Google Cloud

Networking in Google
Cloud

Caching and Optimizing Load
Balancing

Welcome to the Caching and Optimizing Load Balancing module



) | \ X

02

Today'’s 03
agenda 64
05

\

Internal Network Load Balancers as next hops
Cloud CDN

Lab: Defending Edge Cache with Cloud Armor
Load balancer optimization strategies

Quiz

In this module, we will discuss using internal Network Load Balancers as next hops,
including benefits, caveats, and some use cases.

We will also introduce Google Cloud Armor and Cloud CDN. We will cover content
caching and share some strategies to optimize load balancing.

Let’s get started.




Internal Network Load Balancers are fast

e Internal Network LBs are high-performance,
pass-through Layer 4 load balancers.

e Client requests to the load balancer IP address
go directly to the healthy backend VMs.
Responses from the healthy backend VMs go f, el Netork
directly to the clients, not back through the load
balancer.

Backend service

Before we cover how to use an internal Network Load Balancer as a routing next hop,
let’s discuss why these load balancers are useful: they’re fast.

Internal Network Load Balancers don’t have the overhead associated with other types
of Cloud load balancers; the reduced overhead makes them fast.

An internal Network Load Balancer routes connections directly from clients to the
healthy backend without any interruption. There's no intermediate device or single
point of failure. Client requests to the load balancer IP address go directly to the
healthy backend VMs. Unlike other types of load balancers, there's minimal
processing of the incoming traffic.

Responses from the healthy backend VMs go directly to the clients, not back through
the load balancer. TCP responses use direct server return. For more information, see
IP addresses for request and return packets in the Google Cloud documentation.



https://cloud.google.com/load-balancing/docs/internal#tcp-udp-request-return

Use cases

e Load-balance traffic across multiple VMs that Google Cloud

are functioning as gateway or router VMs.
. . —  Gateway VM1
e Use gateway virtual appliances as a next hop

for a default route.

[® Internal Network Gateway VM2

e Send traffic through multiple load balancers in Load Balancer
two or more directions by using the same set of
multi-NIC gateway or router VMs as backends. L——  Gateway VM3

Let’'s consider some use cases for internal Network Load Balancers.

You can load-balance traffic across multiple VMs that are functioning as gateway or
router VMs.

You can use gateway virtual appliances as the next hop for a default route. With this
configuration, VM instances in your virtual private cloud (VPC) network send traffic to
the internet through a set of load balanced virtual gateway VMs.

You can send traffic through multiple load balancers in two or more directions by
using the same set of multi-NIC gateway or router VMs as backends. To accomplish
this result, you create a load balancer and use it as the next hop for a custom static
route in each VPC network. Each internal Network Load Balancer operates within a
single VPC network; distributing traffic to the network interfaces of backend VMs in
that network.

In these use cases, the backend services are the gateway VMs, gateway virtual
appliances, multi-NIC gateways, and router VMs. Because these resources are all
internal, it makes sense to access them through an internal Network Load Balancer.
As we discussed a moment ago, these load balancers have lower overhead than
other load balancers that Google Cloud offers.

Next, let’s consider how to access to these backends even faster.




Specifying the next hop

Specification option Next hop network

The next hop load balancer and route must be in the

F di I d the load bal i
orwarding rule name and the load balancer region same VPC network.

The next hop load balancer can be in the same VPC

Internal IP address of the forwarding rule .
warding ru network as the route or in a peered VPC network.

The forwarding rule's network must match the route's

Forwarding resource link VPC network.

Google Cloud

To specify the next hop, you have three choices as shown in the table. The main
difference concerns the location of the next hop load balancer.

If the next hop load balancer is in the same VPC network, you can specify the
forwarding rule name and the load balancer region. To use a next hop load balancer
in a peered VPC network, specify the internal IP address of the forwarding rule.

You can also specify a next hop forwarding rule by its resource link. The forwarding
rule's network must match the route's VPC network. The forwarding rule can be
located in either the project that contains the forwarding rule's network (a standalone
project or a Shared VPC host project) or a Shared VPC service project.




Next hop to a NAT gateway

Google Cloud

| VPC network » Static routes from network

Destination: 0.0.0.0/0
next-hop-ilb = fr-ilb1

Priority:1000
Region

Subnet: 10.0.1.0/24 nico
10.0.1.2

] Internal Network nico
u= Instance Load Balancer 10.01.3

e 10.0.1.100 Forwarding rule name: fr-ilb1
IP address: 10.0.1.99

nico

100.1.4

» Static routes from network

_ Gateway 1

- can_ip_forward: True

_ Gateway 2

: can_ip_forward: True

. Gateway 3

W can_ip_forward: True

Destination: 0.0.0.0/0
next-hop: default internet gateway

nicl

10.02.2

nic1
10.0.2.3

nic1

10.0.2.4

Internet

This use case load balances traffic from internal VMs to multiple network address

translation (NAT) gateway instances that route traffic to the internet. In this example,

an internal Network Load Balancer has next hops configured to three Compute

Engine VMs. Each Compute Engine VM has a NAT gateway that runs on it, and has
can_ip_forward set to true. These VMs then forward traffic to the internet. Optionally,
you can set up the gateways to apply custom logic to fine-tune access to the internet.




Using a hub and spoke topology

Google Cloud ([ VPC network: spoke-dev
g ‘ p
(" vPC network: untrusted [ vPC network: hub ® Region: us-east!
Region: us-east1 Region: us-east1 Subnet: 10.0.6.0/24
Subnet: 10.0.2.0/24 Subnet: 10.0.1.0/24 Instance group
Instance group
1 i . nico —————— -4 - Instances
'1“00026 fw-instance-a 10016 e

4= Instances ——— 8 4 = virtual appliance
L

can_ip_forward: True I Internal Network
Load Balancer

Instance group Forwarding rule name: frilb ([ VPC network: spoke-prod

. IP address: 10.0.1.100 -
’1“002327 fw-instance-b nico :
4= Instances —m —— 4 = virtual appliance (10017 ® Region: us-east1

can_ip_forward: True Subnet: 10.0.5.0/24
e
Instance group
(@ Connected by using VPC Network Peering: @ Connected by using VPC Network Peering: L———— 4% Instances
e Peering from hub to spoke-dev: e Peering from hub to spoke-prod: Exports custom routes. e
eExports custom routes. e Peering from spoke-prod to hub: Imports custom routes.

e Peering from spoke dev to hub:
Imports custom routes.

In addition to exchanging subnet routes, you can configure VPC Network Peering to
export and import custom static and dynamic routes. Custom static routes that have a
next hop of the default internet gateway are excluded. Custom static routes that use
next-hop internal Network Load Balancers are included.

You can configure a hub-and-spoke topology with your next-hop firewall virtual
appliances located in the hub VPC network by doing the following:

1. In the hub VPC network, create an internal Network Load Balancer with
firewall virtual appliances as the backends.

2. In the hub VPC network, create a custom static route (with the destination
subnet: 10.0.2.0/24), and set the next hop to be the internal Network Load
Balancer (10.0.1.100).

3.  Use VPC Network Peering to connect the hub VPC network to each of the
spoke VPC networks.

For each peering, configure the hub network to export its custom routes, and
configure the corresponding spoke networks to import custom routes (custom static
route created in step 2 with destination subnet 10.0.2.0/24). The route with the load
balancer next hop is one of the routes that the hub network exports.

Subject to the routing order, the next hop firewall appliance load balancer in the hub




VPC network is available in the spoke networks. If global access is enabled, the
firewall appliance is available according to the routing order. If global access is
disabled, then resources are only available to requestors in the same region.



Load balancing to multiple NICs

Google Cloud
| VPC network: testing Destination: 10.50.1.100 L VPC network: production Destination: 10.30.1.100
Next hop: 10.30.1.99 Next hop: 10.50.1.99
Region

Subnet: 10.30.1.0/24 Subnet: 10.50.1.0/24

nic0 : nicl

10.30.1.2 _ fwinstance-a G550, ,

713
cxi can_ip_forward:
True
Instance group Instance group
! Internal Network nicO. fwei b nic1 I Internal Network
Load Balancer 1 10.30.1.3 _ fwrinstance- 10.50.1.3 Load Balancer 2

aE Instance -

= - - Instance
cxi”  can_ip_forward: 1
True

nico ) nic1
10.30.1.4 _ fwinstancec 305014
al
v

vi~ can_ip_forward:
True

Forwarding rule name: fr-ilb1
IP address: 10.30.1.99

Forwarding rule name: fr-ilb2

IP address: 10.50.1.99 f¥f 10501100

" 1030.1.100

Internal Network Load Balancer 1, shown on the left, distributes traffic from the clients
to nic0, the primary interface on the backend services. The internal Network Load
Balancer 2, shown on the right, distributes traffic from the clients to nic1, the
secondary interface on the backend services. The result is that clients can connect to
the backend services through nicO or nic1.




Benefits

When the load balancer is a next hop for a static route: °

e No special configuration is needed within the guest
operating systems of the client VMs in the VPC
network where the route is defined.

e Client VMs send packets to the load balancer
backends through VPC network routing, in a
bump-in-the-wire fashion.

e |t also provides the same benefits as standalone
internal passthrough Network Load Balancer.

When the load balancer is a next hop for a static route, no special configuration is
needed within the client VMs. Client VMs send packets to the load balancer backends
through VPC network routing, in a bump-in-the-wire fashion.

Using an internal passthrough Network Load Balancer as a next hop for a static route
provides the same benefits as a standalone internal passthrough Network Load
Balancer. The health check ensures that new connections are routed to healthy
backend VMs. By using a managed instance group as a backend, you can configure
autoscaling to grow or shrink the set of VMs based on service demand.




Caveats: Internal Network Load
Balancers as next hops

Enable global access on the VPC network so
that the next hop is usable from all regions. 1

Even if all health checks fail, the load balancer
next hop is still in effect.

The load balancer must use an IP address that
is unique to a load balancer forwarding rule.

You must enable global access on the VPC network so that the next hop is usable
from all regions. Whether the next hop is usable depends on the global access setting
of the load balancer. With global access enabled, the load balancer next hop is
accessible in all regions of the VPC network. With global access disabled, the load
balancer next hop is only accessible in the same region as the load balancer. With
global access disabled, packets sent from another region to a route that uses an
internal Network Load Balancer next hop are dropped.

Even if all health checks fail, the load balancer next hop is still in effect. Packets
processed by the route are sent to one of the next hop load balancer backends. If
needed, configure a failover policy.

A next hop internal Network Load Balancer must use an IP address that is unique to a
load balancer forwarding rule. Only one backend service is unambiguously
referenced.




Caveats: Internal Network Load
Balancers as next hops

(]
Two or more custom static route next hops
with the same destination that use different :
load balancers are never distributed by
using ECMP.

To route identical source IP addresses to the

same backend, use the client IP, no e
@ destination (CLIENT_IP_NO_DESTINATION)

session affinity option.

Two or more custom static route next hops with the same destination that use
different load balancers are never distributed by using ECMP. If the routes have
unique priorities, Google Cloud uses the next hop internal Network Load Balancer
from the route with the highest priority. If the routes have equal priorities, Google
Cloud still selects just one next hop internal Network Load Balancer.

For packets with identical source IP addresses routed to the same backend, use the
client IP, no destination (CLIENT_IP_NO_DESTINATION) session affinity option.

There are some additional caveats for using an internal Network Load Balancer as a
next hop, for example, pertaining to the use of network tags. For additional
information on this and other caveats, refer to Additional considerations on the
Internal Network Load Balancers as next hops page in the Google Cloud
documentation.



https://cloud.google.com/load-balancing/docs/internal/ilb-next-hop-overview#additional_considerations

) | \ X

02

Today'’s 03
agenda 64
05

\

Internal Network Load Balancers as next hops
Cloud CDN

Lab: Defending Edge Cache with Cloud Armor
Load balancer optimization strategies

Quiz

Next, let’s discuss content delivery network (CDN), which caches content nearer to
users. We'll also talk about CDN Interconnect, which lets select third-party content
delivery network (CDN) providers establish Direct Interconnect links at edge locations

in the Google network.




Cloud CDN (content delivery network)

Havfrue (US, IE, DK)

Unity (US, JP) Grace Hopper .

| FASTER, (US, JP, TW) (US, UK, ES) 2022 °
'x: ‘\‘ /——-\‘ °
———— ( o2 D
S A Dunant (US, FR) .
o
L

o

Echo (US, SG, ID)
2023

Equiano (PT, NG,

PLCN (US, TW) ZA) 2021

° SJC (JP, HK, SG)

Blue (FR, IT, GR,
IL) 2024 Echo (US, $G, ID) 2023
Curie
(CL, US, PA)

| Monet & Raman (SA,
(US, BR) JO,DJ,OM,
IN) 2024

@  Cloud CDN points of presence Junior

(Rio, Santos) Indigo-West JGA-S (GU, AU)

== Submarine cable investments (SG, AU)

Current network Tannat (BR, UY, AR)
Indigo-Central (AU)

Cloud CDN (content delivery network) caches content at the edges of the Google
network. This caching provides faster content delivery to users while reducing
transmission costs.

Content can be cached at CDN nodes as shown on this map. There are over 90 of
these cache sites spread across metropolitan areas in Asia Pacific, the Americas, and
EMEA. For an updated list, please see Cache locations in the Google Cloud
documentation.

For Cloud CDN performance measured by Cedexis, please see these reports on the
Citrix website.

When setting up the backend service of a Application Load Balancer, you can enable
Cloud CDN with a checkbox.



https://cloud.google.com/cdn/docs/locations
https://itm.cloud.com/google-reports/

Cloud CDN cache modes

e Cache modes control the factors that determine 4 { 3
whether Cloud CDN caches your content.

e Cloud CDN offers three cache modes:
o USE_ORIGIN_HEADERS
o CACHE_ALL_STATIC
o FORCE_CACHE_ALL -

Using cache modes, you can control the factors that determine whether Cloud CDN
caches your content.

Cloud CDN offers three cache modes. The cache modes define how responses are
cached, whether Cloud CDN respects cache directives sent by the origin, and how
cache TTLs are applied.

The available cache modes are USE_ORIGIN_HEADERS, CACHE_ALL_ STATIC and
FORCE_CACHE_ALL.

USE_ORIGIN_HEADERS mode requires origin responses to set valid cache
directives and valid caching headers.

CACHE_ALL_STATIC mode automatically caches static content that doesn't have the
no-store, private, or no-cache directive. Origin responses that set valid caching
directives are also cached.

FORCE_CACHE_ALL mode unconditionally caches responses; overriding any cache
directives set by the origin. If you use a shared backend with this mode configured,
ensure that you don’t cache private, per-user content (such as dynamic HTML or API
responses).




Caching Content with Cloud CDN

Cache hit!

e &

User in — ! I ‘ - A = Frontend
San Francisco Cloud CDN . A0 ~ Autoscaling

J g

|
2] 1

User in Application 4= 42| Frontend

Los Angeles Load . -5 - Autoscaling
Balancer

o € [ =]

User in o \ I Cloud
Monitoring | 1
and Logging

us-centrall

New York Storage

Let’'s walk through the Cloud CDN response flow with this diagram.

In this example, the Application Load Balancer has two types of backends. There are
managed VM instance groups in the us-central1 and asia-east1 regions, and there's a
Cloud Storage bucket in us-east1. A URL map decides which backend to send the
content to. The Cloud Storage bucket could be used to serve static content and the
instance groups could handle PHP traffic.

When a user in San Francisco is the first to access content, the cache site in San
Francisco sees that it can't fulfill the request. This situation is called a cache miss. If
content is in a nearby cache, Cloud CDN might attempt to get the content from it, for
example, if a user in Los Angeles has already accessed the content. Otherwise, the
request is forwarded to the Application Load Balancer, which in turn forwards the
request to one of your backends.

Depending on the content that is being served, the request will be forwarded to the
us-central1 instance group or the us-east1 storage bucket.

If the content from the backend is cacheable, the cache site in San Francisco can
store it for future requests. In other words, if another user requests the same content
in San Francisco, the cache site might now be able to serve that content. This
approach shortens the round trip time and saves the origin server from having to
process the request. This is called a cache hit.




For more information on what content can be cached, please refer to Caching
overview in the Google Cloud documentation.

Each Cloud CDN request is automatically logged within Google Cloud. These logs will
indicate a “Cache hit” or “Cache miss” status for each HTTP request of the load
balancer. You will explore such logs in the next lab.

Cache modes let you control how content is cached.


https://cloud.google.com/cdn/docs/caching
https://cloud.google.com/cdn/docs/caching

CDN Interconnect

Google Cloud
CDN Interconnect lets you:
e Select third-party Cloud CDN providers to ) Icr:1It0eL:Sonnect
establish Direct Interconnect links at edge
locations in the Google network.
e Direct your traffic from your VPC networks to a coipprezEr

provider network.

e Optimize your Cloud CDN cache population
costs.

Public internet

(]

Client

CDN Interconnect lets select third-party content delivery network (CDN) providers
establish Direct Interconnect links at edge locations in the Google edge network.
These connections let you direct your traffic from your VPC networks to a CDN
provider network. For a complete list of CDN providers, refer to CDN Interconnect
overview in the Google Cloud documentation.

CDN Interconnect lets you connect directly to select CDN providers from Google
Cloud. Your network traffic that egresses from Google Cloud through one of these
links benefits from the direct connectivity to supported CDN providers.

CDN Interconnect reduces your Cloud CDN cache population costs.



https://cloud.google.com/network-connectivity/docs/cdn-interconnect
https://cloud.google.com/network-connectivity/docs/cdn-interconnect

Typical use cases for CDN Interconnect

Google Cloud
@ High-volume egress traffic.
CDN provider
@ Frequent content updates.
2\

If you have a high-volume of egress traffic, consider using CDN Interconnect. You can
use the CDN Interconnect links between Google Cloud and selected providers to
automatically optimize the egress traffic and save money. If you're populating the
Cloud CDN cache locations with large data files from Google Cloud, this optimization

can be especially helpful.

Frequent content updates are another typical CDN Interconnect use case. Cloud
workloads that frequently update data stored in Cloud CDN cache locations benefit
from using CDN Interconnect. The direct link to the Cloud CDN provider reduces

latency.




CDN Interconnect traffic billing

Ingress traffic is free for all regions.

Egress traffic rates apply only to data that
leaves Compute Engine or Cloud Storage.

The reduced price applies only to IPv4 traffic.

Egress charges for CDN Interconnect appear on
the invoice as Compute Engine Network Egress
via Carrier Peering Network.

Ingress traffic is free for all regions.

Egress traffic rates apply only to data that leaves Compute Engine or Cloud Storage.
Egress charges for CDN Interconnect appear on the invoice as Compute Engine
Network Egress via Carrier Peering Network.

The special pricing for your traffic that egresses from Google Cloud to a CDN provider
is automatic. Google works with approved CDN partners in supported locations to
accept provider IP addresses. Any data that you send to your allowlisted CDN
provider from Google Cloud is charged at the reduced price.

This reduced price applies only to IPv4 traffic. It does not apply to IPv6 traffic.

Intra-region pricing for CDN Interconnect applies only to intra-region egress traffic that
is sent to Google-approved CDN providers at specific locations.




Setting up CDN Interconnect

° CDN Interconnect does not require any configuration
or integration with Cloud Load Balancing.

Q Work with your supported CDN provider to:

[ Learn which locations are supported.

[ Correctly configure your deployment to use
intra-region egress routes.

CDN Interconnect does not require any configuration or integration with Cloud Load
Balancing. If your CDN provider is already part of the program, you don't need to do
anything. Traffic from supported Google Cloud locations to your CDN provider
automatically benefits from the direct connection and reduced pricing.

Work with your supported CDN provider to learn what locations are supported. Your
supported CDN service provider can also help you correctly configure your
deployment to use intra-region egress routes, which cost less than inter-region egress
traffic.




01
02
03
04
85

Internal Network Load Balancers as next hops
Cloud CDN

Lab: Defending Edge Cache with Cloud Armor
Load balancer optimization strategies

Quiz

Next, you will explore a lab covering how to use Google Cloud Armor to defend edge

cache.




Lab intro

Defending Edge Cache with
Cloud Armor

Google Cloud

In this lab, you learn how to perform the following tasks:
Create and populate a Cloud Storage bucket.

Create an Application Load Balancer with Cloud CDN.
Verify the caching of your bucket's content.

Invalidate the cached content.



01
02
Today'’s 03
agenda 64
05

\

Internal Network Load Balancers as next hops
Cloud CDN

Lab: Defending Edge Cache with Cloud Armor
Load balancer optimization strategies

Quiz

Next, let’s discuss some load balancer optimization strategies.




Cost optimization strategies:
Autoscaling

@ 1 Dynamically adjust resources.

@2 Define scaling threshold. ' ‘ f

@ 3 Utilize custom metrics.

Optimizing your cloud load balancer configuration can significantly reduce costs
without impacting performance or availability. Here are some key strategies:

Autoscaling

e  Dynamically adjust resources: Enable autoscaling to automatically scale
backend instances based on real-time traffic demands. This ensures you only
pay for the resources you need, eliminating overprovisioning and unnecessary
costs.

e Define scaling thresholds: Set clear thresholds for scaling up and down to
optimize resource utilization and prevent unnecessary scaling events.

e  Utilize custom metrics: Leverage custom metrics like CPU usage or response
time to trigger autoscaling, ensuring resources are allocated based on specific
performance indicators.




Cost optimization strategies:
Rightsizing

01

02

03

Choose the right load balancer
based on your traffic type and

requirements.
Match resources to workload.

Regularly review resource
utilization.

Rightsizing resources:

Choose the right load balancer type: Select the most appropriate load
balancer type (for example, Application, Proxy Network, or Passthrough
Network) based on your traffic type and requirements. Avoid using a more
expensive type than necessary.

Match resources to workload: Select the appropriate machine type and size for
your backend instances based on their anticipated workload. Overprovisioning
resources will lead to higher costs, while underprovisioning can impact
performance.

Regularly review resource utilization: Monitor the CPU, memory, and network
utilization of your backend instances and load balancers. If utilization is
consistently low, consider downsizing resources for cost savings.




Cost optimization strategies:
Using monitoring and management tools

@ 1 Use Cloud Monitoring to gain insights into load
balancer and backend instance performance.

@2 Leverage Cloud Billing and Cloud cost
management tools to track load balancing costs.

@ 3 Implement cost allocation tags to categorize
costs for tracking and optimization.

Use Cloud Monitoring and cost management tools:

e Use Cloud Monitoring: Use Cloud Monitoring to gain insights into your load
balancer and backend instance performance. Analyze metrics like CPU
usage, memory consumption, and network bandwidth to identify areas for
optimization.

e Leverage Cloud cost management tools: Use tools like Cloud Billing and
Cloud cost management to track your load balancing costs and identify
potential savings opportunities. These tools can provide detailed cost
breakdowns by project, service, and resource, helping you identify
underutilized resources or areas for potential consolidation.

e Cost allocation tags: Implement cost allocation tags to categorize your load
balancing costs by department, project, or any other relevant criteria. This
allows for more granular cost tracking and facilitates cost optimization
efforts.




Other cost optimization strategies

@ 1 Schedule downtimes for non-critical workfload n
during low traffic time.

02 ¢

Use reserved instances for predictable workloads.

v
V - - .-
EEEN
<“ EEEN
@ 3 Use spot instances for non-critical workloads. : ;E ; *—’-jJ :::
,1 =
a

@4 Integrate Cloud CDN with a load balancer to
reduce load on backend instances.

Additional strategies:

e Scheduled downtimes: Consider scheduling downtimes for non-critical
workloads during periods of low traffic to reduce costs.

e Reserved instances: Use reserved instances for predictable workloads to
obtain significant discounts on load balancer resources.

e  Spot instances: Explore using spot instances for non-critical workloads to
take advantage of discounted compute resources.

e Cloud CDN integration: Integrate Cloud CDN with your load balancer to
reduce the load on your backend instances and potentially reduce load
balancer costs.

Remember, cost optimization is an ongoing process. By implementing these
strategies and continuously monitoring your cloud resources, you can achieve
significant cost savings while ensuring your cloud infrastructure remains efficient
and scalable.




01
02
03
04
05

Internal Network Load Balancers as next hops
Cloud CDN

Lab: Defending Edge Cache with Cloud Armor
Load balancer optimization strategies

Quiz

Google Cloud




Quiz | Question 1

Question

When you use the internal IP address of the forwarding rule to specify an internal Network
Load Balancer next hop, the load balancer can only be:

A.

B
C.
D

In the same VPC network as the next hop route.
In the same VPC network as the next hop route or in a peered VPC network.
In the same subnet as the next hop route.

In the same subnet as the next hop route or a shared VPC network.




Quiz | Question 3

Question

CDN Interconnect provides:

A. Adirect connection between your origin servers and Google's Cloud Load Balancing
service.

5 A direct peering connection between third-party content delivery networks (CDNs) and
" Google's edge network.

A private connection between your on-premises network and Google Cloud

D. A virtual private network (VPN) tunnel between your VPC network and Google's global
network.




Quiz | Question 3

Question

Which of the following best practices help optimize load balancing cost?

A.

B
C.
D

Choosing a load balancer based on your traffic type.
Choosing a load balancer type that closely matches your traffic patterns.
Implementing a caching layer with a content delivery network (CDN).

Increasing your timeout periods for load balancer health checks.




Debrief

=5
S _

>

In this module, we began with an overview of load balancing in Google Cloud. We
continued with a discussion of hybrid load balancing. You learned that hybrid load
balancing can be used to migrate your workloads into Google Cloud or to provide
multiple platforms for your workloads. We covered the load balancers that support
hybrid load balancing and an overview of the components that you must configure.

We then talked about using traffic management with your load balancers. You learned
which load balancers support traffic management features. You were introduced to the
URL map, where you configure traffic management features. We walked through a
simple example of traffic management. In the example, you saw how to configure a
URL map to match incoming traffic and specify where the traffic should be sent.

You then applied what you learned in a lab exercise.

Next, we covered using internal Network Load Balancers as next hops. You learned
about some of the major use cases, and some simple topologies were shown.

We continued by discussing using Cloud CDN to get content to your clients faster.
You also learned about CDN Interconnect to direct traffic from your VPC networks to a
supported CDN provider network. You also learned how CDN Interconnect optimizes
your Cloud CDN cache population costs.




Finally, you took a brief quiz to test your knowledge.






£Y Google Cloud




