
Daphne Ippolito and Chenyan Xiong

Large Language Models: Methods and Applications

Neural Language Model
Architectures

Updates

● Homework 1 will be out today or tomorrow.

○ Homework 1: all about training data.

● Homework 1 will be due September 10.

● TA office hours start up next week.

○ Mondays 1 PM - 2 PM

○ Thursdays 11 AM -12 PM

● If you are still on the waitlist, you can still start doing the homework.

● Important: fill out the AWS survey on Canvas

Recap of last class

● Tokenization is the process of turning text into a sequence of integers.

● Language models output the probability of a token given the previous tokens in a

sequence.

○ 𝑃(𝑦𝑡 |𝑦1:𝑡−1)

● Sometimes, we also want to condition language models on some other input, X.

○ 𝑃(𝑦𝑡 |𝑦1:𝑡−1; 𝑋)

● In the past, people used statistical language models.

● We choose between encoder-decoder vs. decoder-only model architectures, depending

on the assumptions we want to make about how problem decomposes.

Quiz

More on Beam Search

● Let’s walk through an example where arg max decoding and beam search won’t give the
same answer.

Greedy search methods do not always lead to the most
likely output.

If we were to choose the sequence that maximizes

𝑃(𝑥1, … , 𝑥𝑇) , which of the following would get
generated?

(a) [a, b, </s>]
(b) [a, a, </s>]
(c) [b, b, </s>]
(d) [b, a, </s>]

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition

probabilities 𝑃(𝑥𝑡|𝑥1:𝑡−𝑡)

From Martin and Jurafsky. Speech and Language Processing.

Greedy search methods do not always lead to the most
likely output.

If we were to choose the sequence that maximizes

𝑃(𝑥1, … , 𝑥𝑇) , which of the following would get
generated?

(a) [a, b, </s>]
(b) [a, a, </s>]
(c) [b, b, </s>]
(d) [b, a, </s>]

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition

probabilities 𝑃(𝑥𝑡|𝑥1:𝑡−𝑡)

From Martin and Jurafsky. Speech and Language Processing.

Beam search explores multiple possible output sequences, trying to
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are 𝑙𝑜𝑔𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are 𝑙𝑜𝑔𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam
size of 2.

From Martin and Jurafsky. Speech and Language Processing.

Beam search explores multiple possible output sequences, trying to
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are log𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are log𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam
size of 2.

Score each path and keep
the top 2

From Martin and Jurafsky. Speech and Language Processing.

Beam search explores multiple possible output sequences, trying to
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are log𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are log𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam
size of 2.

Score each path and keep
the top 2

From Martin and Jurafsky. Speech and Language Processing.

Beam search explores multiple possible output sequences, trying to
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are log𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are log𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam
size of 2.

Score each path and keep
the top 2

From Martin and Jurafsky. Speech and Language Processing.

Beam search explores multiple possible output sequences, trying to
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are log𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are log𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam
size of 2.

The paths that are still open at any step of the
beam search algorithm are called beams.

Score each path and keep
the top 2

From Martin and Jurafsky. Speech and Language Processing.

Back to where we left off:
attention

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]T
ra

n
s

la
te

 F
r

to
 E

n
Better approach: an attention mechanism.

How did RNN-based language models connect the encoder with
the decoder?

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation
by jointly learning to align and translate." (2014).

When predicting the next
English word, how much

weight should the model put

on each French word in the

source sequence?

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]T
ra

n
s

la
te

 F
r

to
 E

n
Better approach: an attention mechanism.

How did RNN-based language models connect the encoder with
the decoder?

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation
by jointly learning to align and translate." (2014).

When predicting the next
English word, how much

weight should the model put

on each French word in the

source sequence?

At each step 𝑡 in the decoder, a context vector is computed which contains all the
information from the encoder that is relevant to the decoder making a prediction at
this position.

The decoder’s predicted embedding for position 𝑡 is a function of the context vector
and the decoder’s hidden state for this position.

Attention Mechanism

The context vector is a l inear sum of the encoder

hidden states, i.e., 𝒄𝑡 = 𝐇enc𝜶𝑡.

ෝ𝐞𝑡 = 𝑓𝜃(, 𝐡𝑡
dec ; 𝛼1,𝑡𝐡1

enc + 𝛼2,𝑡𝐡2
enc + ⋯𝛼𝑇,𝑡𝐡𝑇

enc)

Computing the Attention Weights

The 𝛼𝑖 ,𝑗 are scores that indicate how important the encoder hidden state at position

𝑖 is to the model ’s prediction at position 𝑗. They are typically normalized to sum to 1.

𝛼𝑖 ,𝑗 =
exp 𝑒𝑖 ,𝑗

σ𝑘=1
𝑇 exp 𝑒𝑖 ,𝑘

𝑒𝑖 ,𝑗 = score(𝐡𝑖
enc , 𝐡𝑗−1

dec)

Softmax function

Computing the Attention Weights

The 𝛼𝑖 ,𝑗 are scores that indicate how important the encoder hidden state at position

𝑖 is to the model ’s prediction at position 𝑗. They are typically normalized to sum to 1.

𝛼𝑖 ,𝑗 =
exp 𝑒𝑖 ,𝑗

σ𝑘=1
𝑇 exp 𝑒𝑖 ,𝑘

𝑒𝑖 ,𝑗 = score(𝐡𝑖
enc , 𝐡𝑗−1

dec)

In dot-product attention, we use a very simple scoring function: score 𝐪, 𝐤 = 𝐪 ⋅ 𝐤

Softmax function

“At the core of an attention-based approach is
the ability to compare an item of interest to a
collection of other items in a way that reveals

their relevance in the current context.”
-Jurafsky and Martin, Chapter 10

Circa 2017: Transformers

Encoder-decoder attention:
 , , ...

 , , , , ,

 , , , , ,

 , , , , ,

Self-attention:

Why drop the recurrence and only use attention?

• Recurrent neural networks are slow to train. Computation cannot be parallelized.

• The computation at position t is dependent on first doing the computation at
position t-1.

• Recurrent neural networks do poorly with long contexts.

• If two tokens are K positions apart, there are K opportunities for knowledge of
the first token to be erased from the hidden state before a prediction is made
at the position of the second token.

• Transformers solve both these problems.

Components of a Generic Attention Mechanism
● A sequence of <key, value> embeddings pairs

○ The values are always the hidden states from a previous layer of the
neural network. The attention mechanism outputs a weighted sum of
these.

○ For encoder-decoder attention, the values are the final hidden states of
the encoder (as we so in the previous slide) and the keys are the hidden
states from the target sequence.

● A sequence of query embeddings

○ The query is the current focus of the attention.

○ We choose weights for each of the values by computing a score between
the current query and each of the keys.

attention output at position 𝑗 = ෍

𝑖=1

𝑇

score 𝐪𝑗 , 𝐤 𝑖 ⋅ 𝐯𝑖

score 𝐪𝑗 , 𝐤 𝑖 =
𝐪𝑗 ⋅ 𝐤 𝑖

𝑑𝑘

Since the attention computations at each position j are completely independent, we can
actually parallelize all these computations and think in terms of matrix multiplications.

For example, instead of thinking of a sequence of embedding vectors 𝐱1 , ⋯ , 𝐱𝑇 we can
think of a matrix X ∈ ℝ𝑇×𝑑𝑥 .

This gives us the attention equation which appear in the “Attention is All You Need”
paper.

attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝐊⊤

𝑑𝑘
𝐕

Components of a Generic Attention Mechanism

Transformers: “Attention is All You Need”

Transformers: “Attention is All You Need”

Encoder

Transformers: “Attention is All You Need”

Decoder

embedding
matrix 𝐄

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

σ𝑗exp(𝐄ො𝐲𝑡[𝑗])

ො𝐲𝑡

Transformers: “Attention is All You Need”

The input into the encoder looks like:

+
Position Embeddings Token Embeddings

Transformers: “Attention is All You Need”

The input into the encoder looks like:

The input to the decoder looks like:

+
Position Embeddings Token Embeddings

Transformers: “Attention is All You Need”

+
Position Embeddings Shifted Token Embeddings

Encoder-decoder

attention

Transformers: “Attention is All You Need”

This is almost exactly the same as what the old
recurrent seq2seq models had.

Transformers: “Attention is All You Need”

Self-attention

Transformers: “Attention is All You Need”

Self-attention

Transformers: “Attention is All You Need”

Masked self-attention

Transformers: “Attention is All You Need”

Each attention layer consists
of multiple attention heads.

Multi-head

Transformers: “Attention is All You Need”

head1 = Attention 𝐐𝐖1
𝑄
, 𝐊𝐖1

𝐾, 𝐕𝐖1
𝑉

head𝐻 = Attention 𝐐𝐖𝐻
𝑄
, 𝐊𝐖𝐻

𝐾, 𝐕𝐖𝐻
𝑉

⋮

MultiHeadAtt 𝐐, 𝐊, 𝐕 =
Concat head1, … , head𝐻

Multi-Head Attention

Transformers: “Attention is All You Need”

head1 = Attention 𝐐𝐖1
𝑄
, 𝐊𝐖1

𝐾, 𝐕𝐖1
𝑉

head𝐻 = Attention 𝐐𝐖𝐻
𝑄
, 𝐊𝐖𝐻

𝐾, 𝐕𝐖𝐻
𝑉

⋮

MultiHeadAtt 𝐐, 𝐊, 𝐕 =
Concat head1, … , head𝐻

Multi-Head Attention

Inputs and outputs of each layer
are the same dimensions:

𝐐 ∈ ℝ𝑇×𝑑model

𝐊 ∈ ℝ𝑇×𝑑model

𝐕 ∈ ℝ𝑇×𝑑model

MultiHeadAtt 𝐐, 𝐊, 𝐕 ∈ ℝ𝑇×𝑑model

Transformers: “Attention is All You Need”

head1 = Attention 𝐐𝐖1
𝑄
, 𝐊𝐖1

𝐾, 𝐕𝐖1
𝑉

head𝐻 = Attention 𝐐𝐖𝐻
𝑄
, 𝐊𝐖𝐻

𝐾, 𝐕𝐖𝐻
𝑉

⋮

MultiHeadAtt 𝐐, 𝐊, 𝐕 =
Concat head1, … , head𝐻

Multi-Head Attention

Inputs and outputs of each layer
are the same dimensions:

𝐐 ∈ ℝ𝑇×𝑑model

𝐊 ∈ ℝ𝑇×𝑑model

𝐕 ∈ ℝ𝑇×𝑑model

MultiHeadAtt 𝐐, 𝐊, 𝐕 ∈ ℝ𝑇×𝑑model

Concrete example:
𝑑model = 512 and 𝐻 = 8.

Transformers: “Attention is All You Need”

head1 = Attention 𝐐𝐖1
𝑄
, 𝐊𝐖1

𝐾, 𝐕𝐖1
𝑉

head𝐻 = Attention 𝐐𝐖𝐻
𝑄
, 𝐊𝐖𝐻

𝐾, 𝐕𝐖𝐻
𝑉

⋮

MultiHeadAtt 𝐐, 𝐊, 𝐕 =
Concat head1, … , head𝐻

Multi-Head Attention

Inputs and outputs of each layer
are the same dimensions:

𝐐 ∈ ℝ𝑇×𝑑model

𝐊 ∈ ℝ𝑇×𝑑model

𝐕 ∈ ℝ𝑇×𝑑model

MultiHeadAtt 𝐐, 𝐊, 𝐕 ∈ ℝ𝑇×𝑑model

Concrete example:
𝑑model = 512 and 𝐻 = 8.

This means: 𝐖𝑖
𝑄 ∈ ℝ512×64,

𝐖𝑖
𝐾 ∈ ℝ512×64, 𝐖𝑖

𝑉 ∈ ℝ512×64

The Encoder Step-by-Step

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc, 𝐇𝑖
enc)

Multi-Head

Attention

The Encoder Step-by-Step

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc, 𝐇𝑖
enc)

= LayerNorm(+𝐇𝑖
enc)Multi-Head

Attention
Add & Norm

Multi-Head

Attention

The Encoder Step-by-Step

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc, 𝐇𝑖
enc)

= LayerNorm(+𝐇𝑖
enc)Multi-Head

Attention
Add & Norm

Multi-Head

Attention

Feed
Forward = max(0, 𝐖1+𝑏1)𝐖2 + 𝑏2Add & Norm

The Encoder Step-by-Step

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc, 𝐇𝑖
enc)

= LayerNorm(+𝐇𝑖
enc)Multi-Head

Attention
Add & Norm

Multi-Head

Attention

Feed
Forward = max(0, 𝐖1+𝑏1)𝐖2 + 𝑏2Add & Norm

= LayerNorm(+)Add & Norm (2)
Feed

Forward
Add & Norm

𝐇𝑖+1
enc = Add & Norm(2)

= MultiHeadAtt(𝐇𝑖
dec, 𝐇𝑖

dec, 𝐇𝑖
dec)

Masked

Multi-Head

Attention

= LayerNorm(+𝐇𝑖
dec)Add & Norm

Masked

Multi-Head

Attention

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc,
)

Enc-Dec

Multi-Head

Attention

Add & Norm

= LayerNorm(+)Add & Norm (2) Add & Norm

Enc-Dec

Multi-Head

Attention

Feed
Forward = max(0, 𝐖1+𝑏1)𝐖2 + 𝑏2Add & Norm (2)

= LayerNorm(+)Add & Norm (3)
Feed

Forward

𝐇𝑖+1
enc = Add & Norm(3)

Add & Norm (2)

The Decoder Step-by-Step

Multiple Layers

In practice, there are many attention layers.

Transformers Generated Text Circa 2018

Transformers Generated Text Circa 2018

Turning this into a decoder-only architecture

→xx
x

Attention in different Transformer architectures.

Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?”

Yellow boxes indicate positions that are allowed to attend to each other.

Attention in different Transformer architectures.

Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?”

Yellow boxes indicate positions that are allowed to attend to each other.

Daphne Ippolito and Chenyan Xiong

Large Language Models: Methods and Applications

Learning Objectives

What I’ve told you so far:

Language models are trained with the objective of predicting the next word in a sequence
given the previous words (and possibly some other conditioning signal).

What I’ve told you so far:

Language models are trained with the objective of predicting the next word in a sequence
given the previous words (and possibly some other conditioning signal).

We can change the learning objective by changing up these sequences.

What do we want from our learning objective.

The goals of pre-training (the first stage of training) are to get the language model to:

● learn the structure of natural language

● learn humans’ understanding of the world (as encoded in the training data).

We want a learning objective that facilitates these goals.

Possible objectives for pre-training an encoder-decoder model:

● Predict a suffix given a prefix.

○ Input: I took my dog, Fido, to the

○ Target: park for his walk.

● Masked language modeling

○ Input: I took <x> to <y> his walk.

○ Target: <x> my dog, Fido, <y> the park for

	Slide 1: Neural Language Model Architectures
	Slide 2: Updates
	Slide 3: Recap of last class
	Slide 4: Quiz
	Slide 5: More on Beam Search
	Slide 6: Greedy search methods do not always lead to the most likely output.
	Slide 7: Greedy search methods do not always lead to the most likely output.
	Slide 8: Beam search explores multiple possible output sequences, trying to find the overall most likely one.
	Slide 9: Beam search explores multiple possible output sequences, trying to find the overall most likely one.
	Slide 10: Beam search explores multiple possible output sequences, trying to find the overall most likely one.
	Slide 11: Beam search explores multiple possible output sequences, trying to find the overall most likely one.
	Slide 12: Beam search explores multiple possible output sequences, trying to find the overall most likely one.
	Slide 13: Back to where we left off: attention
	Slide 14
	Slide 15
	Slide 16: Attention Mechanism
	Slide 17: Computing the Attention Weights
	Slide 18: Computing the Attention Weights
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Components of a Generic Attention Mechanism
	Slide 25
	Slide 26: Transformers: “Attention is All You Need”
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Transformers Generated Text Circa 2018
	Slide 48: Transformers Generated Text Circa 2018
	Slide 49: Turning this into a decoder-only architecture
	Slide 50: Attention in different Transformer architectures.
	Slide 51: Attention in different Transformer architectures.
	Slide 52: Learning Objectives
	Slide 53: What I’ve told you so far:
	Slide 54: What I’ve told you so far:
	Slide 55: What do we want from our learning objective.
	Slide 56: Possible objectives for pre-training an encoder-decoder model:

