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How we conceived of LMs+NLP several years ago.

One model per task trained exclusively on task-specific data.

(left) Original transformer paper trained on MT

(right) Earliest LM-based chatbot paper trained on movie substitles

“Attention is all you need.” 2018. <https://arxiv.org/pdf/1706.03762>            “A Neural Conversational Model” (2015) https://arxiv.org/abs/1506.05869



Paradigm shift around ~2018

One language model pre-trained for generic language understanding then finetuned for each task.

Pre-Training Stage
Train on large amounts of 
"general-purpose" data.

Common data sources:
- Webcrawls
- Books
- Wikipedia
- Github

Randomly initialized 
model

Task-Specific Finetuning
Train on data specific to the tasks you 
want your model to be good at.

Common tasks:
- Question Answering
- Summarization
- Translation



Paradigm shift around ~2018

One language model pre-trained for generic language understanding then finetuned for each task.

BERT:
● Pre-train an encoder-only model with mask infilling and sentence ordering objectives.
● Finetune once per NLP task

“BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.” 2018. https://arxiv.org/abs/1810.04805
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Paradigm shift around ~2018

One language model pre-trained for generic language understanding then finetuned for each task.

GPT-1: 
● Pre-train a decoder-only LM with a language modelling objective.
● Finetune once per NLP task

“Improving Language Understanding by Generative Pre-Training.” 2018. https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf

https://hayate-lab.com/wp-content/uploads/2023/05/43372bfa750340059ad87ac8e538c53b.pdf


Disadvantages of full model-finetuning

● One model per task is fine for small models, but not for today’s big ones.

● Training separately on each task is more expensive than training on all tasks at once.

● Overfitting / catastrophic forgetting on small datasets

● Storage of all those model checkpoints (one per task) is expensive.

● During inference time, it’s expensive to have all those models loaded onto GPUs at the same time.



Solutions to Improve Efficiency

● Avoid finetuning entirely

○ In-context learning

● Parameter-efficient finetuning

● Multi-task finetuning → instruction finetuning



In-Context Learning
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Language Models are Unsupervised Multitask Learners (aka GPT-2 paper)

The authors “demonstrate that language models begin to learn [question answering, machine translation, 

reading comprehension, and summarization] tasks without any explicit supervision when trained on a new 

dataset of millions of webpages called WebText.”

”Language Models are Unsupervised Multitask Learners.” Radford et al. 2019. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
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In-Context Learning

All the information necessary to get the LM to do the task is included as part of the textual prompt intputed to 
the LM.



In-Context Learning

All the information necessary to get the LM to do the task is included as part of the textual prompt intputed to 
the LM.

LLM zero-shot learning: a prompt that contains instructions for the task, but no actual examples of the task 
being performed.

LLM few-shot learning: a prompt that contains both instructions as well as several examples of the task being 
performed.



Zero-shot learning for sentiment classification

Prompt:
Review: Let there be no question: Alexions owns the best cheeseburger in the region 
and they have now for decades. Try a burger on Italian bread. The service is flawlessly 
friendly, the food is amazing, and the wings? Oh the wings... but it's still about the 
cheeseburger. The atmosphere is inviting, but you can't eat atmosphere... so go right 
now. Grab the car keys... you know you're hungry for an amazing cheeseburger, maybe 
some wings, and a cold beer! Easily, hands down, the best bar and grill in Pittsburgh.

On a 1 to 4 star scale, the reviewer would probably give this restaurant a

Model’s Output Probabilities:

P(“1” | prompt) = 0.0016
P(“2” | prompt) = 0.0032
P(“3” | prompt) = 0.012
P(“4” | prompt) = 0.78

Template used:
Review: <review>

On a 1 to 4 star scale, the reviewer would probably give this restaurant a 
<class_label>

This template is tried for all possible class labels.

Output: the number with the highest likelihood.



Zero-shot learning for abstractive summarization

Prompt:
India's moon rover completes its walk. Scientists analyzing data looking for signs of frozen water

BEW DELHI -- India’s moon rover has completed its walk on the lunar surface and been put into sleep 
mode less than two weeks after its historic landing near the lunar south pole, India’s space mission said.

“The rover completes its assignments. It is now safely parked and set into sleep mode," with daylight on 
that part of the moon coming to an end, the Indian Space Research Organization said in a statement late 
Saturday.

The rover's payloads are turned off and the data it collected has been transmitted to the Earth via the 
lander, the statement said.

[...]

Active since the 1960s, India has launched satellites for itself and other countries, and successfully put 
one in orbit around Mars in 2014. India is planning its first mission to the International Space Station next 
year, in collaboration with the United States.

TL;DR;

Model Generation:
India's moon rover has completed its assignments and gone to sleep mode after just two weeks of being 
on the lunar surface. The rover has started transmitting the data it has collected to Earth, but scientists 
are unsure if it can survive the extremely cold temperatures on the moon and wake up in order to 
conduct another set of missions when the sun rises again. India successfully landed the rover and 
underscored its status as a major tech power and space program.

Template used:
<title>
<article>
TL;DR;

We return the model’s generation from the filled out template.



Few-shot learning for machine translation

Prompt:
The dog chased a squirrel at the park. = 那只狗在公园里追一只松鼠。

I was late for class. = 我上课迟到了。

The hippopotamus ate my homework. =

Model Generation:
河马吃了我的家庭作业。

Template Used:
<example1_en> = <example1_zh>

<example2_en> = <example2_zh>

<query_en> =



There are often many ways to verbalize a task.

Prompt:
The dog chased a squirrel at the park. = 那只狗在公园里追一只松鼠。

I was late for class. = 我上课迟到了。

The hippopotamus ate my homework. =

Prompt withan Alternative Template:
Translate from English to Chinese.

The dog chased a squirrel at the park. = 那只狗在公园里追一只松鼠。

I was late for class. = 我上课迟到了。

The hippopotamus ate my homework. =

Prompt with an Alternative Template:
Translate from English to Chinese.

English: The dog chased a squirrel at the park.
Chinese: 那只狗在公园里追一只松鼠。

English: I was late for class.
Chinese: 我上课迟到了。

English: The hippopotamus ate my homework.
Chinese:

The different templates are called verbalizers.



Summary of Terms

● Emergence: when quantitative changes in a system result in qualitative changes in behavior.

● Emergent behaviors: abilities that larger models have and smaller models don’t

● In-context learning: when a language model “learns” how to do a task from a textual prompt containing a 

natural language instruction for the task, several exemplars of the task, or both.

● Zero-shot learning: In context learning that does not include any exemplars of the task.

● Few-shot learning: In context learning that contains several exemplars of the task. 

● Prompt engineering: The painstaking process of trying out many different prompts until you find one that 

works well for your task.

● Verbalizer: The template we wrap an example in in order to perform the task.

19



More on prompt engineering 
(why it works, cases where it 

doesn’t) in next lecture.



Parameter-Efficient 
Finetuning
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What is parameter efficient tuning?

Rather than finetuning the entire model, we finetune only small amounts of weights.

In this lecture, we’ll break PETM techniques into roughly three categories.



Three Categories of PETM

1. Addition: What if we introduce additional trainable parameters to the neural network and just train those?

2. Specification: What if we pick a small subset of the parameters of the neural network and just tune those?

3. Reparameterization: What if we re-parameterize the model into something that is more efficient to train?

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” 2022. https://arxiv.org/abs/2203.06904
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What if we introduce additional 
trainable parameters to the neural 

network and just train those?

Methods in this category:
prompt tuning, prefix tuning, adapters, and compacters



Intuition for Prompt Tuning

Prompt engineering requires a lot of human decision-making and can be very finicky to get working.

If we have a bunch of examples of the task, why can’t we just train a neural network to produce a good 
prompt for the task?



Prompt Tuning Method

What we want to do: optimize a sequence of tokens 

that we can prepend to our task query, causing the 

LLM to do the task in question.

In practice, optimizing over discrete tokens is hard. 

What we do instead: Optimize a sequence of 

embeddings we can prepend to our query to the LLM, 

causing the LLM to do the task.

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.



Prompt Tuning Method

1. Finetune T5 to act a bit more like a traditional language model.

○ This only needs to be done once, and empirically makes prompt tuning working better.

○ This is probably because the span-corruption objective T5 was originally trained with isn’t amenable to prompting.

2. Freeze the weights of T5.

3. Create a new learnable embedding matrix 𝐏 ∈ ℝ𝑘×𝑑

○ Set the first k input embeddings to be learnable.

○ k is a hyperparameter up to the choice of the implementer.

4. Initialize the k learnable embeddings. Some options include:

○ Random initialization

○ Initialize to values drawn from the vocabulary embedding matrix

5. Train on your task specific data.

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.
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Prompt Tuning Method

1. Finetune T5 to act a bit more like a traditional language model.

○ This only needs to be done once, and empirically makes prompt tuning working better.

○ This is probably because the span-corruption objective T5 was originally trained with isn’t amenable to prompting.

2. Freeze the weights of T5. Set the first k input embeddings to be learnable.

○ k is a hyperparameter up to the choice of the implementer.

3. Initialize the k learnable embeddings. Some options include:

○ Random initialization

○ Initialize to values drawn from the vocabulary embedding matrix

4. Train on your task specific data.

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.



Prefix Tuning

Same idea as prompt tuning, except that the learned prefix is appended not just to the input embeddings, but 

rather at each layer of the Transformer.

“Prefix-Tuning: Optimizing Continuous Prompts for Generation.” Li and Liang. 2021.
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How to initialize the prefix?

Initializing to real embeddings seems to work better than random initialization.

“Prefix-Tuning: Optimizing Continuous Prompts for Generation.” Li and Liang. 2021.



Advantages of Prefix/Prompt Tuning

● The learned embeddings tend to be relatively small, just a few megabytes or less.

○ It is cheap to keep around one set of embeddings per task.

● The pre-trained LLM can be loaded into memory (such as on a server), and at inference time, the 

appropriate task-specific embeddings can be swapped in.

○ Example use case: User customization



Pitfalls of Prefix and Prompt Tuning

● In practice, these methods tend to converge significantly slower than full parameter fine-tuning.

● Unclear what the best prefix length is for any particular task.

○ Every sequence position you “spend” on the prefix is one less you have for your actual task.

● Learned embeddings are not very interpretable.



Adapters

● Adapters are new NN modules that are added between layers of a pre-trained network.

● The original model weights are fixed; just the adapter modules are tuned.

● The adapters are initialized s.t. the output of the adapter-inserted module resembles the original model.

“Parameter-Efficient Transfer Learning for NLP.” Houslby et al. 2019.



What are adapters?

● Adapters are new modules that are added between layers of a pre-trained network.

● The original model weights are fixed; just the adapter modules are tuned.

● The adapters are initialized s.t. the output of the adapter-inserted module resembles the original model.

“Parameter-Efficient Transfer Learning for NLP.” Houslby et al. 2019.
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Compacters

● Compacters are an extension of adapters which aim to make the technique more efficient.

● Adapters are standard fully connected layers.

○ Linear project to lower dimension followed by nonlinearity followed by projection back up to original dimension.

○ 𝑦 = 𝑾𝟐 GELU 𝑾𝟏𝒙 + 𝒃𝟏 + 𝒃𝟐

● The compacter replaces the fully connected layer with a more efficient architecture.

○ Combination of hypercomplex multiplication and parameter sharing

○ Each 𝑾 above is learned as a sum of n Kronecker products

○ Users can specify n: how many divisions to make of the linear layer as a hyperparamter.

● Compacters reduce the number of parameters in the adapter layer to 1/n without harming the 

performance.

“COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers.” Mahabadi et al. 2021.



Other Variants

There have been many other extensions to adapters which we won’t discuss in this class.

“COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers.” Mahabadi et al. 2021.



Advantages of Adapter-Based Methods

● Faster to converge during training than prompt/prefix tuning.

● Have been shown to be quite effective in multi-task settings.

○ There are methods for training task-specific adapters and then combining the to leverage the cross-task knowledge (see 

AdapterFusion).

● Tend to be faster to tune than full model finetuning.

● Possibly more robust to adversarial perturbations of the tuning data than full model finetuning.

○ (see robust transfer learning paper)

https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.acl-short.108.pdf


Pitfalls of Adapter Methods

● Adding in new layers means making inference slower.

● It also makes the model bigger (possibly harder to fit on available GPUs).

○ Number of parameters to add scales with number of layers in the model.



What if we pick a small subset of the 
parameters of the neural network and 

just tune those?

Methods in this category:
layer freezing, BitFit, diff pruning



Layer Freezing

● Research has shown that earlier layers of the Transformer tend to capture linguistic phenomena and basic 

language understand; later layers are where the task-specific learning happens.

● This means we should be able to learn new tasks by freezing the earlier layers and just tuning the later ones.



BitFit: Bias-terms Fine-tuning

● Only tune the bias terms and final classification layer (if doing classification)

● Recall the equations for multi-head attention

○ ℓ is the layer index

○ 𝑚 is the attention head index

○ Only the bias terms (shown in red) are updated.



DiffPruning

● In prior methods we discussed, the choice of what parameters to freeze and what parameters to tune was 

done manually.

● Why not learn this instead?

● Main idea:

○ For each parameter, finetune a learnable “delta” which gets added to the original parameter value.

○ Use an L0-norm penalty to encourage sparsity in the deltas.

● Advantages:

○ Model learns what parameters are important to update for new task.

“Parameter-Efficient Transfer Learning with Diff Pruning.” Guo et al. 2021.



What if we re-parameterize the 
model into something that is more 

efficient to train?

Methods in this category:
LoRa, QLoRA, (IA)3



Intuition for Re-Parameterizing the Model

Finetuning has a low intrinsic dimension, that is, the minimum number of parameters needed to be modified to 

reach satisfactory performance is not very large.

This means that we can reparameterize a subset of the original model parameters with low-dimensional proxy 

parameters, and just optimize the proxy.



What do we mean by intrinsic dimension?

● An objective function’s intrinsic dimension measures the minimum number of parameters needed to reach 

a satisfactory solution to the objective.

● Can also be thought of as the lowest dimensional subspace in which one can optimize the original objective 

function to within a certain level of approximation error.



What do we mean by intrinsic dimension?

● Suppose we have model parameters 𝜃𝐷

○ 𝐷 is the number of parameters.

● Instead of optimizing 𝜃𝐷, we could instead optimize a smaller set of parameters 𝜃𝑑 where 𝑑 ≪ 𝐷. 

● This is done through clever factorization:

○ 𝜃𝐷 = 𝜃0
𝐷 + 𝑃(𝜃𝑑) where 𝑃:ℝ𝑑 → ℝ𝐷

○ P is typically a linear projection: 𝜃𝐷 = 𝜃0
𝐷 + 𝜃𝑑𝑀

● If you are interested in this, there are a lot more details in the paper.

“Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning.” Aghajanyan et al. 2021.



LoRA: Low Rank Adaption

● Intuition: It’s not just the model weights that are low rank; updates to the model weights are also low-rank.

● LoRA freezes the pretrained model weights and injects trainable rank decomposition matrices into each 

layer.

● Like DiffPruning, we are learning a delta to apply to each weight. In the case of LoRA, this delta has been re-

paramaterized to be lower dimension than the original model parameters.

● In practice, LoRA only adapts the attention weights and keeps the rest of the Transformer as-is.

“LoRA: Low-Rank Adaptation of Large Language Models.” Hu et al. 2021.



(IA)3: Infused Adapter by Inhibiting and Amplifying Inner Activations

● Intended to be an improvement over LoRA
● Three goals:

○ must add or update as few parameters as possible to avoid incurring storage and memory costs
○ should achieve strong accuracy after training on only a few examples of a new task
○ must allow for mixed-task batches

● Main idea:
○ Rescale inner activations with lower-dimensional learned vectors, which are injected into the attention and feedforward 

modules

● Main differences from LoRA:
○ LoRA learns low-rank updates to the attention weights
○ (IA)3  learns injectable vectors.

“Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning.” Liu at al. 2022.



Advantages of Re-Paramaterization Methods

● These methods are faster to tune than standard full model finetuning.

● It is straight-forward to swap between tasks by swapping in and our just the tuned weights.

● Empirically, LoRA has been shown to be very effective on a variety of tasks.

● QLoRA (Quantized LoRA) is even more efficient than LoRA.

“QLoRA: Efficient Finetuning of Quantized LLMs.” 2023. https://arxiv.org/abs/2305.14314



Summary



Prefix Tuning

https://www.leewayhertz.com/parameter-efficient-fine-tuning/

 
 
       

   
  

   
 
   

  
   

 
 
 
 

 
 

 
 
 
 
  

 
  

 
 
 
 

 
  

 
   

  
 
   

 
 
 
   

 
  

 
   

  
 
   

 
 
 
   

 
  

 
   

  
 
   

 
 
 
   

     

           

 
  

 
 

 
  

 
 

 
  

 
 



Prompt Tuning
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Adapters
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LoRA
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Training Subset of Existing Parameters

● Manually chose what to tune

○ Just tune the last few layers

○ Just tune the bias terms (BitFit)

● Learn which parameters need to be tuned (DiffPruning)



Summary

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.



Results



If you have the resources, full fine-tuning tends to work the best.

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

PF: prefix tuning

FT: full fine-tuning

AP: adapter

LR: LoRA

This survey overall found:
Full fine-tuning >
LoRA >
Adapters >
Prefix Tuning >
Prompt Tuning 
In terms of performance.

Plots for many more tasks 
can be found in the paper.



What does memory usage look like?

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

FT: full fine-tuning

AP: adapter

LR: LoRA

BF: BitFit
Prompt tuning and prefix tuning not included because 
they use the same amount of memory as full fine-tuning



Can the methods be combined?

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

FT: BitFit

AP: adapter

PT: prompt tuning

Results on SST-2 
sentiment classification



Param-Efficient Finetuning 
Options Available to You



How can you use parameter-efficient tuning?

● OpenAI finetuning API

○ It is extremely likely they are using a version of one of the methods described.

○ Unfortunately, we can only rely on speculation.

● HuggingFace PEFT Library

○ LoRA, prefix tuning, prompt tuning, and (IA)3 all implemented.

○ Several different models available to be adapted.

https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples
https://github.com/huggingface/peft


RECAP: Solutions to Improve Efficiency

● Avoid finetuning entirely

○ In-context learning

● Parameter-efficient finetuning

● Multi-task finetuning → instruction finetuning
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