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Daphne Ippolito and Chenyan Xiong
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Interpretation of Pretrained 
Language Models

Large Language Models: Methods and Applications
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Learning Objectives

Acquire some understanding of how language models work in various scenarios

Obtain an overview of recent interpretability techniques

Build intuitions on the potential inner works of large language models
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Outline
1. What is captured in BERT?

2. Why pretrained models generalize?

3. What does in-context learning do?
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Outline
1. What is captured in BERT?

○ Attention patterns

○ Probing capture capabilities in representations

2. Why pretrained models generalize?

3. What does in-context learning do?
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BERT Attention Patterns

●  
 

 

 

 

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Stats

Average Entropy of 𝛼_𝑖𝑗 : 

Entropy of BERT Attention Distributions [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Stats

High entropy heads in lower layers:
• Bag-of-words alike mechanism

Entropy of BERT Attention Distributions [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Stats

Lower entropy in middle layers:
Start forming certain patterns?

Entropy of BERT Attention Distributions [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Stats

Entropy of BERT Attention Distributions [1]

Rising entropy in deep layers:
More global information?

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Common Patterns

Common Pattern 1: Broad attention

• Neural networks are hard to interpret
• Various stuffs mixed together, hard to tell

Attend Broadly (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Common Patterns

Common Pattern 2: Attend to next token

• Reverse RNN style
• Learned positional relation in pretraining

Attend to Next (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Common Patterns

Common Pattern 3: Attend to [SEP] and “.”

• Centralizing attention to specific tokens
• Effect unclear

Some consider it a “none” operation
Some consider it as an information hub
Maybe a mix of both, at different heads

Attend to [SEP] and punctuations  (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Linguistic Examples

Objects Attend to their Verbs (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Linguistic Examples

Noun Modifiers Attend to their Noun (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Summaries
Many language phenomena are captured somewhere in the pretrained parameters

1. Some attention head corresponds to linguistic relations
2. More captured in pretraining, may not change much in fine-tuning



18 CMU 11-667 Fall 2024CMU 11-667 Fall 202418 CMU 11-667 Fall 2024

BERT Attention Patterns: Summaries
Many language phenomena are captured somewhere in the pretrained parameters

1. Some attention head corresponds to linguistic relations
2. More captured in pretraining, may not change much in fine-tuning

Practical Implications:
1. Attention weights reflect the importance perceived by language models
2. An effective way to gather feedback from LLMs, e.g., to train retrievers in RAG
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Outline
1. What is captured in BERT?

○ Attention patterns

○ Probing capture capabilities in representations

2. Why pretrained models generalize?

3. What does in-context learning do?



20 CMU 11-667 Fall 2024CMU 11-667 Fall 202420 CMU 11-667 Fall 2024

Probing Pretraining Representations

Probing what is stored in the representations of pretrained models

Edge Probing Technique [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019
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Probing Pretraining Representations

 

Representa-ti
ons as static 

features

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

Edge Probing Technique [2]
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Probing Pretraining Representations

 Simple 
classification 

to target 
labels

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

Edge Probing Technique [2]
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Probing Pretraining Representations

 

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

Edge Probing Technique [2]
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Probing Pretraining Representations

 

Edge Probing Technique [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019
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Probing Pretraining Representations: Probing Tasks

Task Description Type

Part-of-Speech Is the token a verb, noun, adj, etc. Syntactic

Constituent Labeling Is the span a noun phrase, verb phrase, etc. Syntactic

Dependency Labeling Label the functional relationship between tokens, e.g. 
subject-object?

Syntactic

Named Entity 
Labeling

Classify the entity type of a span, e.g., person, location, etc. Syntactic/Semantic

Semantic Role 
Labeling

Label the predicate-augment structure of a sentence Semantic

Coreference Determine the reference of mentions to entities Semantic

Semantic Proto-Role Classifier the detailed role of predicate-augment Semantic

Relation Classification Predict real-world relations between entities Semantic/Knowledge

Example Language Tasks to Probe BERT [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019
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Probing Pretraining Representations: Probing Tasks

Overall Probing Results [2]

Probing Task GPT-1 
(base)

BERT 
(base)

BERT 
(Large
)

Part-of-Speech 95.0 96.7 96.9
Constituent Labeling 84.6 86.7 87.0
Dependency Labeling 94.1 85.1 95.4
Named Entity Labeling 92.5 96.2 96.5
Semantic Role Labeling 89.7 91.3 92.3
Coreference 86.3 90.2 91.4
Semantic Proto-Role 83.1 86.1 85.8
Relation Classification 81.0 82.0 82.4
Macro Average 88.3 89.3 91.0

All very good numbers:

The pretrained representations convey 
syntactic and sematic information

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.
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Probing Pretraining Representations: Across Layers

 
Part-of-Speech

Constituent Labeling

Dependency Labeling

Named Entity Labeling

Semantic Role Labeling

Coreference

Semantic Proto-Role 

Relation Classification

 

Layer l

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.

Edge Probing Results of BERT Large [3].
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Probing Pretraining Representations: Across Layers

Edge Probing Results of BERT Large [3].

Different tasks are tackled at different 
layers

• Syntactic tasks at lower layers
• Semantic/Knowledge tasks at higher 

ones

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.

Part-of-Speech

Constituent Labeling

Dependency Labeling

Named Entity Labeling

Semantic Role Labeling

Coreference

Semantic Proto-Role 

Relation Classification

Layer l
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Probing Pretraining Representations: Across Training Steps

Linguistics Task Probing at RoBERTa Pretraining Steps [4].

Example Linguistic Tasks:

• Part-of-Speech
• Named Entity Labeling
• Syntactic Chunking

0k          200k       400k        600k        800k        1M   

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.
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Probing Pretraining Representations: Across Training Steps

Linguistics Task Probing at RoBERTa Pretraining Steps [4].

Example Factual/Commonsense Tasks:

• SQuAD
• ConceptNet
• Google Relation Extraction

0k          200k       400k        600k        800k        1M   

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.
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Probing Pretraining Representations: Across Training Steps

Reasoning Task Probing at RoBERTa 
Pretraining Steps [4].

Example Reasoning Tasks:

• Taxonomy Conjunction
• Multi-Hop Composition
• Object Comparison

0k          200k       400k        600k        800k        1M   

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.
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Probing Pretraining Representations: Across Training Steps

Probing at Pretraining steps in Linguistic (left), Factual/Commonsense (middle), and Reasoning (right) tasks [4]

● Capturing tasks at different conceptual difficulty at different rate

● Emergent improvements

● Certain tasks require certain scale
[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.
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Probing Pretraining Representations: Summary
From the observatory point of view:
● Some attention patterns are intuitive
● Pretrained representations convey strong language information
● Different tasks are captured at different layers and different steps
● And the conceptual difficulty of tasks aligns with where & when they are captured
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Probing Pretraining Representations: Summary
●  
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Probing Pretraining Representations: Summary
●  
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Outline
1. What is captured in BERT?

2. Why pretrained models generalize?
○ Loss landscapes

○ Implicit bias of language models

3. What does in-context learning do?
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Understand Generation Ability: Overview
Why pretrained models generalize to many fine-tuning tasks?
● Even on tasks with sufficient supervised label

Why larger models and longer pretraining steps improve generalization?
● In statistical machine learning: complicated model + exhaustive training is recipe for overfitting
● But they indeed are the core advantages of pretraining models 
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Visualization of Loss Landscape
●  

[5] Li, et al. “Visualizing the loss landscape of neural nets.“ NeurIPS 2018.
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Visualization of Loss Landscape
●  

[5] Li, et al. “Visualizing the loss landscape of neural nets.“ NeurIPS 2018.

A sharp loss landscape and a smooth loss landscape [5]
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Visualization of Loss Landscape: BERT
●  

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." EMNLP 2019.
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Visualization of Loss Landscape: BERT
●  

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." EMNLP 2019.

Loss landscape of finetuning MNLI from random or pretrained BERT [6]
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Visualization of Loss Landscape: BERT

Random Pretrained

●  

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." EMNLP 2019.

Loss landscape of finetuning MNLI from random or pretrained BERT [6]
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Visualization of Loss Landscape: BERT

Optimization Trajectory when finetuning MNLI from random (left) and pretrained (right) BERT [6]

●  

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." EMNLP 2019.
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Outline
1. What is captured in BERT?

2. Why pretrained models generalize?
○ Loss landscapes

○ Implicit bias of language models

3. What does in-context learning do?
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." ICML 2023.  

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." ICML 2023.  

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Yet smoothly improving 
downstream generalization

Signs of overfitting and 
instable learning
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." ICML 2023.  

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Same pretraining loss but 
flattener loss shape

Trace of (Loss) 
Hessian: A 

reflection of the loss 
flatness
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Inductive Bias of Language Models: Larger Models

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." ICML 2023.  

Illustration of Optimization Trajectory [7]
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Inductive Bias of Language Models: Larger Models

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." ICML 2023.  

Illustration of Optimization Trajectory [7]

Larger models can reach a flattener 
optima: 

1. Larger transformers have bigger 
solution space

2. They cover smaller transformers
3. Optimizer keep seeking for flattener 

optima, even reached same loss

Small Model

Large Model
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima
● Better starting point
● Better loss shape
● Pretraining longer and larger Transformers lead to more flatness
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima
● Better starting point
● Better loss shape
● Pretraining longer and larger Transformers lead to more flatness
Why flatness matters?
● Many empirical evidences showing its connection to generalization ability
● Intuitively, more robust to data variations/noises
● Theoretically, argued that it leads to simpler network solutions 

○ Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima
● Better starting point
● Better loss shape
● Pretraining longer and larger Transformers lead to more flatness
Why flatness matters?
● Many empirical evidences showing its connection to generalization ability
● Intuitively, more robust to data variations/noises
● Theoretically, argued that it leads to simpler network solutions 

○ Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
Why pretrained models prefer flatter optima?
● An inductive bias of the optimizer, the architecture, the pretraining loss, or the combination of 

them?
● Much more research required
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Outline
1. What is captured in BERT?

2. Why pretrained models generalize?

3. What does in-context learning do?
○ Semantic Prior or Input-Label Mapping

○ Connection with Gradient Decent



56 CMU 11-667 Fall 2024CMU 11-667 Fall 202456 CMU 11-667 Fall 2024

In-Context Learning Interpretation: Observations

Regular In-Context Learning [8]

Two sources of information:
1. Semantic knowledge captured in LLM
2. In-context training signals (input-label 

mapping)

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Observations

Regular In-Context Learning [8]

Two sources of information:
1. Semantic knowledge captured in LLM
2. In-context training signals (input-label 

mapping)

Which one works? 

Mixed observations:
● Random in-context labels work
→ Existing semantic knowledge
● Order of in-context data matter
→ In-context training signals

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Random Label Test

Figure 18: Flipped-Label In-Context Learning [8]

Randomly flip X% of binary labels
● More flips (X↑), more requirement of 

existing knowledge to make correct 
prediction

Behavior of models with bigger X%
● Those care less use more inner knowledge
● Those impacted more learn more 

in-context

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Random Label Test

Flipped-Label In-Context Learning [8]

Randomly flip X% of binary labels
● More flips (X↑), more requirement of existing 

knowledge to make correct prediction

Behavior of models with bigger X%
● Those care less use more inner knowledge
● Those impacted more learn more in-context

Question:
● Does larger LM care more, or less about 

bigger X? 

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Random Label Test

PaLM and GPT in Flipped-Label In-Context Learning, binary 
classification with 16 examples per class [8]

Larger models perform better with 0% flipped 
label
● But are much more sensitive to label flips

Large

Small

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Random Label Test

PaLM and GPT in Flipped-Label In-Context Learning, binary 
classification with 16 examples per class [8]

Larger models perform better with 0% flipped 
label
● But are much more sensitive to label flips

The strongest models can even over-correct
● With merely 32 in-context labels

There must be some learning in in-context 
learning
● Especially in larger LMs

Large

Small

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.



62 CMU 11-667 Fall 2024CMU 11-667 Fall 202462 CMU 11-667 Fall 2024

In-Context Learning Interpretation: No Semantic Test

In-Context Learning with Semantically-Unrelated Label Terms [8]

Use semantically-unrelated label terms
● E.g., foo / bar instead of positive / negative
● Models have to learn more from in-context

Behavior of models with unrelated labels
● Those perform well learns more in-context
● Those impacted rely more in existing 

knowledge

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Accuracy with 
Semantically-Unrelated Labels versus Related Labels [8]

Larger models work better with unrelated labels
● They learn in-context label mappings better

Smaller models are more prune to unrelated 
labels
● They rely more on their prior-knowledge

In-Context Learning Interpretation: Observations

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning with Different Number of Semantically-Unrelated Labels [8]

Larger models better leverages in-context 
examples
● Advantages more pronounces with more 

labels

Not much better than random with two 
examples
● Confirms unrelated labels are not aligned 

with existing semantic knowledge

In-Context Learning Interpretation: Observations

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
● Less sensitive to flipped labels
● Hard to capture semantically-unrelated input-label mappings
● Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
● Can reverse their semantic prior to predict flipped labels
● Can learn semantic-unrelated label mappings
● Better utilizes more in-context examples

In-Context Learning Interpretation: Observations
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Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
● Less sensitive to flipped labels
● Hard to capture semantically-unrelated input-label mappings
● Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
● Can reverse their semantic prior to predict flipped labels
● Can learn semantic-unrelated label mappings
● Better utilizes more in-context examples

Why? How can LLMs learn from in-context examples?

In-Context Learning Interpretation: Observations
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Outline
1. What is captured in BERT?

2. Why pretrained models generalize?

3. What does in-context learning do?
○ Semantic Prior or Input-Label Mapping

○ Connection with Gradient Decent
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Learning in In-Context Learning: Gradient Construction

●  

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction

●  

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction

Detailed mathematical construction can be found in Oswald et al. 2023 [9]. 
Intuitively:
● Self-attention is a high-capacity function and can approximate many math operations
● The reference model (the one who does SGD) is a simple linear regression model
● Lost of non-linearity removed to facilitated the construction

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction

●  

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Trained Transformer
 

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Trained Transformer

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.

 

 

Trained Transformer matches the 
constructed gradient decent Transformer
● Near identical 

○ Prediction L2 difference 
○ Model sensitivity cosine/L2 difference
○ Model sensitivity L2 difference
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Learning in In-Context Learning: Trained Transformer

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.

 

 

Transformers (with strong assumptions 
and simplifications) learn in-context by 
gradient descent (of a linear regression 
model)

Trained Transformer matches the 
constructed gradient decent Transformer
● Near identical 

○ Prediction L2 difference 
○ Model sensitivity cosine/L2 difference
○ Model sensitivity L2 difference
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Learning in In-Context Learning: Trained Transformer

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.

  

Compare the constructed and learned Transformer in multi-layer setting
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Learning in In-Context Learning: Trained Transformer

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Empirical Observation

● Larger Transformers better learn in-context

● More in-context examples help larger model 
more

● Smaller Transformers rely more on existing 
semantic

Learning in In-Context Learning: Theory versus Empirical

Theory

● Transformers perform one gradient step per 
layer

● And per in-context example 

● Smaller models have limited gradient steps built 
in

Assumptions :
• Linear attention + MLP Transformer
• Simple regression reference model
• Shallow networks
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In-Context Learning Interpretation: Summary
Various solid empirical evidence that:
● Larger Transformers do learn in-context

● In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations
● Good intuitions

● One way to make sense of in-context learning



80 CMU 11-667 Fall 2024CMU 11-667 Fall 202480 CMU 11-667 Fall 2024

In-Context Learning Interpretation: Discussion
Likely many not-yet-finished learning theory, 
● This interpretation is more for our understanding and inspiration

● Strong assumptions are introduced to make the theory

My take:
● In-context learning is different from SGD and is more powerful in some scenarios

● Connecting with existing, well-known techniques is a good starting point

● Eventually researchers will develop new theorical frameworks to explain the amazing capabilities of LLM



Please download and install 
the Slido app on all computers 
you use

Audience Q&A

ⓘ Start presenting to display the audience questions on this slide.



82 CMU 11-667 Fall 2024CMU 11-667 Fall 202482 CMU 11-667 Fall 2024

References: BERTology
● Clark, Kevin, et al. "What does bert look at? an analysis of bert's attention." arXiv preprint arXiv:1906.04341 

(2019).
● Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT rediscovers the classical NLP pipeline." arXiv preprint 

arXiv:1905.05950 (2019).
● Htut, Phu Mon, et al. "Do attention heads in BERT track syntactic dependencies?." arXiv preprint 

arXiv:1911.12246 (2019).
● Liu, Leo Z., et al. "Probing across time: What does RoBERTa know and when?." arXiv preprint arXiv:2104.07885 

(2021).
● Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word 

representations." arXiv preprint arXiv:1905.06316 (2019).
● Rogers, Anna, Olga Kovaleva, and Anna Rumshisky. "A primer in BERTology: What we know about how BERT 

works." Transactions of the Association for Computational Linguistics 8 (2021): 842-866.
● Carlini, Nicholas, et al. "Extracting Training Data from Large Language Models." USENIX Security Symposium. Vol. 

6. 2021.
● Carlini, Nicholas, et al. "Quantifying memorization across neural language models." arXiv preprint 

arXiv:2202.07646 (2022).
● Izacard, Gautier, and Edouard Grave. "Distilling knowledge from reader to retriever for question answering." 

arXiv preprint arXiv:2012.04584 (2020).



83 CMU 11-667 Fall 2024CMU 11-667 Fall 202483 CMU 11-667 Fall 2024

References: Optimization
● Erhan, Dumitru, et al. "The difficulty of training deep architectures and the effect of unsupervised 

pre-training." Artificial Intelligence and Statistics. PMLR, 2009.
● Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information 

processing systems 31 (2018).
● Hao, Yaru, et al. "Visualizing and understanding the effectiveness of BERT." arXiv preprint 

arXiv:1908.05620 (2019).
● Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language 

Models." arXiv preprint arXiv:2210.14199 (2022).
● Chiang, Ping-yeh, et al. "Loss Landscapes are All You Need: Neural Network Generalization Can 

Be Explained Without the Implicit Bias of Gradient Descent." The Eleventh International 
Conference on Learning Representations. 2023.



84 CMU 11-667 Fall 2024CMU 11-667 Fall 202484 CMU 11-667 Fall 2024

References: Knowledge

● Petroni, Fabio, et al. "Language models as knowledge bases?." arXiv preprint arXiv:1909.01066 (2019).
● Roberts, Adam, Colin Raffel, and Noam Shazeer. "How much knowledge can you pack into the 

parameters of a language model?." arXiv preprint arXiv:2002.08910 (2020).
● Jiang, Zhengbao, et al. "How can we know what language models know?." Transactions of the 

Association for Computational Linguistics 8 (2020): 423-438.
● Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for 

transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).
● Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." 

arXiv preprint arXiv:2202.12837 (2022).
● Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." arXiv preprint 

arXiv:2012.14913 (2020).
● Meng, Kevin, et al. "Locating and editing factual associations in GPT." Advances in Neural Information 

Processing Systems 35 (2022): 17359-17372.



85 CMU 11-667 Fall 2024CMU 11-667 Fall 202485 CMU 11-667 Fall 2024

BERT Attention Patterns: Linguistic Examples

Objects Attend to their Verbs (Left→Right) [1]
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BERT Attention Patterns: Linguistic Examples

Noun Modifiers Attend to their Noun (Left→Right) [1]
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●  

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.

Probing Pretraining Representations: Across Layers
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Probing Across Time Tasks
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In-Context Learning Interpretation: Summary
Various solid empirical evidence that:

● Larger Transformers do learn in-context
● In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations
● Good intuitions
● One way to make sense of in-context learning
● Very strong assumptions are introduced for the connection, unfortunately


