
Daphne Ippolito and Chenyan Xiong

Large Language Models: Methods and Applications

Neural Language Model 
Architectures



Updates

● Homework 1 will be out today or tomorrow.

○ Homework 1: all about training data.

● Homework 1 will be due September 10.

● TA office hours start up next week.

○ Mondays 1 PM - 2 PM

○ Thursdays 11 AM -12 PM

● If you are still on the waitlist, you can still start doing the homework.

● Important: fill out the AWS survey on Canvas



Recap of last class

● Tokenization is the process of turning text into a sequence of integers.

● Language models output the probability of a token given the previous tokens in a 

sequence.

○ 𝑃(𝑦𝑡 |𝑦1:𝑡−1)

● Sometimes, we also want to condition language models on some other input, X.

○ 𝑃(𝑦𝑡 |𝑦1:𝑡−1; 𝑋)

● In the past, people used statistical language models.

● We choose between encoder-decoder vs. decoder-only model architectures, depending 

on the assumptions we want to make about how problem decomposes.



Quiz



More on Beam Search

● Let’s walk through an example where arg max decoding and beam search won’t give the 
same answer.



Greedy search methods do not always lead to the most 
likely output.

If we were to choose the sequence that maximizes 

𝑃(𝑥1, … , 𝑥𝑇) , which of the following would get 
generated?

(a) [a, b, </s>]
(b) [a, a, </s>]
(c) [b, b, </s>]
(d) [b, a, </s>]

Vocabulary = {a, b, </s>}
Numbers above each edge are the transition 

probabilities 𝑃(𝑥𝑡|𝑥1:𝑡−𝑡)

From Martin and Jurafsky. Speech and Language Processing.
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Beam search explores multiple possible output sequences, trying to 
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are 𝑙𝑜𝑔𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are 𝑙𝑜𝑔𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam 
size of 2.

From Martin and Jurafsky. Speech and Language Processing.
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Beam search explores multiple possible output sequences, trying to 
find the overall most likely one.

Vocabulary = {a, b, </s>}

Numbers above the boxes are log𝑃(𝑥𝑡|𝑥1:𝑡−1)

Numbers shown on edges are log𝑃(𝑥1, … , 𝑥𝑡)

Suppose we use beam search with a beam 
size of 2.

The paths that are still open at any step of the 
beam search algorithm are called beams.

Score each path and keep 
the top 2

From Martin and Jurafsky. Speech and Language Processing.



Back to where we left off: 
attention



[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]T
ra

n
s

la
te

 F
r 

to
 E

n
Better approach: an attention mechanism.

How did RNN-based language models connect the encoder with 
the decoder?

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation 
by jointly learning to align and translate." (2014).

When predicting the next 
English word, how much 

weight should the model put 

on each French word in the 

source sequence?
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At each step 𝑡 in the decoder, a context vector is computed which contains all the 
information from the encoder that is relevant to the decoder making a prediction at 
this position.

The decoder’s predicted embedding for position 𝑡 is a function of the context vector 
and the decoder’s hidden state for this position.

Attention Mechanism

The context vector is a l inear sum of the encoder 

hidden states, i.e., 𝒄𝑡 = 𝐇enc𝜶𝑡.

ෝ𝐞𝑡 = 𝑓𝜃(, 𝐡𝑡
dec ; 𝛼1,𝑡𝐡1

enc + 𝛼2,𝑡𝐡2
enc + ⋯𝛼𝑇,𝑡𝐡𝑇

enc)



Computing the Attention Weights

The 𝛼𝑖 ,𝑗 are scores that indicate how important the encoder hidden state at position

𝑖 is to the model ’s prediction at position 𝑗. They are typically normalized to sum to 1.

𝛼𝑖 ,𝑗 =
exp 𝑒𝑖 ,𝑗

σ𝑘=1
𝑇 exp 𝑒𝑖 ,𝑘

𝑒𝑖 ,𝑗 = score(𝐡𝑖
enc , 𝐡𝑗−1

dec)

Softmax function
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𝑇 exp 𝑒𝑖 ,𝑘

𝑒𝑖 ,𝑗 = score(𝐡𝑖
enc , 𝐡𝑗−1

dec)

In dot-product attention, we use a very simple scoring function: score 𝐪, 𝐤 = 𝐪 ⋅ 𝐤

Softmax function



“At the core of an attention-based approach is 
the ability to compare an item of interest to a 
collection of other items in a way that reveals 

their relevance in the current context.”
-Jurafsky and Martin, Chapter 10



Circa 2017: Transformers

Encoder-decoder attention:
    ,             , ...

   ,            ,  ,      ,    ,         

   ,            ,  ,      ,    ,         

   ,            ,  ,      ,    ,         

Self-attention:



Why drop the recurrence and only use attention?

• Recurrent neural networks are slow to train. Computation cannot be parallelized.

• The computation at position t is dependent on first doing the computation at 
position t-1.

• Recurrent neural networks do poorly with long contexts.

• If two tokens are K positions apart, there are K opportunities for knowledge of 
the first token to be erased from the hidden state before a prediction is made 
at the position of the second token.

• Transformers solve both these problems.



Components of a Generic Attention Mechanism
● A sequence of <key, value> embeddings pairs

○ The values are always the hidden states from a previous layer of the 
neural network. The attention mechanism outputs a weighted sum of 
these.

○ For encoder-decoder attention, the values are the final hidden states of 
the encoder (as we so in the previous slide) and the keys are the hidden 
states from the target sequence.

● A sequence of query embeddings

○ The query is the current focus of the attention.

○ We choose weights for each of the values by computing a score between 
the current query and each of the keys.

attention output at position 𝑗 = ෍

𝑖=1

𝑇

score 𝐪𝑗 , 𝐤 𝑖 ⋅ 𝐯𝑖

score 𝐪𝑗 , 𝐤 𝑖 =
𝐪𝑗 ⋅ 𝐤 𝑖

𝑑𝑘



Since the attention computations at each position j are completely independent, we can 
actually parallelize all these computations and think in terms of matrix multiplications.

For example, instead of thinking of a sequence of embedding vectors 𝐱1 , ⋯ , 𝐱𝑇 we can 
think of a matrix X ∈ ℝ𝑇×𝑑𝑥 .

This gives us the attention equation which appear in the “Attention is All You Need” 
paper.

attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝐊⊤

𝑑𝑘
𝐕

Components of a Generic Attention Mechanism



Transformers: “Attention is All You Need”
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Encoder



Transformers: “Attention is All You Need”

Decoder



embedding
matrix 𝐄

𝑃(𝑌𝑡 = 𝑖|𝐱1:𝑇, 𝐲1:𝑡−1) =
exp(𝐄ො𝐲𝑡[𝑖])

σ𝑗exp(𝐄ො𝐲𝑡[𝑗])

ො𝐲𝑡

Transformers: “Attention is All You Need”



The input into the encoder looks like:

+
Position Embeddings Token Embeddings

Transformers: “Attention is All You Need”



The input into the encoder looks like:

The input to the decoder looks like:

+
Position Embeddings Token Embeddings

Transformers: “Attention is All You Need”

+
Position Embeddings Shifted Token Embeddings



Encoder-decoder 

attention

Transformers: “Attention is All You Need”

This is almost exactly the same as what the old 
recurrent seq2seq models had.



Transformers: “Attention is All You Need”

Self-attention
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Self-attention



Transformers: “Attention is All You Need”

Masked self-attention



Transformers: “Attention is All You Need”

Each attention layer consists 
of multiple attention heads.

Multi-head



Transformers: “Attention is All You Need”

head1 = Attention 𝐐𝐖1
𝑄
, 𝐊𝐖1

𝐾, 𝐕𝐖1
𝑉

head𝐻 = Attention 𝐐𝐖𝐻
𝑄
, 𝐊𝐖𝐻

𝐾, 𝐕𝐖𝐻
𝑉

⋮

MultiHeadAtt 𝐐, 𝐊, 𝐕 =
Concat head1, … , head𝐻

Multi-Head Attention
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The Encoder Step-by-Step

= MultiHeadAtt(𝐇𝑖
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enc, 𝐇𝑖
enc)
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Attention
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Multi-Head

Attention

Feed
Forward = max(0, 𝐖1+𝑏1)𝐖2 + 𝑏2Add & Norm

= LayerNorm( + )Add & Norm (2)
Feed

Forward
Add & Norm

𝐇𝑖+1
enc = Add & Norm(2)



= MultiHeadAtt(𝐇𝑖
dec, 𝐇𝑖

dec, 𝐇𝑖
dec)

Masked 

Multi-Head

Attention

= LayerNorm( +𝐇𝑖
dec)Add & Norm

Masked 

Multi-Head

Attention

= MultiHeadAtt(𝐇𝑖
enc, 𝐇𝑖

enc,
)

Enc-Dec 

Multi-Head

Attention

Add & Norm

= LayerNorm( + )Add & Norm (2) Add & Norm

Enc-Dec 

Multi-Head

Attention

Feed
Forward = max(0, 𝐖1+𝑏1)𝐖2 + 𝑏2Add & Norm (2)

= LayerNorm( + )Add & Norm (3)
Feed

Forward

𝐇𝑖+1
enc = Add & Norm(3)

Add & Norm (2)

The Decoder Step-by-Step



Multiple Layers

In practice, there are many attention layers.



Transformers Generated Text Circa 2018



Transformers Generated Text Circa 2018



Turning this into a decoder-only architecture

→xx
x



Attention in different Transformer architectures.

Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?”

Yellow boxes indicate positions that are allowed to attend to each other.



Attention in different Transformer architectures.

Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?”
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Daphne Ippolito and Chenyan Xiong

Large Language Models: Methods and Applications

Learning Objectives



What I’ve told you so far:

Language models are trained with the objective of predicting the next word in a sequence 
given the previous words (and possibly some other conditioning signal).



What I’ve told you so far:

Language models are trained with the objective of predicting the next word in a sequence 
given the previous words (and possibly some other conditioning signal).

We can change the learning objective by changing up these sequences.



What do we want from our learning objective.

The goals of pre-training (the first stage of training) are to get the language model to:

● learn the structure of natural language

● learn humans’ understanding of the world (as encoded in the training data).

We want a learning objective that facilitates these goals.



Possible objectives for pre-training an encoder-decoder model:

● Predict a suffix given a prefix.

○ Input: I took my dog, Fido, to the

○ Target: park for his walk.

● Masked language modeling

○ Input: I took <x> to <y> his walk.

○ Target: <x> my dog, Fido, <y> the park for
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