
Proprietary + Confidential

Networking in Google 
Cloud

Caching and Optimizing Load 
Balancing

Welcome to the Caching and Optimizing Load Balancing module



Proprietary + Confidential

Goog
le 
Cloud 
Armo
rToday’s 

agenda

01 Internal Network Load Balancers as next hops

02 Cloud CDN

03 Lab: Defending Edge Cache with Cloud Armor

04 Load balancer optimization strategies

05 Quiz

In this module, we will discuss using internal Network Load Balancers as next hops, 
including benefits, caveats, and some use cases.

We will also introduce Google Cloud Armor and Cloud CDN. We will cover content 
caching and share some strategies to optimize load balancing.

Let’s get started.



Proprietary + Confidential

Internal Network Load Balancers are fast

● Internal Network LBs are high-performance, 
pass-through Layer 4 load balancers.

● Client requests to the load balancer IP address 
go directly to the healthy backend VMs. 
Responses from the healthy backend VMs go 
directly to the clients, not back through the load 
balancer.

Backend service

Internal Network 
Load Balancer

Before we cover how to use an internal Network Load Balancer as a routing next hop, 
let’s discuss why these load balancers are useful: they’re fast.

Internal Network Load Balancers don’t have the overhead associated with other types 
of Cloud load balancers; the reduced overhead makes them fast.

An internal Network Load Balancer routes connections directly from clients to the 
healthy backend without any interruption. There's no intermediate device or single 
point of failure. Client requests to the load balancer IP address go directly to the 
healthy backend VMs. Unlike other types of load balancers, there's minimal 
processing of the incoming traffic.

Responses from the healthy backend VMs go directly to the clients, not back through 
the load balancer. TCP responses use direct server return. For more information, see 
IP addresses for request and return packets in the Google Cloud documentation. 

https://cloud.google.com/load-balancing/docs/internal#tcp-udp-request-return


Proprietary + Confidential

Use cases

● Load-balance traffic across multiple VMs that 
are functioning as gateway or router VMs.

● Use gateway virtual appliances as a next hop 
for a default route. 

● Send traffic through multiple load balancers in 
two or more directions by using the same set of 
multi-NIC gateway or router VMs as backends.

Gateway VM1

Gateway VM2

Gateway VM3

Internal Network 
Load Balancer

Let’s consider some use cases for internal Network Load Balancers. 

You can load-balance traffic across multiple VMs that are functioning as gateway or 
router VMs.

You can use gateway virtual appliances as the next hop for a default route. With this 
configuration, VM instances in your virtual private cloud (VPC) network send traffic to 
the internet through a set of load balanced virtual gateway VMs.

You can send traffic through multiple load balancers in two or more directions by 
using the same set of multi-NIC gateway or router VMs as backends. To accomplish 
this result, you create a load balancer and use it as the next hop for a custom static 
route in each VPC network. Each internal Network Load Balancer operates within a 
single VPC network; distributing traffic to the network interfaces of backend VMs in 
that network.

In these use cases, the backend services are the gateway VMs, gateway virtual 
appliances, multi-NIC gateways, and router VMs. Because these resources are all 
internal, it makes sense to access them through an internal Network Load Balancer. 
As we discussed a moment ago, these load balancers have lower overhead than 
other load balancers that Google Cloud offers.

Next, let’s consider how to access to these backends even faster.



Proprietary + Confidential

Specifying the next hop

Specification option Next hop network

Forwarding rule name and the load balancer region The next hop load balancer and route must be in the 
same VPC network.

Internal IP address of the forwarding rule The next hop load balancer can be in the same VPC 
network as the route or in a peered VPC network.

Forwarding resource link The forwarding rule's network must match the route's 
VPC network.

To specify the next hop, you have three choices as shown in the table. The main 
difference concerns the location of the next hop load balancer.

If the next hop load balancer is in the same VPC network, you can specify the 
forwarding rule name and the load balancer region. To use a next hop load balancer 
in a peered VPC network, specify the internal IP address of the forwarding rule.

You can also specify a next hop forwarding rule by its resource link. The forwarding 
rule's network must match the route's VPC network. The forwarding rule can be 
located in either the project that contains the forwarding rule's network (a standalone 
project or a Shared VPC host project) or a Shared VPC service project.



Proprietary + Confidential

VPC network Static routes from network

Destination: 0.0.0.0/0
next-hop-ilb = fr-ilb1
Priority:1000

Region

Subnet: 10.0.1.0/24

Internal Network
Load Balancer

Forwarding rule name: fr-ilb1
IP address: 10.0.1.99

Next hop to a NAT gateway

Avere vFXT
Compute Engine

Instance

10.0.1.100

Gateway 1

can_ip_forward: True

nic0
10.0.1.2

nic0
10.0.1.3

nic0
10.0.1.4

nic1
10.0.2.2

nic1
10.0.2.3

nic1
10.0.2.4

Static routes from network

Destination: 0.0.0.0/0
next-hop: default internet gateway

Gateway 2

can_ip_forward: True

Gateway 3

can_ip_forward: True

Internet

This use case load balances traffic from internal VMs to multiple network address 
translation (NAT) gateway instances that route traffic to the internet. In this example, 
an internal Network Load Balancer has next hops configured to three Compute 
Engine VMs. Each Compute Engine VM has a NAT gateway that runs on it, and has 
can_ip_forward set to true. These VMs then forward traffic to the internet. Optionally, 
you can set up the gateways to apply custom logic to fine-tune access to the internet.



Proprietary + Confidential

VPC network: spoke-dev

Region: us-east1

Subnet: 10.0.6.0/24

InstancesInstancesInstances

Instance group

VPC network: spoke-prod

Region: us-east1

Subnet: 10.0.5.0/24

InstancesInstancesInstances

Instance group

VPC network: untrusted

Region: us-east1

Subnet: 10.0.2.0/24

InstancesInstancesInstances

Instance group

InstancesInstancesInstances

Instance group

Region: us-east1

Subnet: 10.0.1.0/24

fw-instance-b
virtual appliance

can_ip_forward: True

nic1
10.0.2.6

nic1
10.0.2.7

nic0
10.0.1.6

nic0
10.0.1.7

Internal Network
Load Balancer

Forwarding rule name: fr-ilb
IP address: 10.0.1.100

1 Connected by using VPC Network Peering:
● Peering from hub to spoke-dev: 

eExports custom routes.
● Peering from spoke dev to hub: 

Imports custom routes.

Connected by using VPC Network Peering:
● Peering from hub to spoke-prod: Exports custom routes.
● Peering from spoke-prod to hub: Imports custom routes.

2

fw-instance-a
virtual appliance

can_ip_forward: True

1

2

VPC network: hub

Using a hub and spoke topology

In addition to exchanging subnet routes, you can configure VPC Network Peering to 
export and import custom static and dynamic routes. Custom static routes that have a 
next hop of the default internet gateway are excluded. Custom static routes that use 
next-hop internal Network Load Balancers are included.

You can configure a hub-and-spoke topology with your next-hop firewall virtual 
appliances located in the hub VPC network by doing the following:

1. In the hub VPC network, create an internal Network Load Balancer with 
firewall virtual appliances as the backends.

2. In the hub VPC network, create a custom static route (with the destination 
subnet: 10.0.2.0/24), and set the next hop to be the internal Network Load 
Balancer (10.0.1.100). 

3. Use VPC Network Peering to connect the hub VPC network to each of the 
spoke VPC networks.

For each peering, configure the hub network to export its custom routes, and 
configure the corresponding spoke networks to import custom routes (custom static 
route created in step 2 with destination subnet 10.0.2.0/24). The route with the load 
balancer next hop is one of the routes that the hub network exports.

Subject to the routing order, the next hop firewall appliance load balancer in the hub 



VPC network is available in the spoke networks. If global access is enabled, the 
firewall appliance is available according to the routing order. If global access is 
disabled, then resources are only available to requestors in the same region.



Proprietary + Confidential

Load balancing to multiple NICs

VPC network: testing

Region

Subnet: 10.30.1.0/24

InstancesInstances
Instance

Instance group

10.30.1.100

Internal Network
Load Balancer 1

Forwarding rule name: fr-ilb1
IP address: 10.30.1.99

fw-instance-a

can_ip_forward: 
True

Internal Network
Load Balancer 2

Forwarding rule name: fr-ilb2
IP address: 10.50.1.99

InstancesInstances
Instance

Instance group

10.50.1.100

nic0
10.30.1.2

nic0
10.30.1.3

nic0
10.30.1.4

nic1
10.50.1.2

nic1
10.50.1.3

nic1
10.50.1.4

fw-instance-b

can_ip_forward: 
True

fw-instance-c

can_ip_forward: 
True

Destination: 10.50.1.100
Next hop: 10.30.1.99

VPC network: production Destination: 10.30.1.100
Next hop: 10.50.1.99

Subnet: 10.50.1.0/24

Internal Network Load Balancer 1, shown on the left, distributes traffic from the clients 
to nic0, the primary interface on the backend services. The internal Network Load 
Balancer 2, shown on the right, distributes traffic from the clients to nic1, the 
secondary interface on the backend services. The result is that clients can connect to 
the backend services through nic0 or nic1. 



Proprietary + Confidential

Benefits 

When the load balancer is a next hop for a static route:

● No special configuration is needed within the guest 
operating systems of the client VMs in the VPC 
network where the route is defined. 

● Client VMs send packets to the load balancer 
backends through VPC network routing, in a 
bump-in-the-wire fashion.

● It also provides the same benefits as standalone 
internal passthrough Network Load Balancer.

When the load balancer is a next hop for a static route, no special configuration is 
needed within the client VMs. Client VMs send packets to the load balancer backends 
through VPC network routing, in a bump-in-the-wire fashion.

Using an internal passthrough Network Load Balancer as a next hop for a static route 
provides the same benefits as a standalone internal passthrough Network Load 
Balancer. The health check ensures that new connections are routed to healthy 
backend VMs. By using a managed instance group as a backend, you can configure 
autoscaling to grow or shrink the set of VMs based on service demand.



Proprietary + Confidential

Caveats: Internal Network Load 
Balancers as next hops

Enable global access on the VPC network so 
that the next hop is usable from all regions.01

The load balancer must use an IP address that 
is unique to a load balancer forwarding rule.03

Even if all health checks fail, the load balancer 
next hop is still in effect.02

You must enable global access on the VPC network so that the next hop is usable 
from all regions. Whether the next hop is usable depends on the global access setting 
of the load balancer. With global access enabled, the load balancer next hop is 
accessible in all regions of the VPC network. With global access disabled, the load 
balancer next hop is only accessible in the same region as the load balancer. With 
global access disabled, packets sent from another region to a route that uses an 
internal Network Load Balancer next hop are dropped.

Even if all health checks fail, the load balancer next hop is still in effect. Packets 
processed by the route are sent to one of the next hop load balancer backends. If 
needed, configure a failover policy.

A next hop internal Network Load Balancer must use an IP address that is unique to a 
load balancer forwarding rule. Only one backend service is unambiguously 
referenced. 



Proprietary + Confidential

Caveats: Internal Network Load 
Balancers as next hops

Two or more custom static route next hops 
with the same destination that use different 
load balancers are never distributed by 
using ECMP.

04

To route identical source IP addresses to the 
same backend, use the client IP, no 
destination (CLIENT_IP_NO_DESTINATION) 
session affinity option.

05

Two or more custom static route next hops with the same destination that use 
different load balancers are never distributed by using ECMP. If the routes have 
unique priorities, Google Cloud uses the next hop internal Network Load Balancer 
from the route with the highest priority. If the routes have equal priorities, Google 
Cloud still selects just one next hop internal Network Load Balancer.

For packets with identical source IP addresses routed to the same backend, use the 
client IP, no destination (CLIENT_IP_NO_DESTINATION) session affinity option.

There are some additional caveats for using an internal Network Load Balancer as a 
next hop, for example, pertaining to the use of network tags. For additional 
information on this and other caveats, refer to Additional considerations on the 
Internal Network Load Balancers as next hops page in the Google Cloud 
documentation.

https://cloud.google.com/load-balancing/docs/internal/ilb-next-hop-overview#additional_considerations


Proprietary + Confidential

Today’s 
agenda

01 Internal Network Load Balancers as next hops

02 Cloud CDN

03 Lab: Defending Edge Cache with Cloud Armor

04 Load balancer optimization strategies

05 Quiz

Next, let’s discuss content delivery network (CDN), which caches content nearer to 
users. We’ll also talk about CDN Interconnect, which lets select third-party content 
delivery network (CDN) providers establish Direct Interconnect links at edge locations 
in the Google network. 



Proprietary + Confidential

Cloud CDN (content delivery network)

Cloud CDN points of presence

Submarine cable investments

Current network

Cloud CDN (content delivery network) caches content at the edges of the Google 
network. This caching provides faster content delivery to users while reducing 
transmission costs. 

Content can be cached at CDN nodes as shown on this map. There are over 90 of 
these cache sites spread across metropolitan areas in Asia Pacific, the Americas, and 
EMEA. For an updated list, please see Cache locations in the Google Cloud 
documentation. 

For Cloud CDN performance measured by Cedexis, please see these reports on the 
Citrix website.

When setting up the backend service of a Application Load Balancer, you can enable 
Cloud CDN with a checkbox. 

https://cloud.google.com/cdn/docs/locations
https://itm.cloud.com/google-reports/


Proprietary + Confidential

Cloud CDN cache modes

● Cache modes control the factors that determine 
whether Cloud CDN caches your content.

● Cloud CDN offers three cache modes:

○ USE_ORIGIN_HEADERS

○ CACHE_ALL_STATIC

○ FORCE_CACHE_ALL

Using cache modes, you can control the factors that determine whether Cloud CDN 
caches your content.

Cloud CDN offers three cache modes. The cache modes define how responses are 
cached, whether Cloud CDN respects cache directives sent by the origin, and how 
cache TTLs are applied.

The available cache modes are USE_ORIGIN_HEADERS, CACHE_ALL_STATIC and 
FORCE_CACHE_ALL. 

USE_ORIGIN_HEADERS mode requires origin responses to set valid cache 
directives and valid caching headers.

CACHE_ALL_STATIC mode automatically caches static content that doesn't have the 
no-store, private, or no-cache directive. Origin responses that set valid caching 
directives are also cached.

FORCE_CACHE_ALL mode unconditionally caches responses; overriding any cache 
directives set by the origin. If you use a shared backend with this mode configured, 
ensure that you don’t cache private, per-user content (such as dynamic HTML or API 
responses).



Proprietary + Confidential

Caching Content with Cloud CDN

us-central1

Frontend
Autoscaling

asia-east1

Frontend
Autoscaling

us-east1

Cloud
Storage

User in
San Francisco

User in
Los Angeles

User in
New York

Cloud CDN

Application 
Load 

Balancer

Monitoring
and Logging

Cache hit!

Let’s walk through the Cloud CDN response flow with this diagram.

In this example, the Application Load Balancer has two types of backends. There are 
managed VM instance groups in the us-central1 and asia-east1 regions, and there's a 
Cloud Storage bucket in us-east1. A URL map decides which backend to send the 
content to. The Cloud Storage bucket could be used to serve static content and the 
instance groups could handle PHP traffic.

When a user in San Francisco is the first to access content, the cache site in San 
Francisco sees that it can't fulfill the request. This situation is called a cache miss. If 
content is in a nearby cache, Cloud CDN might attempt to get the content from it, for 
example, if a user in Los Angeles has already accessed the content. Otherwise, the 
request is forwarded to the Application Load Balancer, which in turn forwards the 
request to one of your backends.

Depending on the content that is being served, the request will be forwarded to the 
us-central1 instance group or the us-east1 storage bucket.

If the content from the backend is cacheable, the cache site in San Francisco can 
store it for future requests. In other words, if another user requests the same content 
in San Francisco, the cache site might now be able to serve that content. This 
approach shortens the round trip time and saves the origin server from having to 
process the request. This is called a cache hit.



For more information on what content can be cached, please refer to Caching 
overview in the Google Cloud documentation.

Each Cloud CDN request is automatically logged within Google Cloud. These logs will 
indicate a “Cache hit” or “Cache miss” status for each HTTP request of the load 
balancer. You will explore such logs in the next lab.

Cache modes let you control how content is cached.

https://cloud.google.com/cdn/docs/caching
https://cloud.google.com/cdn/docs/caching


Proprietary + Confidential

CDN Interconnect

CDN Interconnect lets you:

● Select third-party Cloud CDN providers to 
establish Direct Interconnect links at edge 
locations in the Google network.

● Direct your traffic from your VPC networks to a 
provider network.

● Optimize your Cloud CDN cache population 
costs.

CDN provider

Cloud 
Interconnect

Public internet

Client

CDN Interconnect lets select third-party content delivery network (CDN) providers 
establish Direct Interconnect links at edge locations in the Google edge network. 
These connections let you direct your traffic from your VPC networks to a CDN 
provider network. For a complete list of CDN providers, refer to CDN Interconnect 
overview in the Google Cloud documentation.

CDN Interconnect lets you connect directly to select CDN providers from Google 
Cloud. Your network traffic that egresses from Google Cloud through one of these 
links benefits from the direct connectivity to supported CDN providers. 

CDN Interconnect reduces your Cloud CDN cache population costs.

https://cloud.google.com/network-connectivity/docs/cdn-interconnect
https://cloud.google.com/network-connectivity/docs/cdn-interconnect


Proprietary + Confidential

Typical use cases for CDN Interconnect

CDN provider

Client

High-volume egress traffic.01

Frequent content updates.02

If you have a high-volume of egress traffic, consider using CDN Interconnect. You can 
use the CDN Interconnect links between Google Cloud and selected providers to 
automatically optimize the egress traffic and save money. If you're populating the 
Cloud CDN cache locations with large data files from Google Cloud, this optimization 
can be especially helpful. 

Frequent content updates are another typical CDN Interconnect use case. Cloud 
workloads that frequently update data stored in Cloud CDN cache locations benefit 
from using CDN Interconnect. The direct link to the Cloud CDN provider reduces 
latency. 



Proprietary + Confidential

CDN Interconnect traffic billing

● Ingress traffic is free for all regions.

● Egress traffic rates apply only to data that 
leaves Compute Engine or Cloud Storage. 

● The reduced price applies only to IPv4 traffic.

● Egress charges for CDN Interconnect appear on 
the invoice as Compute Engine Network Egress 
via Carrier Peering Network.

Ingress traffic is free for all regions.

Egress traffic rates apply only to data that leaves Compute Engine or Cloud Storage. 
Egress charges for CDN Interconnect appear on the invoice as Compute Engine 
Network Egress via Carrier Peering Network.

The special pricing for your traffic that egresses from Google Cloud to a CDN provider 
is automatic. Google works with approved CDN partners in supported locations to 
accept provider IP addresses. Any data that you send to your allowlisted CDN 
provider from Google Cloud is charged at the reduced price. 

This reduced price applies only to IPv4 traffic. It does not apply to IPv6 traffic.

Intra-region pricing for CDN Interconnect applies only to intra-region egress traffic that 
is sent to Google-approved CDN providers at specific locations.



Proprietary + Confidential

CDN Interconnect does not require any configuration 
or integration with Cloud Load Balancing.

Work with your supported CDN provider to:

Learn which locations are supported.
Correctly configure your deployment to use 
intra-region egress routes.

Setting up CDN Interconnect

CDN Interconnect does not require any configuration or integration with Cloud Load 
Balancing. If your CDN provider is already part of the program, you don't need to do 
anything. Traffic from supported Google Cloud locations to your CDN provider 
automatically benefits from the direct connection and reduced pricing.

Work with your supported CDN provider to learn what locations are supported. Your 
supported CDN service provider can also help you correctly configure your 
deployment to use intra-region egress routes, which cost less than inter-region egress 
traffic.



Proprietary + Confidential

Today’s 
agenda

01 Internal Network Load Balancers as next hops

02 Cloud CDN

03 Lab: Defending Edge Cache with Cloud Armor

04 Load balancer optimization strategies

05 Quiz

Next, you will explore a lab covering how to use Google Cloud Armor to defend edge 
cache.



Proprietary + Confidential

Defending Edge Cache with 
Cloud Armor

Lab intro

In this lab, you learn how to perform the following tasks:
● Create and populate a Cloud Storage bucket.
● Create an Application Load Balancer with Cloud CDN.
● Verify the caching of your bucket's content.
● Invalidate the cached content.



Proprietary + Confidential

Today’s 
agenda

01 Internal Network Load Balancers as next hops

02 Cloud CDN

03 Lab: Defending Edge Cache with Cloud Armor

04 Load balancer optimization strategies

05 Quiz

Next, let’s discuss some load balancer optimization strategies.



Proprietary + Confidential

Cost optimization strategies: 
Autoscaling

Dynamically adjust resources.01

Define scaling threshold.02

Utilize custom metrics.03

Optimizing your cloud load balancer configuration can significantly reduce costs 
without impacting performance or availability. Here are some key strategies:

Autoscaling

● Dynamically adjust resources: Enable autoscaling to automatically scale 
backend instances based on real-time traffic demands. This ensures you only 
pay for the resources you need, eliminating overprovisioning and unnecessary 
costs.

● Define scaling thresholds: Set clear thresholds for scaling up and down to 
optimize resource utilization and prevent unnecessary scaling events.

● Utilize custom metrics: Leverage custom metrics like CPU usage or response 
time to trigger autoscaling, ensuring resources are allocated based on specific 
performance indicators.



Proprietary + Confidential

Cost optimization strategies:
Rightsizing

Choose the right load balancer 
based on your traffic type and 
requirements.

01

Match resources to workload.02

Regularly review resource 
utilization.03

Rightsizing resources:
● Choose the right load balancer type: Select the most appropriate load 

balancer type (for example, Application, Proxy Network, or Passthrough 
Network) based on your traffic type and requirements. Avoid using a more 
expensive type than necessary.

● Match resources to workload: Select the appropriate machine type and size for 
your backend instances based on their anticipated workload. Overprovisioning 
resources will lead to higher costs, while underprovisioning can impact 
performance.

● Regularly review resource utilization: Monitor the CPU, memory, and network 
utilization of your backend instances and load balancers. If utilization is 
consistently low, consider downsizing resources for cost savings.



Proprietary + Confidential

Cost optimization strategies:
Using monitoring and management tools

Use Cloud Monitoring to gain insights into load 
balancer and backend instance performance.01

Leverage Cloud Billing and Cloud cost 
management tools to track load balancing costs.02

Implement cost allocation tags to categorize
costs for tracking and optimization.03

Use Cloud Monitoring and cost management tools:

● Use Cloud Monitoring: Use Cloud Monitoring to gain insights into your load 
balancer and backend instance performance. Analyze metrics like CPU 
usage, memory consumption, and network bandwidth to identify areas for 
optimization.

● Leverage Cloud cost management tools: Use tools like Cloud Billing and 
Cloud cost management to track your load balancing costs and identify 
potential savings opportunities. These tools can provide detailed cost 
breakdowns by project, service, and resource, helping you identify 
underutilized resources or areas for potential consolidation.

● Cost allocation tags: Implement cost allocation tags to categorize your load 
balancing costs by department, project, or any other relevant criteria. This 
allows for more granular cost tracking and facilitates cost optimization 
efforts.



Proprietary + Confidential

04

Other cost optimization strategies

Schedule downtimes for non-critical workfload 
during low traffic time.01

Use reserved instances for predictable workloads.02

Use spot instances for non-critical workloads.03

Integrate Cloud CDN with a load balancer to 
reduce load on backend instances.

Additional strategies:

● Scheduled downtimes: Consider scheduling downtimes for non-critical 
workloads during periods of low traffic to reduce costs.

● Reserved instances: Use reserved instances for predictable workloads to 
obtain significant discounts on load balancer resources.

● Spot instances: Explore using spot instances for non-critical workloads to 
take advantage of discounted compute resources.

● Cloud CDN integration: Integrate Cloud CDN with your load balancer to 
reduce the load on your backend instances and potentially reduce load 
balancer costs.

Remember, cost optimization is an ongoing process. By implementing these 
strategies and continuously monitoring your cloud resources, you can achieve 
significant cost savings while ensuring your cloud infrastructure remains efficient 
and scalable.



Proprietary + Confidential

Today’s 
agenda

01 Internal Network Load Balancers as next hops

02 Cloud CDN

03 Lab: Defending Edge Cache with Cloud Armor

04 Load balancer optimization strategies

05 Quiz



Proprietary + Confidential

Quiz | Question 1

Question

When you use the internal IP address of the forwarding rule to specify an internal Network 
Load Balancer next hop, the load balancer can only be:

A. In the same VPC network as the next hop route.

B. In the same VPC network as the next hop route or in a peered VPC network.

C. In the same subnet as the next hop route.

D. In the same subnet as the next hop route or a shared VPC network.



Proprietary + Confidential

Quiz | Question 3

Question

CDN Interconnect provides:

A. A direct connection between your origin servers and Google's Cloud Load Balancing 
service.

B.
A direct peering connection between third-party content delivery networks (CDNs) and 
Google's edge network.

C.  A private connection between your on-premises network and Google Cloud 

D. A virtual private network (VPN) tunnel between your VPC network and Google's global 
network.



Proprietary + Confidential

Quiz | Question 3

Question

Which of the following best practices help optimize load balancing cost?

A. Choosing a load balancer based on your traffic type.

B. Choosing a load balancer type that closely matches your traffic patterns.

C. Implementing a caching layer with a content delivery network (CDN).

D. Increasing your timeout periods for load balancer health checks.



Proprietary + Confidential

Debrief

In this module, we began with an overview of load balancing in Google Cloud. We 
continued with a discussion of hybrid load balancing. You learned that hybrid load 
balancing can be used to migrate your workloads into Google Cloud or to provide 
multiple platforms for your workloads. We covered the load balancers that support 
hybrid load balancing and an overview of the components that you must configure. 

We then talked about using traffic management with your load balancers. You learned 
which load balancers support traffic management features. You were introduced to the 
URL map, where you configure traffic management features. We walked through a 
simple example of traffic management. In the example, you saw how to configure a 
URL map to match incoming traffic and specify where the traffic should be sent.

You then applied what you learned in a lab exercise.

Next, we covered using internal Network Load Balancers as next hops. You learned 
about some of the major use cases, and some simple topologies were shown.

We continued by discussing using Cloud CDN to get content to your clients faster. 
You also learned about CDN Interconnect to direct traffic from your VPC networks to a 
supported CDN provider network. You also learned how CDN Interconnect optimizes 
your Cloud CDN cache population costs.



Finally, you took a brief quiz to test your knowledge. 



Proprietary + Confidential

Thank you.



Proprietary + Confidential


