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Learning Objectives

Understand why and how to scale up large language models
Knows the basics of what happens behind the scenes of industry production scale LLM runs

Understand the benefits of scale with large language models
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Outline

e Why Scaling Up

e Which Language Model to Scale Up
e What Factors Matter in Scaling

e What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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Why Scaling Up

Almost guaranteed gains in downstream tasks

MNLI Accuracy on GLUE DEV MNLI Accuracy on GLUE DEV
93.0 924 92.2 92.1
017 921 C & 20 __a
92.0 o ccmceemm—=m—————= e 92.0 92.0 P
oA _-* 92.0 B -~
- - -
3o w02, p e 2 9%3," - #=T-NLRV5 XL 1.68
v 'y 7 i B
/ 91.8
g 900 i I -+-T-NLRVS s gy Selar
e
ge A -+-RoBERTa € 916 o
(.
Goao S -+-ELECTRa g L
,A L4
= = 914
g &0 % Megatron 2
o
280 Uy -+-DeBERTa ® s
I/ )
85.0 4
84.0 91.0
Base Large 138 1.58 1.68 3.98 5.48 20% 30% 40% 50% 70% 80% 90% 100%
Model Size Training Steps

Performance of Turing-NLR V5 on MNLI at different model sizes and pretraining steps [1]

e Larger models, better fine-tuning accuracy
e More pretraining steps, better downstream performances

72 e,
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Why Scaling Up

Mere than just better leaderboard entries
e Significant gains in many real production scenarios
o Name any existing Al product, likely it benefited from bigger LLMs
e Non-trivial gains from scaled up LLMs
o Very hard to achieve with more sophisticated, but smaller models
e Distillable gains for efficient serving
o Scaled up - Distill to smaller models better than pretraining smaller ones
® Deterministic gains
o Researchis risky and often not a “good business”
o Investing in scaling up gains are deterministic and low-risk.

; 22727, 77777
L
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Why Scaling Up

Mere than just better leaderboard entries
e Significant gains in many real production scenarios
o Name any existing Al product, likely it benefited from bigger LLMs
e Non-trivial gains from scaled up LLMs

1000

. . : : j"_T GPT-3 ’iVlegatmn-Turing
o Very hard to achieve with more sophisticated, but smaller models £ (1758) NLG (5308)
e Distillable gains for efficient serving g Megatron-4M
o Scaled up - Distill to smaller models better than pretraining smaller ones 5 il
® Deterministic gains =
o Researchis risky and often not a “good business” =
o Investing in scaling up gains are deterministic and low-risk. & .
() -Large
"é o (340M)g
ELMo
(94Mm)
0.01
2018 2019 2020 2021 2022

Growth of LLM parameter size as of 2022 [2]

L1 77

; Hi 77777
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8 CMU1-667 Fall

[2] Kharya. 2022. Using DeepSpeed a atron to Train Megatron-Turing NLG 5308, the World's Largest




Which Language Model: Architecture

Decoder or Encode-decoder?

Target: ABCDEFGH</s> Target: HI1 J KLMN O </s>
Pttt trttrrrtt
fO): Transformer Decoder Transformer Encoder Transformer Decoder
Pttt Pttt Pttt
Input: <s>S>ABCDEFGH Input:  <s>A B CDEFG</s> <s>HI J KLMNO
Encoder is out of consideration because
1. Encoder-decoder covers the functionality of encoder
2. Hard to do generation with encoder-only
i A,

CMU 1




Which Language Model: Pretraining Tasks

Auto-regressive (Causal) LM, Pre-fix (Non-Causal) LM or Denoising Masked-LM?

Causal Decoder Non-causal Decoder Encoder-Decoder
) o ) g
3 ) 3
3 5] 3
° N L - | = ©
3 5| g
5 2 N 5 A 5]
= o .
A — A
[} [+ [ ]
4 'U
3
=}
i am a causal decoder I am a NC decoder I am an  encoder decoder
Decoder Decoder Encoder Decoder

targets targets targets
May the force be with you} May the force|be with you | May be with you

Attention Masks and Pretraining Tasks of Different LLM Architectures [3].

). What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization? CM



Which Language Model: Empirical Studies

e N e N
Causal Decoder Full LM . .
(D) (FLM) No adaptation No Einctunine Evaluation used
L ) L ) for TO
(/) (T0-Eval)
) ( [ Non-Causal | L J y,
DNOH(;C&?;EE) PE;ﬁ;NBM MLM Adaptation
ecoder g 2 Y
& J & 4 o (NC_A) Y )
Multitask EleutherAl
s B N ( N . .
; Finet
Encoder-Decoder Masked LM LM Adaptation et L et
> (MT-F) (EAI-Eval)
(ED) (MLM) (LM-A)
\ Y, P L ) N > . ~
Architecture Objective Adaptation Fine-tuning Evaluation
Empirical Study Pipeline on Different Language Model Configurations [3].
177 A7

[3] Wang. 2022. What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization? CM U 1 1 667




Which Language Model: Empirical Studies

GPT Auto-Regressive Choose this Direct Zero-Shot LM Benchmark
3 s ) @ ) - ” = 5
Causal Decoder Full LM No adaptati )
(CD) (FLM) 0 adaptation No Finetuning Evaluation used
= J \ J fOI‘ TO
UniLM Non-Causal Not-Important (/) (TO-Eval)
N e @ )
Non-Causal Prefix LM Non—Causal. h g =
Decoder (ND) (PLM) MLM Adaptation Task Transfer LM Benchmark
& J & 4 o (NC_A) Y ( ) ( )
T5 Denoising Not-Important Multitask EleutherAl
( A D) o Y . .
Encoder-Decoder Masked LM LM Adaptation Finerining Lot Bt
& (MT-F) (EAI-Eval)
(ED) (MLM) (LM-A)
\ Y, P L ) N ~ ~ ~
Architecture Objective Adaptation Fine-tuning Evaluation

Empirical Study Pipeline on Different Language Model Configurations [3].
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Which Language Model: Empirical Studies

Experimental Settings

MODELS ARCHITECTURE
Decoder-only  Encoder-decoder

Parameters 4.8B 11.0B
Vocabulary 32,128
Positional embed. TS5 relative
Embedding dim. 4,096
Attention heads 64
Feedforward dim. 10,240
Activation GEGLU [Shazeer, 2020]
Layers 24 48
Tied embeddings True
Precision bfloat16

PRETRAINING  MULTITASK FINETUNING

Dataset C4 TO-Train
Steps 131,072 10,000
Batch size in tokens 1,282,048 1,310,720
Optimizer Adafactor(decay_rate=0.8)
LR schedule \/m fixed, 0.001
Dropout 0.0 0.1

z loss 0.0001

Precision bfloatl6

Table 1: Experimental Settings following T5 pretraining and TO finetuning configurations [3].

e Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?
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Which Language Model: Empirical Results

Performances in direct zero-shot, evaluated immediately after self-supervised pretraining, no finetuning.

EAI-EvAL TO-EvAL

Causal decoder 44.2 42.4
Non-causal decoder 43.5 41.8
Encoder-decoder 39.9 41.7
Random baseline 32.9 41.7

Table 1: Experimental Settings following T5 configurations [3].
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Which Language Model: Empirical Results

Performances after multi-task finetuning

TO-Eval Baselines
language I::\agsukae:e —— Random
0.65 MR MRl ¢ ED:MLM (1.3T) + ED:PLM (131B) [T5-LM]

ED:MLM (1.3T) + ED:PLM (131B) + ED:MTF (13B) [TO]
CD:FLM (168B)

Pretrained with LM

CD:FLM (168B) + CD:MTF (13B)
ND:PLM (168B) + ND:MTF (13B)
ED:PLM (168B) + ED:MTF (13B)

o

o

S
VN
v

o
o
19y
.
v

Pretrained with MLM
4 CD:MLM (168B) + CD:MTF (13B)
4 ND:MLM (168B) + ND:MTF (13B)
¢ ED:MLM (168B) + ED:MTF (13B)

o
o
S
V.
v

Median task score average (TO eval)
o
N
[6)]

Performances after finetuning on T0 training tasks [3]
0.40 . . e Architecture: Encoder-Decoder (ED), Causal-Decoder (CD), Non-Casual-Decoder (ND)
e Task: Full (Auto-regressive) LM (FLM), Prefix-LM (PLM), Masked-LM (MLM)

77777 L

U 11-667 Fall 2024

cM




Which Language Model: Empirical Results

Performances after multi-task finetuning

TO-Eval Baselines
language I::\agsukae:e —— Random
0.65 MR MRl ¢ ED:MLM (1.3T) + ED:PLM (131B) [T5-LM]

ED:MLM (1.3T) + ED:PLM (131B) + ED:MTF (13B) [TO]
CD:FLM (168B)

Pretrained with LM

CD:FLM (168B) + CD:MTF (13B)
ND:PLM (168B) + ND:MTF (13B)
ED:PLM (168B) + ED:MTF (13B)

o

o

S
VN
v

o
o
19y
.
v

Pretrained with MLM
4 CD:MLM (168B) + CD:MTF (13B)
4 ND:MLM (168B) + ND:MTF (13B)
¢ ED:MLM (168B) + ED:MTF (13B)

o
o
S
V.
v

Median task score average (TO eval)
o
N
[6)]

Performances after finetuning on T0 training tasks [3]
0.40 . . e Architecture: Encoder-Decoder (ED), Causal-Decoder (CD), Non-Casual-Decoder (ND)
e Task: Full (Auto-regressive) LM (FLM), Prefix-LM (PLM), Masked-LM (MLM)

77777 L
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Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models
e Empirical results: better generalization right after pretraining, no multi-task supervised learning needed
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Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models
e Empirical results: better generalization right after pretraining, no multi-task supervised learning needed

Easy to scale up
e More training signals per sequence: 100% versus 15%

targets targets
May the force be with you} May be with you

e (onverges faster [empirical observations]
e More stable [hands-on observations]




Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models
e Empirical results: better generalization right after pretraining, no multi-task supervised learning needed

Easy to scale up
e More training signals per sequence: 100% versus 15%

targets targets
May the force be with you} May be with you

e (onverges faster [empirical observations]
e More stable [hands-on observations]

OpenAl's choice
e Thereis perhaps only one seat for the largest LLM.
e GPT-3 won at that certain point, and took that niche
e Everyone else followed, no evidence to gamble with $$$$$$$
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Outline

e Why Scaling Up

e Which Language Model to Scale Up
e What Factors Matter in Scaling

e What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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Scaling Factors

Many factors in configuring a scaled up pretraining run for Transformer Decoder + Autoregressive LM
e Model size (parameter counts)

Pretraining dataset size

Pretraining compute (FLOPs or TPU/GPU hours)

Network shape (Parameters allocations)

Effective batch size

Learning rate & learning rate schedular

Context length

CMU 11 667 F



Scaling Factors

Many factors in configuring a scaled up pretraining run for Transformer Decoder + Autoregressive LM
e Model size (parameter counts)

Learning rate & learning rate schedular

e Pretraining dataset size :
o Main factors to study
e Pretraining compute (FLOPs or TPU/GPU hours)
e Network shape (Parameters allocations) Hyper-parameters with rule of thumb
) Effective batch size 1. Batch size determined by GPU memory
° 2. Try biggest LR before blowing up
[ J

111177 Z /A7
1177777777777 777
A ZI7 S

U 11-667 Fall 2024
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Scaling Law Study: Setup

Empirically study the relationship between various factors to language model performances [4]
e Model: GPT-style, auto-regressive loss, maximum 1.5 billion non-embedding parameters
e Pretraining data: WebText2, harvest from Reddit out links, at max 23 billion tokens
e Metric: language modeling loss on testing data

CMU 11 667 F



Scaling Law Study: Observations

Network shape (allocation of parameters at different parts) does not matter as much

10%

—*— Nhead =8

8% | —® dmodel/Nhead = 64
6%
4%
2%
0% —————o

10° 10!

Feed-Forward Ratio (di / dmodel)
50M Parameters

Loss Increase

Language model loss changes with different network shape configurations [4].

e Aslong as the network shape is in a general sweet range, it does not impact performance much

77 7,
L 77
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Scaling Law Study: Observations

Network shape (allocation of parameters at different parts) does not matter as much

10%

—*— Nhead =8 —e— 50M Params

8% | —* dmodel/Nhead = 64 —%— 274M Params
% —+— 1.5B Params
© 5 :
o 6% A wide range of architectures
g achieve similar performance
= 4%
2
3 2%

0% s

100 10! 10! 102 103
Feed-Forward Ratio (di / dmodel)

50M Parameters Aspect Ratio (dmod / Neyer)

Language model loss changes with different network shape configurations [4].

e Aslong as the network shape is in a general sweet range, it does not impact performance much

77 7,
L 77
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Scaling Law Study: Observations

Network shape (allocation of parameters at different parts) does not matter as much

10%

= DNhead =8 —e— 50M Params —o— dmodel = 256
8% | —* dmodel/Nhead = 64 —— 274M Params —— drodel = 512
% —+— 1.5B Params —¥— diodel = 1024
E 6% A wide range of architectures
] achieve similar performance "
£ 4% I 22% additional compute
2 compensates for 1% loss increase
o 2%
-
—_—
0% | T

10 10! 10! 102 103 10! 102
Feed-Forward Ratio (di / dmodel) Attention Head Dimension (dmodel / Nhead)

50M Parameters Aspect Ratio (Omogel / Nayer) 25M Parameters

Language model loss changes with different network shape configurations [4].

e Aslong as the network shape is in a general sweet range, it does not impact performance much

7 777 7,
L 77
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Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss

w 5
(7]
94
e
3
F 3
L = (Cppin/2.3 - 108)~0:050
2 . ; . :
109 10-7 10-% 103 10~! 10!

Compute
PF-days, non-embedding

Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

777 7

F L 7
117 77 77 /
I 77

CMU 11-667 Fall 2024




Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss

4.2
—— L=(D/5.4-1013)70.095
3.9
S
® 3.3
F 3
3.0
L = (Crnin/2.3 - 108)~0.050
2 , : . . 2.7 : .
10 1077 10°% 1073 107! 10! 108 100
Compute Dataset Size
PF-days, non-embedding tokens

Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

7727 777 77
7 7 77 77 /
L ZrI
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Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss

4.2

—— L=(D/5.4-1013)70:095 | 5.6 —— L=(N/8.8-103)70:076
3.9
4.8
2 36
- 4.0
S
‘%‘ 3.3 3.9
F 3
3.0
2.4
L = (Cmin/2.3 - 108)~0.050
2 . . . . 2.7 . . . . .
10 1077 10°% 1073 107! 10! 108 100 105 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

caling Laws for Neural Language Models.

LA
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Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss

4.2
—— L=(D/5.4-103)700% | 5.6 —— L=(N/8.8-1013)7007¢
- 3.9 id
3 36 Accurate Empirical Fits
o : 4.0
4
i
8 3.3 32
F 3
3.0 Exponential Scale 24
L= (Cmin/2_3.108)—0,050 l :
2 . . . . 2.7 ' . . . .
100 10-7 107> 10-%® 10°' 10! 108 10° 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

e Linear increasement of language modeling accuracy requires exponential scaling
e Three factors need to scale jointly to reach target model performance improvements

i L7
L 7777

U 11-667 Fall 2024
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Scaling Law Study: Observations

Network parameters matter more than embedding parameters

7 \‘\‘\\’_’_‘_‘
6
5 5
3 7
Sy —e— (0 Layer Sy
= —e— 1 Layer \\ = —— 1 Layer
@ —e— 2 Layers @ —e— 2 Layers
B B
31 —— 3 Layers ks 3|1 —— 3 Layers \
—e— 6 Layers —e— 6 Layers \
> 6 Layers > 6 Layers
2 . . . . 2 - . . . . - -
106 107 108 10° 103 104 10° 106 107 108 10°
Parameters (with embedding) Parameters (non-embedding)

Scaling law with network parameter counts include (left) and exclude (right) embeddings [4].

it L = 27T
I —, ;lﬂi

LI A P g
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Scaling Law Study: Observations

How large the pretraining corpus should be given target pretraining steps in tokens?
e large corpus leads to fewer repetitions (epochs)

Return on compute when repeating

3.41 1o

3.21 f 6

3.0 |

N
©
\

§—
Q9
—————— @ == =
o
o
<}
) §

2.6

Final test loss

2.4

2.21 Up to = 4 epochs ! Rapidly diminishing
repeating is almost ! returns for
as good as new data 1 1_more repetitions

2.0

12B 48B 120B 480B 1.2T
(1) (4) (10) (40)  (100)
Tokens
(Epochs)

e % Models trained -
Loss assuming repeated data is worth the same as new data =
Loss predicted by our data-constrained scaling laws -

Scaling law with data repetitions [5].

4 727 7
[5] Muennighoff. 2023. Scaling Data-Constrained Language Models. CM U 1 1 _667 Fa” 2 4




Scaling Law Study: Observations

Language modeling loss correlates well with downstream performances

TriviaQA NaturalQuestions
2.2
—— LLaMA 7B 35 1
2.1 —— LlLaMA 13B g e - Ay 2 i
)]
0 2.0 —— LLaMA 33B -
2 LLaMA65B | & 2
o 1. — i
L= 3 20
£18 &) 15 4
o
= 1.7 10 -
1.6 1 5 4
1,5 T T T T T T T T 20 T T T T T 0 T T T T T
0 200 400 600 800 1000 1200 1400 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Billion of tokens Billion of tokens Billion of tokens

Pretraining loss and downstream zero-shot accuracy during LLaMA pretraining steps [6]

77
............
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Scaling Law: Recap

Scaling law: A clear mapping from scaling factors to language modeling accuracy
e Given the same model family, data distribution, techniques, etc.
e [Exponential scaling law between data size, model size, and computing FLOPs

277 77 Z & 777 %
117 7 = 7
L7 7 I I IR I T F T 7

11-667 Fall 2
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Scaling Law: Recap

Sealing law: A clear mapping from scaling factors to language modeling accuracy
e Given the same model family, data distribution, techniques, etc.
e Exponential scaling law between data size, model size, and computing FLOPs

What does this mean?
e More predictable bet on scaling up?

— Using observations at smaller scale to determine
e Deterministic but diminishing return?

— Exponential cost, linear accuracy gains

CMU 11-667 Fall




. Please download and install the a
SlIdO Slido app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.
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Outline

e Why Scaling Up

e Which Language Model to Scale Up
e What Factors Matter in Scaling

e What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations
e F[.g,One million H100 hours, pretrain the best LLaMA style LLM
e (Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)

CMU 11667 ST




What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations
e F[.g,One million H100 hours, pretrain the best LLaMA style LLM
e (Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)
A common question when scaling up
e (Computing budget is the biggest constraint
e No room for exploration at target scale
e Only one scaled up pretraining run allowed, both budget-wise and time-wise.
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What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations
e F[.g,One million H100 hours, pretrain the best LLaMA style LLM
e (Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)
A common question when scaling up
e (Computing budget is the biggest constraint
e No room for exploration at target scale
e Only one scaled up pretraining run allowed, both budget-wise and time-wise.

Solution: Scaling law
e Use many experiments at small scale to establish the scaling law
e Use scaling Law to predict best configuration at target compute

CMU 11667 Fén 2024



Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]
1. Pretrain different sized models to near converge and track loss
2. Record best (model size, data size) at each FLOP.
3. Estimate the scaling law
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]
1. Pretrain different sized models to near converge and track loss
2. Record best (model size, data size) at each FLOP.
3. Estimate the scaling law

Parameters

107 10 10" 10 10** 10%
FLOPS

Pretraining loss of varying model (left), and the identified optimal parameters (mid) and tokens (right) at different FLOPS [6]

/ 77
11 77
i 7,
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]
1. Pretrain different sized models to near converge and track loss
2. Record best (model size, data size) at each FLOP.
3. Estimate the scaling law

1T 1.5T
1012
100B 678
4 101 wer!
g 2 gor?!
© 10B . o 3
€ 1% X
-
© Y LY F 1010 >~
o o
1.08 .
o./ ,.‘.0
/’ ¥
p 9 5
100M W0 [
1017 10  10° 102 102! 1022 10%7 10 102 1023 10% 10%7 1020 102 1023 102
FLOPS FLOPs FLOPs

Pretraining loss of varying model (left), and the identified optimal parameters (mid) and tokens (right) at different FLOPS [6]
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]
1. Pretrain different sized models to near converge and track loss
2. Record best (model size, data size) at each FLOP.
3. Estimate the scaling law

6.0 Ll 15T

5:5 1012

>0 2.58

2. 1008 678 .
") %5 i ‘0"\0‘\ .4
wn [ 1011 \ 'll
04.0 & o J i Q‘e ""'I
4+ 10B o c\\ Pl o \ﬂ
g3‘5 \ -500M g ‘06\ .;r. g \:b .
= ' F250M O o\ 7y 2 W
©3.0 \ © \p - / 1010 Sca >
= : N o . % oW
\ 1.08 o / /’
N -75M o L .
25 N 7 A
. . . . 109 —<
Optimal Configurations 100M }
2.0
107 108 101° 102 102 1022 107 1019 102! 1023 102 107 109 102! 1023 1025
FLOPS FLOPs FLOPs

Pretraining loss of varying model (left), and the identified optimal parameters (mid) and tokens (right) at different FLOPS [6]
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1
3. Estimate the scaling law

CMU




Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1
3. Estimate the scaling law

3.2
3.0 a0
828 6e18 > e 0
3 lelg . P2ge! 1 g
.gz 6 —® 3el9 ‘\:% =
£ e 6eld 4Bl
= 4 —® le20 kh:é% o
—o— 3e20
—o— 6e20 \a—_*"
22 _e 1e21 y
—— 3e2l
2.0
100M 300M 1B 3B 6B 308

Parameters

Pretraining loss of varying model sizes at varying FLOPs (left), and the identified optimal parameters (mid) and tokens (right) [6]
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1
3. Estimate the scaling law

10T
3.2 7
141
3.0 e | 1T
i S v 100B ¢35
0 2.8 6el8 # 1Y)
o JE 0 -
= lel9 " _'L/ 114 3 w 1008 pe
o ¢ ) @ 10B S 2
S26 O 3el9 . A {% . g o
@ —0— 6el9 ) E ./a = 1BE ,.'
Foq 8 1620 ) S % 1B ® ”®
[P 25 o
—e— 6e20 \a—_f" & 15 L
22 _o— 1e21 00M g
—o— 3e2l
2.0 100M
100M 300M 1B 3B 6B 308 10%7 10%° 102t 1023 102° 10%7 1010 102! 1023 102°
Parameters FLOPs FLOPs

Pretraining loss of varying model sizes at varying FLOPs (left), and the identified optimal parameters (mid) and tokens (right) [6]
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1
3. Estimate the scaling law

10T
3.2 1T P
Optimal 14T
>0 =y P int =3
_/ , (o] S 100B 638 ,/,, \"\o(\ ////
@ oY 7 R
A28 6els » o% N .
ks 1619 e 0/ B oo 6\0\'\ u 1008 @6 ./9
9]

£, —o 3elo ‘3& £ qAQ‘G o g \,.zs* P
c \ P o
§ e eel ) i 2 o®® Te O e
F,, & le20 - 1B O el ad

7 —e— 3e20 OQ\\ & oY -

—e— 620 w‘ﬂ S & B
22 _¢ 1e21 00M i
—o— 3e2l
2.0 100M
100M 300M 1B 3B 6B 308 107 1010 102! 1023 1025 7107 101° 102 1023 10%
Parameters FLOPs FLOPs

Pretraining loss of varying model sizes at varying FLOPs (left), and the identified optimal parameters (mid) and tokens (right) [6]
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #3: Using data points collected from previous two approaches and fix a parametric
functions

Model size

100B IsoLoss contours

40B

10B

=
@

—— Efficient frontier
e Empirical data
IsoFLOPs slice

1023 Gopher
budget

7 1021 1022

Training FLOPs

5.00

4.00

[7)]
3 3.00
-

2.00

IsoFLOPs slices

o

,
,' Train. FLOPs
Q) // /l 6e+18
AWML le+19

14 7/ 7
& 2 M| [ === 3e+19
5 r 4 -=- 6e+19

Qoo (Doooéf wil 1,1 /7
t_ 90g00.0® =1 w7 it === 1le+20
NS Tlatle” | LTl === 3e+20

&g\\\ ...//, // // //,
WONES % 27,07 —=- 6e+20

NSONRE L >+ <L AR ggte

N e T T -t let21

NS R 0’0~ ‘
\\\\::%::.c St 7 === 3e+21
\\\~___‘." -—- Gopher

\\\\N
100M 1B 10B 40B
Model size

Fitted parametric function of (model size, FLOPs)—Loss using data from approach one (left) and two (right) [6]
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Scaling Configuration: Estimated Optimal Configurations

Applying Empirical Approach #1 to common parameter settings

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5  11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Examples of estimated scaling configurations at different model sizes [3].

Back-of-envelop calculation: 1e+24 FLOPs = 1 Million A100 Hours/40K A100 Days.
e The one used to pretrain LLaMA-65B
e 512 A100 for 3 months




Scaling Configuration: Performances

Chinchilla: Use scaling law predicted configurations at the same FLOPs of Gopher
e Chinchilla (predicted optimal): 70B parameters and 1.4T (4X) Tokens
e Gopher (guessed setup): 280B (4X) parameters and 300B Tokens

0.10

0.08

0.06

0.04

0.02

0.00

Various subsets of the Pile

Chinchilla’s Language model accuracy gains on different corpora from the Pile [6]
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Scaling Configuration: Performances

Universal improvements on various downstream scenarios
e MMLU, BigBench, Close book QA, etc.

Method Chinchilla Gopher GPT-3

0-shot 16.6% 10.1% 14.6%
Natural Questions (dev) 5-shot 31.5% 24.5% -
64-shot 35.5% 28.2% 29.9%

0-shot 67.0% 52.8% 64.3%
TriviaQA (unfiltered, test)  5-shot 73.2% 63.6% -
64-shot 72.3% 61.3% 71.2%

0-shot 55.4% 43.5% -
TriviaQA (filtered, dev) 5-shot 64.1% 57.0% -
64-shot 64.6% 57.2% -

Close book QA results [3].

7777, (R /
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Scaling Configuration: Remarks

Scaling law universally exists, but the specific functions differ

4

1T yis Many factors can impact the scaling function:
,,;\f’ e Data Properties/Distributions
_— /- —— Approach 1 e Transformer Architectures
— Approach 2 e  Pretraining Tasks
—— Approach 3 . .
4 - *  Preprocessing Details
1] --- Kaplan et al (2020)
g 108
E ¥  Chinchilla (70B) There is no universal scaling function
£ 1.08 ¥¢  Gopher (280B)
% GPT-3(175B)
Y¢ Megatron-Turing NLG (530B)
100M
7/
108w 1019 102 103 105

FLOPs

Scaling law predictions in different settings [7]

11111777777 77
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Scaling Up Pipeline

The current development pipeline of scaling up LLM pretraining, e.g., used by GPT-4, PaLM-2, and many more

Commodity Scale Enormous Scale

(Widely Available) I (Privileged Access)
|
|
Modeling Research Scaling Trials I Scaling Law Scaling Up
(Develop the Best |f—————® (Verify Robustness ——— (Estimate Scaling — (Million/Billion Dollar
Pretraining Method) with Bigger Scales) 1 Function with Runs) Bets)
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Scaling Up Pipeline

The current development pipeline of scaling up LLM pretraining, e.g., used by GPT-4, PaLM-2, and many more

Commodity Scale Enormous Scale

(Widely Available) I (Privileged Access)
|
I
Modeling Research Scaling Trials | Scaling Law Scaling Up
(Develop the Best |f—————® (Verify Robustness ——— (Estimate Scaling — (Million/Billion Dollar
Pretraining Method) with Bigger Scales) | Function with Runs) Bets)
|
I
Research . Production?
. Fast and many iterations X . One scaling up run
. Build new knowledge & understanding ; . Build a better product: LLM
. Can/Should take risks . . Better not screw up
. No guaranteed outcome : . Clear and short-term deliverables
. Talent-heavy ! . Resource-heavy

7 s, 7T /
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. Please download and install the a
SlIdO Slido app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.
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Outline

e Why Scaling Up

e Which Language Model to Scale Up
e What Factors Matter in Scaling

e What Configurations to Scale Up

e Capabilities Emerged from Scaling Up

CMU 11 667 Fall 20




Emergent Abilities: Observations

—&A— Chinchilla —¢— Gopher = -- Random

Training compute vs. WikiText103 ppl vs. WikiText103 ppl vs.

w ., modelsize _, training compute _ model size

& D & B & B

— 1023 g 7 g 7

m % 10 % 10

2 1022 5 )

= E 15 B 15

& 1021 = =

g 10 £ 20 = 20

1B 10B 100B 1020 1022 1024 1B 10B 100B
Model parameters Training FLOPs Model parameters

Scaling Law of FLOPs, Model Sizes, and Language Model Accuracy [8]

77 77

[8] Wei. 2022. Emergent Abilities of Large Language Models.




Emergent Abilities: Observations

—&A— Chinchilla —¢— Gopher = -- Random

Training compute vs. WikiText103 ppl vs. WikiText103 ppl vs.
w ., modelsize _, training compute _ model size
% 10 & 5 & 5
— 1023 g 7 g 7
m % 10 % 10
2 1022 5 )
= E 15 E 15
T 1021 = =
; 10 g 20 g 20
1B 10B 100B 1020 1022 1024 1B 10B 100B
Model parameters Training FLOPs Model parameters
Scaling Law of FLOPs, Model Sizes, and Language Model Accuracy [8]
MMLU MMLU MMLU
— 100 100
80 = 80
§ 60 ? 60
2 40 = OF. g
8 20 S 20
<% 0 0 ‘ < 0 L ‘
1020 1022 1024 1B 10B 100B 2015 10 7 5
Training FLOPs Model parameters WikiText103 ppl

Zero-shot ability on MMLU suddenly emerges at a certain scale [8]

77 77

[8] Wei. 2022. Emergent Abilities of Large Language Models.




Emergent Abilities: Observations

—&A— Chinchilla —¢— Gopher = -- Random
Training compute vs. WikiText103 ppl vs. WikiText103 ppl vs.
model size _. training compute _ model size
Ao 1024 g 5 a,
3 o a
— 1023 g 7 g 7
o % 10 % 10
Z 1022 3 &
g E15 B 15
& 1021 b=} b=
& 10 ‘ = 20 = 20
1B 10B 100B 1020 1022 1024 1B 10B 100B
Model parameters Training FLOPs Model parameters
Scaling Law of FLOPs, Model Sizes, and Language Model Accuracy [8]
MMLU MMLU MMLU
—~ 100 —~100 100
s 80 = 80 = 80
§ 60 ? 60 ? 60
2 40 5 40 i = = OF. g
8 20 S 20 S 20
<% 0 < 0 < 0 L
1020 1022 1024 1B 10B 100B 2015 10 7 5
Training FLOPs Model parameters WikiText103 ppl

Zero-shot ability on MMLU suddenly emerges at a certain scale [8]

f Large Language Models.

Emergent Ability: an ability not acquired
at small scales (i.e., random performance)
but suddenly processed at larger scales
[8].

e Sharpness: from random to
reasonable performance right at a
certain scale

e Unpredictability: unclear mapping
between model abilities at small
and large scales

HiHE 77777
L
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Emergent Abilities: Observations

Emergent scale

Train. FLOPs Params. Model

Few-shot prompting abilities

¢ Addition/subtraction (3 digit) 2.3E+22 13B GPT-3

¢ Addition/subtraction (4-5 digit) 3.1E+23 175B

¢ MMLU Benchmark (57 topic avg. 3.1E+23 175B GPT-3 H ;

¢ Toxicity classiﬁcatiofl (CivilComm)ents) 1.3E+22 7.1B Gopher Abl | |t| €s eme rge at d Iffe re nt SCd |eS

e Truthfulness (Truthful QA) 5.0E+423 280B 1 i f

e MMLU Benchmark (26 topics) 5.0E+23 280B b Hard to map thelr CompleX|ty Wlth

* Grounded conceptual mappings 3.1E+23 175B GPT-3 eme rge nt SCa | e

¢ MMLU Benchmark (30 topics) 5.0E+23 70B  Chinchilla . .

* Word in Context (WiC) benchmark 2.5E4+24  540B  PalLM e Should be determined by various factors
¢ Many BIG-Bench tasks (see Appendix E) Many Many Many . .
F————— o Not clear which factors and their
¢ Instruction following (finetuning) 1.3E+23 68B FLAN i

e Scratchpad: 8-digit addition (finetuning) 8.9E+19 40M LaMDA ! mﬂ uences

e Using open-book knowledge for fact checking 1.3E+422 7.1B Gopher

¢ Chain of thought: Math word problems 1.3E+23 68B LaMDA

e Chain of thought: StrategyQA 2.9E+423 62B PalLM

¢ Differentiable search index 3.3E+22 11B T5

e Self-consistency decoding 1.3E+423 68B LaMDA

e Leveraging explanations in prompting 5.0E+23 280B Gopher

¢ Least-to-most prompting 3.1E+23 175B GPT-3

e Zero-shot chain of thought reasoning 3.1E+23 175B GPT-3

* Calibration via P(True) 2.6E+423 52B  Anthropic

Table 3: Abilities and the scale when models acquired them [8].

[8] Wei. 2022. Emergent Abilities of Large Langua




Emergent Abilities: Counter Arguments

“‘Emergentness” an artifact of exponential metric?
e FE.g:Answer Exact Match: all tokens must be correct to be 1

1.

Accuracy
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Performance of GPT-3 when evaluated with Exponential (Left) and Continuous
(Right) Metrics [9]
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Emergent Abilities: Counter Arguments

“‘Emergentness” an artifact of exponential metric?

accuracy

alignment_score

average
average_log_probability
avg_acc

bias_level

bleu

bleurt

bleurt_diff

combined_bias

correct

correct_prob_mass
custom_score
difference_score
exact_str_match

fl

fairness

full

gender_bias_score
gender_minority_bias_score
gender_minority_stereotype_score
gender_stereotype_score
log10_p_dev

log_likelihood

macro_f1
main_words_match
mean_accuracy
multiple_choice_grade
normalized_aggregate_score
numeric_match_with_0_1_relative_error
overall

overall gender bias
overall_alpha_avg
overall_difference
pair-wise-accuracy
relative_score

rougeLsum

sequence_f1
targets_reached

Metric
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Emergence score for tasks using different metrics in BIG-Bench [9]




Emergent Abilities: Counter Arguments

“‘Emergentness” an artifact of exponential metric?

accuracy
alignment_score

average
average_log_probability
avg_acc

bias_level

bleu

bleurt

bleurt_diff

combined_bias

correct

correct_prob_mass
custom_score
difference_score
exact_str_match

fl

fairness

full

gender_bias_score
gender_minority_bias_score
gender_minority_stereotype_score
gender_stereotype_score
log10_p_dev

log_likelihood

macro_f1
main_words_match

Metric

mean_accuracy
multiple_choice_grade
normalized_aggregate_score
numeric_match_with_0_1_relative_error
overall

overall gender bias
overall_alpha_avg
overall_difference
pair-wise-accuracy
relative_score

rougeLsum

sequence_f1
targets_reached
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Exact String Match
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Emergence Score (Defined in Srivastava et al. 2022) Over All BIG-Bench Tasks

Emergence score for tasks using different metrics in BIG-Bench [9]

[9] Shaeffer. 2023. Are Emergent Abilities of Large Lar

Observations:

* Emergentness observed on 5/39 metrics

*  These metrics are exponential factors of a
more fine-grained prediction

However, user experiences are non-linear
*  Pick the right choice to score

*  Generate a code that can execute

* Generate a coherent paragraph

Incremental increasement of real-world
systems leads to emergent usage too

7 A7 77
G 7 A A 27
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Emergent Abilities: Remarks

Many of these abilities are what make LLMs great and full of potential
e /ero-shot task solving, Instruction Following, Tool utilization

Open World A Few Companies
Modeling Research Scaling Trials Scaling Law Scaling Up
(Develop the best ———— (Verify Robustness with (Estimate Scaling [ (Million/Billion
Pretraining Method) bigger scales) Function with Runs) Dollar Bets)

CMU 11-667 Fall 2024



Emergent Abilities: Remarks

Many of these abilities are what make LLMs great and full of potential
e /ero-shot task solving, Instruction Following, Tool utilization

Open World A Few Companies
Modeling Research Scaling Trials Scaling Law Scaling Up
(Develop the best ———— (Verify Robustness with (Estimate Scaling [ (Million/Billion
Pretraining Method) bigger scales) Function with Runs) Dollar Bets)

Yet they are often acquired at scales not accessible to majority of the community
e Monopoly of technology/knowledge: Only a few places can do it
e Huge burden for scientific approaches: Infeasible to conduct scientific experiments at large scale

177 77,
7’ -
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CMU 11-667 Fall 2024




Scaling Law: Summary

Why Scaling Up
o Predictable benefits in nearly all scenarios
Which Language Model to Scale Up
o Benefits of decoder models
What Factors Matter in Scaling
o Strong mapping from compute, model size, and pretraining data size to language model
performances
What Configurations to Scale Up
o  Establish scaling law with small scale explorations, scaling up based on scaling law
predictions
Capabilities Emerged from Scaling Up
o Lots of unknowns and challenges!
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. Please download and install the a
SlIdO Slido app on all computers you use ~n‘

Audience Q&A

@ Start presenting to display the audience questions on this slide.
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