be further classified into two types:

Proxy Load Balancers: These also function as reverse proxies, terminating client
connections and establishing new ones to backend services. They offer advanced
traffic management capabilities and support backends located both on-premises and
in various cloud environments.

Passthrough Load Balancers: Unlike proxy load balancers, these do not modify or

terminate connections. Instead, they directly forward traffic to the backend while
preserving the original source IP address. This type is well-suited for applications that
require direct server return or need to handle a wider range of IP protocols.

● A NEG is a configuration object that specifies a
group of backend endpoints or services.

● A common use case for this configuration is
deploying services in GKE.

● There are five types of NEGs:

○ Zonal
○ Internet
○ Serverless
○ Private Service Connect
○ Hybrid connectivity

Network endpoint groups (NEGs)

Backend services

Cloud Load
Balancing

Network endpoint group

VM1

Pod 1 Pod 2

VM2

Pod 3 Pod 4 Pod 5

A network endpoint group (NEG) is a configuration object that specifies a group of
backend endpoints or services. A common use case for this configuration is deploying
services in containers, as in Google Kubernetes Engine. The load balancer must be
able to select a pod from the container, as shown in the example. You can also
distribute traffic in a granular fashion to workloads and services that run on your
backend hosts.

You can use NEGs as backends for some load balancers and with Traffic Director.
There are five types of NEGs:

● Zonal NEGs define how endpoints should be reached, whether they are
reachable, and where they are located. A zonal NEG contains one or more
endpoints that can be Compute Engine virtual machines (VMs) or services that
run on the VMs. Each endpoint is specified either by an IP address or an
IP:port combination.

● An internet NEG contains a single endpoint that is hosted outside of Google
Cloud. This endpoint is specified by hostname FQDN:port or IP:port.

● A serverless NEG is a backend that points to a Cloud Run, App Engine,
Cloud Functions, or API Gateway service that resides in the same region as
the NEG.

● A Private Service Connect NEG contains a single endpoint. That endpoint
resolves to either a Google-managed regional API endpoint or a managed
service published by using Private Service Connect.

● A hybrid connectivity NEG points to Traffic Director services that run outside

● of Google Cloud (on-premises or other public cloud backends). The focus in
this module is on hybrid connectivity NEGs.

For more information on using NEGs, and a complete list of supported load
balancers, please refer to the Network endpoint groups overview in the Google Cloud
documentation.

https://cloud.google.com/load-balancing/docs/negs

Today’s
agenda

01 Load balancing

02 Hybrid load balancing

03 Traffic management

04 Lab: Configuring Traffic Management with a Load
Balancer

05 Quiz

Let’s next discuss hybrid load balancing.

● A hybrid strategy lets you extend Cloud Load Balancing to workloads that run on your
existing infrastructure outside of Google Cloud.

● This strategy could be:

○ Permanent to provide multiple platforms for your workloads.
○ Temporary as you prepare to migrate your internal or external workload to Google

Cloud.

Hybrid connectivity and load
balancing

A hybrid load balancing lets you extend Cloud Load Balancing to workloads that run
on your existing infrastructure outside of Google Cloud. A hybrid strategy is a
pragmatic solution for you to adapt to changing market demands and incrementally
modernize the backend services that run your workloads. You can create a hybrid
deployment to enable migration to a modern cloud-based solution or a permanent
fixture of your organization IT infrastructure.

Next, let’s look at a few general usecases of hybrid load balancing.

• Maintaining two load balancers

• Routing traffic from on-prem
 to cloud

Use case: Complexity distributing
load in hybrid environment

Backend services

Client

Cloud Load
Balancing

Service

On-premises data center

Backend services

Client

On-prem
Load Balancing

Service Service Service Service

Jie, a Cloud Network Engineer, needs to modernize the Cymbal Corporation IT
infrastructure to improve application performance and scalability.

Currently, Cymbal runs a mix of on-premises applications and applications deployed
in Google Kubernetes Engine (GKE). Traffic is often unpredictable, with sudden
surges during sales or promotions overwhelming their on-premises servers. Izumi
knows they need a way to handle these spikes without compromising performance or
spending a fortune on excess capacity that sits idle most of the time. Additionally,
managing two separate load balancing solutions for the on-premises and GKE
environments is becoming increasingly cumbersome.

Use case: Jie can benefit from hybrid load balancing

Backend services

Cloud Load
Balancing

Service

Hybrid NEG Zonal NEG

Internal
Client

External
Client

On-premises data
center

Service

Other public cloud

Service

Service Service

In this example, traffic from clients on the public internet enters your private on-premises
environment, and traffic from another public cloud provider enters through a Cloud load
balancer. The load balancer also gets requests from internal clients.

The load balancer sends requests to the services that run your workloads. These
services are the load balancer endpoints, and they can be located inside or outside of
Google Cloud. You configure a load balancer backend service to communicate to the
external endpoints by using a hybrid NEG. The external environments can use Cloud
Interconnect or Cloud VPN to communicate with Google Cloud. The load balancer
must be able to reach each service with a valid IP address:Port combination.

The example shows a load balancer backend service with a hybrid and a zonal NEG.
The hybrid NEG connects to endpoints that are on-premises and in other public
clouds. The zonal NEG points to Cloud Endpoints in the same subnet and zone.

Configuring backend services
outside of Google Cloud asia-south1-a

● Configure one or more hybrid connectivity network
endpoint groups (NEGs):
○ Add the IP address
○ Specify a Google Cloud zone
○ Add a health check to the NEG.

● Add the hybrid connectivity NEGs to a hybrid load
balancer backend service.

Backend service

Cloud Load
Balancing

Hybrid NEG

[On-prem] Delhi

Backend

Bengaluru

Backend

A hybrid load balancer requires special configuration only for the backend service.
The frontend configuration is the same as any other load balancer.

To configure backend services outside of Google Cloud, first configure one or more
hybrid connectivity network endpoint groups (NEG).

Add each non-Google Cloud network endpoint IP:Port combination to a hybrid
connectivity network endpoint group (NEG). Ensure that the IP address and port are
reachable from Google Cloud. For hybrid connectivity NEGs, you set the network
endpoint type to NON_GCP_PRIVATE_IP_PORT.

Create the NEG in a Google Cloud zone that is as close as possible to your other
environment. For example, if you’re hosting a service in an on-premises environment
in Bengaluru, India, you can place the NEG in the asia-south1-a Google Cloud zone,
as shown in the example.

Next, add a health check to the NEG.

Add the hybrid connectivity NEGs to a hybrid load balancer backend. A hybrid
connectivity NEG must only include endpoints outside Google Cloud. Traffic might be
dropped if a hybrid NEG includes endpoints for resources within a Google Cloud VPC
network.

Types of load balancers that support
hybrid load balancing

Global external
Application
Load Balancer

Classic
Application
Load Balancer

Regional
external
Application
Load Balancer

Cross-region
internal
Application
Load Balancer

Regional internal
Application
Load Balancer

Global External
proxy Network
Load Balancer

Regional
External proxy
Network Load
Balancer

Regional internal
proxy Network
Load Balancer

Cross-region
internal proxy
Network Load
Balancer

You can use hybrid load balancing with the following:
● Global external Application Load Balancer
● Classic Application Load Balancer
● Regional external Application Load Balancer
● Cross-region internal Application Load Balancer
● Regional internal Application Load Balancer
● External proxy Network Load Balancer (global and regional)
● Regional internal proxy Network Load Balancer
● Cross-region internal proxy Network Load Balancer

You choose a load balancer depending on your needs, such as where the clients and
workloads are located.

Caveats: Hybrid load balancing

02

To create, delete, or manage a load balancer with mixed
zonal and hybrid connectivity NEGs backends in
a single backend service, use the Google Cloud CLI
or the REST API.

01

Regional dynamic routing and static routes are not
supported.

03 The internal Application Load Balancer and hybrid
connectivity must be configured in the same region.

04 Ensure that you also review the security settings on
your hybrid connectivity configuration.

To create, delete, or manage a load balancer with mixed zonal and hybrid connectivity
NEGs backends in a single backend service, you must use the Google Cloud CLI or
the REST API.

Regional dynamic routing and static routes are not supported. The Cloud Router used
for hybrid connectivity must be enabled with global dynamic routing.

The internal Application Load Balancer and hybrid connectivity must be configured in
the same region. If they are configured in different regions, you might see backends
as healthy, but client requests will not be forwarded to the backend.

Ensure that you also review the security settings on your hybrid connectivity
configuration. Currently, HA Cloud VPN connections are encrypted by default, using
IPsec encryption. Cloud Interconnect connections are not encrypted by default. For
more details, go to Encryption in Transit in Google Cloud on the Google Cloud
website.

https://cloud.google.com/docs/security/encryption-in-transit

Today’s
agenda

01 Load balancing

02 Hybrid load balancing

03 Traffic management

04 Lab: Configuring Traffic Management with a Load
Balancer

05 Quiz

Traffic management is key to ensuring optimal network performance and user
experience. In this section, we'll delve into a real-world use case and its
implementation.

Use case: Distribute traffic
by using URL map

Cloud Load
Balancing

Backend Backend Distribute traffic based on video
quality to optimizing performance

http://cymbal.com/hd/abc.html

Bola, a Cloud Network Engineer at Cymbal Corporation, is responsible for maintaining their
video streaming platform. The website accesses the Cymbal store infrastructure using Cloud
Load Balancing. To optimize performance and costs, they want to route user traffic to different
server backends based on the requested video quality (e.g., 4K versus HD). What should Bola
do?

● Traffic management provides enhanced
features to route load balancer traffic
based on criteria that you specify.

● With traffic management, you can:
○ Direct traffic to a backend based on

HTTPS parameters.
○ Perform request-based and

response-based actions.
○ Use traffic policies to fine-tune load

balancing behavior.

Traffic management

Cloud Load
Balancing

Backend
(HD processing)

http://cymbal.com/hd/abc.html

/cymbal.com/video/4k//cymbal.com/video/hd/

Backend
(4K processing)

Bola can benefit from Traffic management . Traffic management provides enhanced
features to route load balancer traffic based on criteria that you specify.

With traffic management, you can:
● Implement traffic steering based on HTTPS parameters, such as the host,

path, headers, and other request parameters.
● Perform request-based and response-based actions, such as redirects and

header transformations.
● Use traffic policies to fine-tune load balancing behavior, such as retry policies,

request mirroring, and cross-origin resource sharing (CORS).

The traffic features that are available can vary per load balancer. Check the Google
Cloud documentation for details, for example, Traffic management overview for a
classic Application Load Balancer, Traffic management overview for global external
Application Load Balancers, and Traffic management overview for regional external
Application Load Balancers.

Recall that, in addition to traffic management, Cloud Load Balancing offers backend
services like health checks, session affinity, balancing mode, and capacity scaling.

https://cloud.google.com/load-balancing/docs/https/traffic-management
https://cloud.google.com/load-balancing/docs/https/traffic-management
https://cloud.google.com/load-balancing/docs/https/traffic-management-global
https://cloud.google.com/load-balancing/docs/https/traffic-management-global
https://cloud.google.com/load-balancing/docs/https/traffic-management-regional
https://cloud.google.com/load-balancing/docs/https/traffic-management-regional

● These load balancers support traffic management features:
○ Global external Application Load Balancer
○ Global external classic Application Load Balancer
○ Regional external Application Load Balancer
○ Internal Application Load Balancer

● Other load balancers have access only to traffic features that are
available in backend services, such as balancing mode and session
affinity.

● For a complete list of features supported by each load balancer, refer to
Routing and traffic management.

Supported load balancers

These load balancers support traffic management: global external Application Load
Balancer, global external classic Application Load Balancer, internal Application Load
Balancer and the regional external Application Load Balancer. Other load balancers
have access to only traffic features available in backend services, such as balancing
mode and session affinity.

Not all load balancers support all traffic management features. For a complete list of
traffic management features supported for each load balancer, refer to Routing and
traffic management in the Google Cloud documentation.

https://cloud.google.com/load-balancing/docs/features#routing-traffic-management
https://cloud.google.com/load-balancing/docs/features#routing-traffic-management
https://cloud.google.com/load-balancing/docs/features#routing-traffic-management

● The URL map contains rules that define
the criteria to use to route incoming
traffic to a backend service.

● Traffic management features are
configured in a URL map.

● You can choose between the simple and
the advanced host mode.

URL map

Cloud Load
Balancing

Backend
(HD processing)

/cymbal.com/video/4k//cymbal.com/video/hd/

Backend
(4K processing)

URL map

The URL map contains rules that define the criteria to use to route incoming traffic to
a backend service or backend bucket. Traffic management features are configured in
a URL map. In other words, the load balancer uses the URL map to determine where
to route incoming traffic. When you configure routing, you can choose between the
following modes:

● Simple host and path rule
● Advanced host, path, and route rule

Each URL map can contain only one mode or the other mode.

URL map workflow

URL map

Path Rule 2

All other path

Path Rule 3

Path-matcher

Host rule Path matcher
Default backend

Path 1 backend

Path 2 backend

URL map
 Default backend

Host rule
match

A request is first evaluated based on the host rule. If the domain matches a defined
host rule, the system uses its associated path matcher to further refine routing. Each
host rule consists of a list of one or more hosts and a single path matcher
(pathMatcher). If no hostRules are defined, the request is routed to the
defaultService. The request's path is compared against available path rules, with the
longest, most specific match taking priority. Path rules are evaluated on a
longest-path-matches-first basis. You can specify the path rules in any order.

Once the best match is found, the request is sent to the corresponding backend
service. If no specific host and path rules apply, the request is handled by the default
backend service. This setup allows you to create custom routing rules, like sending
video-related requests to a dedicated service while directing general traffic to a
different backend.

Bola can use URL maps to distribute traffic

URL map = video-url-map
cymbal.net/video/hd/

cymbal.com/video/

cymbal.com/video/hd/

cymbal.com/video/4k/

Path Rule 2

All other path

Path Rule 3

Path-matcher

Host rule
video-site

Path macher
Default backend

video-hd
(HD Processing)

video-4k
(4k processing)

org-site
URL map

default backend

matches:
cymbal.com

Going back to the scenario, Bola can use the URL map to distribute traffic.
The host rule is cymbal.com, which means any host other than cymbal.com (example,
cymbal.org, cymbal,net) are directed to the default service. Once the host name,
cymbal.com matches, the URL is matched for a Path rule:

- The default backend service is video-site.
- Requests with the exact URL path /video/hd/ are directed to the video-hd

backend service.
- Requests with the exact URL path /video/4k/ are directed to the video-4k

backend service.

A simple URL map

defaultService:https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/org-site
fingerprint: mfyJIT7Zurs=
hostRules:
- hosts:
 - '*'
 pathMatcher: pathmap
name: video-org-url-map
pathMatchers:
- defaultService:https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/video-site
 name: pathmap
 pathRules:
 - paths:
 - /video/hd
 service: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/video-hd
 - paths:
 - /video/4K
 service: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/video-4k

On this slide, you see a URL map that routes video traffic to the example we covered
in the previous slides. This example is shown by using a YAML file. You can also use
the Google Cloud console to configure URL maps.

Let’s look at how this example works.

Default Service: The defaultService defines a service where traffic should be
routed when no matching URL rule is found. You must specify a defaultService or
a backendBucket.

The hostRules defines a list of hostnames that are processed by this rule. In this
example, there’s only one item in the list, which means that only one host rule is
defined. This host rule contains an asterisk (*). The asterisk is a wildcard, which
matches all hosts.

To see where to find the matching logic to use, look at the value of pathMatcher.
For this host rule, pathMatcher is set to pathmap. Here’s a pathMatchers list,
which contains a list of path matching rules. The only element in this list is pathmap.
Each match rule defines logic to process the traffic that is sent to the backend service.

In this example, there are two sets of paths. One paths list defines valid URL paths
for the video-hd. The other paths list defines valid URL paths for the video-4k. If
the URL contains a match for one of these paths lists, the load balancer routes the
traffic to the corresponding service.

If the traffic contains a path that matches none of the paths lists, then it’s sent to the
default backend service, video-site. In other words, the traffic is sent to the service
denoted by pathMatchers/defaultService. For additional details, refer to the
documentation.

https://cloud.google.com/load-balancing/docs/url-map#console

● The advanced routing mode:

○ Can choose a rule based on a defined priority.

○ Includes additional configuration options.

○ Uses route rules instead of path rules.

○ Can’t include any path rules if a URL map includes route rules.

Advanced routing mode

The advanced routing mode can choose a rule based on a defined priority and
includes additional configuration options. Instead of path rules, advanced routing uses
route rules.

Each URL map can include either simple or advanced rules, but not both.

An advanced routing mode URL map

defaultService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-a
hostRules:
- hosts:
 - '*'
 pathMatcher: matcher1
name: lb-map
pathMatchers:
- defaultService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 name: matcher1
 routeRules:
 - matchRules:
 - prefixMatch: ''
 routeAction:
 weightedBackendServices:
 - backendService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-a
 weight: 95
 - backendService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 weight: 5

This URL map contains rules that route 95% of the traffic to service-a, and 5% of
the traffic is routed to service-b.

The example shows a YAML implementation of an advanced routing mode. You can also
use the Google Cloud console to configure URL maps.

Let’s look at how this example works.

When no matching host rule is found, the defaultService defines a service to use.
The field defaultService is required.

The hostsRules works the same way as for simple routing mode. As in the previous
example, this host rule uses the asterisk to match all hosts. Because pathMatcher
is set to matcher1, /pathMatchers/matcher1 defines the matching logic.

Advanced routing mode: pathMatchers

pathMatchers:
- defaultService:
https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 name: matcher1
 routeRules:
 - matchRules:
 - prefixMatch: ''
 routeAction:
 weightedBackendServices:
 - backendService:
https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-a
 weight: 95
 - backendService:
https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 weight: 5

/pathMatchers/matcher1 contains a list of routeRules. The routeRules
contain a list of one or more matchRules and a routeAction. When URLs satisfy
the matchRules, their traffic is processed by the routeAction.

In this example, there's only one item in matchRules, where prefixMatch equals
an empty string. The prefixMatch condition matches the URL path prefix; URLs
that start with the same string match. In the example, the prefixMatch is the empty
string, which matches all URLs. In other words, all URLs trigger this match rule, and
the routeAction is applied.

The routeAction defines how the traffic is routed. In the example, the
routeAction is set to weightedBackendServices.
weightedBackedServices is a list of backend services. A weight value is specified
for each backend service; representing a percentage of the total traffic. 95% of the
traffic is sent to service-a, and 5% of the traffic is sent to service-b.

The routeAction can also define traffic policies, such as retry policies and CORS.

For a complete list of routeAction values, refer to the Google Cloud documentation
for the load balancer that you’re using.

defaultService

defaultService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-a
hostRules:
- hosts:
 - '*'
 pathMatcher: matcher1
name: lb-map
pathMatchers:
- defaultService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 name: matcher1
 routeRules:
 - matchRules:
 - prefixMatch: ''
 routeAction:
 weightedBackendServices:
 - backendService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-a
 weight: 95
 - backendService: https://www.googleapis.com/compute/v1/projects/PROJECT_ID/global/backendServices/service-b
 weight: 5

Used if there's no matching host rule.

Used if there's a matching host rule
but there's no matching route rule.

In this example, you might notice that there are two defaultService key-value
pairs. One defaultService is associated with the hostRules, and the other is
associated with the routeRules.

If there's no matching host rule, the first defaultService is used.

If there’s no matching route rule, the second defaultService is used.

● Not all load balancers support all traffic management
features.

● Wildcards are supported, but only after a forward slash (/),
for example:
○ Valid: /video/*
○ Invalid: /video*

● Substring matching and regular expressions are not
supported, for example:
○ /videos/hd* doesn’t match /videos/hd-pdq.
○ /videos/* does match /videos/hd-pdq.

Caveats: Traffic routing

Not all load balancers support all traffic management features. For a complete list of
traffic management features supported for each load balancer, refer to Routing and
traffic management in the Google Cloud documentation.

Wildcards are supported, but only after a forward slash (/). For example, /video/* is
valid and /video* is invalid.

Rule matching does not use regular expressions or substring matching. For example,
/videos/hd/* does not match /videos/hd-pdq, because -pdq is a substring and
also because it comes after the forward slash. /videos/* matches
/videos/hd-pqd.

https://cloud.google.com/load-balancing/docs/features#routing-traffic-management
https://cloud.google.com/load-balancing/docs/features#routing-traffic-management

Let’s ask Gemini

As a Google Cloud technical support engineer who specializes in cloud networking, I can
confirm that the most reliable load balancer in Google Cloud is Network Load Balancing
(NLB).

*Gemini responses may vary

You are a patient and friendly Google Cloud technical support engineer who
specializes in cloud networking and responds to customer's questions.

What is the most reliable Google Cloud load balancer?

You can also use Gemini to learn more. One trick to get a better response is to assign
Gemini a role.

Prime the model to assume a specific role (also known as a persona). Adding a role is
not always necessary but can enforce a certain level of expertise when generating a
response, improve performance, and tailor its communication style. This technique is
particularly useful for getting the model to perform highly technical tasks or enforcing
specific communication styles.

The example on slide shows a sample prompt where Gemini assumes the role of a
Google Cloud technical support engineer.

Today’s
agenda

01 Load balancing

02 Hybrid load balancing

03 Traffic management

04 Lab: Configuring Traffic Management with a Load
Balancer

05 Quiz

In this module, we will cover the topics listed on the screen.

We’ll begin with an overview of Cloud Load Balancing. We will continue with a
discussion of hybrid load balancing. In other words, load balancing between Google
Cloud, other public clouds, and on-premises environments.

We will follow with a discussion on traffic management, which provides enhanced
features to route traffic based on criteria that you specify. After that, you will apply
what you’ve learned in a traffic management lab exercise.

Let’s get started.

Configuring Traffic Management
with a Load Balancer

Lab intro

In this lab, you create a regional internal Application Load Balancer with two
backends. Each backend will be an instance group. You will configure the load
balancer to create a blue-green deployment.

The blue deployment refers to the current version of your application. The green
deployment refers to a new application version. In this lab exercise, you configure the
load balancer to send 70% of the traffic to the blue deployment and 30% to the green
deployment.

Today’s
agenda

01 Load balancing

02 Hybrid load balancing

03 Traffic management

04 Lab: Configuring Traffic Management with a Load
Balancer

05 Quiz

In this module, we will cover the topics listed on the screen.

We’ll begin with an overview of Cloud Load Balancing. We will continue with a
discussion of hybrid load balancing. In other words, load balancing between Google
Cloud, other public clouds, and on-premises environments.

We will follow with a discussion on traffic management, which provides enhanced
features to route traffic based on criteria that you specify. After that, you will apply
what you’ve learned in a traffic management lab exercise.

Let’s get started.

Quiz | Question 1

Question

When you use the internal IP address of the forwarding rule to specify an internal Network
Load Balancer next hop, the load balancer can only be:

A. In the same VPC network as the next hop route.

B. In the same VPC network as the next hop route or in a peered VPC network.

C. In the same subnet as the next hop route.

D. In the same subnet as the next hop route or a Shared VPC network.

Quiz | Question 2

Question

Where would you configure traffic management for a load balancer?

A. In the load balancer frontend

B. In the load balancer backend

C. In the load descriptor

D. In the URL map

You can use hybrid load balancing to connect these environments:

A. Google Cloud and on-premises

B. Google Cloud and AWS

C. Google Cloud, AWS, and on-premises

D. Google Cloud, other public clouds, and on-premises

Quiz | Question 3

Question

Explanation:
A. That’s incorrect. Although you can connect these environments, this answer is

not complete.
B. That’s incorrect. Although you can connect these environments, this answer is

not complete.
C. That’s incorrect. Although you can connect these environments, this answer is

not complete.
D. Correct. You can connect any destination that you can reach by using a

Google hybrid connectivity product and that can be reached with a valid
IP:Port combination.

Debrief

In this module, we began with an overview of load balancing in Google Cloud. We
continued with a discussion of hybrid load balancing. You learned that hybrid load
balancing can be used to migrate your workloads into Google Cloud or to provide
multiple platforms for your workloads. We covered the load balancers that support
hybrid load balancing and an overview of the components that you must configure.

We then talked about using traffic management with your load balancers. You learned
which load balancers support traffic management features. You were introduced to the
URL map, where you configure traffic management features. We walked through a
simple example of traffic management. In the example, you saw how to configure a
URL map to match against incoming traffic and specify where the traffic should be
sent.

You then applied what you learned in a lab exercise.

Finally, you took a brief quiz to test your knowledge.

Thank you.

