
Homework 2
(Revision 2)

Due date: 09/26/2024 14:00 PM EST

11-667 Fall 2024

In this homework„ you will learn how to tokenize data, Then you will implement a basic Transformer archi-
tecture and experiment with training. Finally, you will experiment with generation and perplexity evaluation
using an open-source model available in the HuggingFace library.

Note: Unlike for HW1, there are two Gradescope submission pages for HW1, one for your code and one for
your report.pdf. Only report.pdf files submitted to the “written” Gradscope submission page will be graded.

Problem 1: BPE Tokenizer

Formally, a tokenizer is a function that takes a string s ∈ A⋆ in alphabet A to a sequence of tokens x ∈ V⋆ in
vocabulary V.1 By definition, tokenizers are complete in their alphabet: any string over A can be tokenized.
Tokenizers are essential in NLP pipelines because they convert natural language to symbols that machines can
parse, and vice versa.

[Question 1.1] (Writing, 12 points) We may expect a tokenizer to satisfy the properties below:

• Injective: for all s ̸= s′, tokenize(s) ̸= tokenize(s′).

• Invertible: for any string s, s = detokenize(tokenize(s)).

• Preserves concatenation: for two strings s, s′, tokenize(s+ s′) = tokenize(s) + tokenize(s′).

However, all three properties are violated by the tokenizers of multiple popular language models.

DELIVERABLES FOR Q1.1

Answer the following questions.

A. Provide counterexamples showing how a popular, publicly-available tokenizer fails each of the
above properties. Write code in tests/test_tokenizer.py that causes the assertions in
test_not_injective(), test_not_invertible() and test_not_preserving_concat() to all
pass. Then, in your report, write down no more than two sentences about each test, describ-
ing the tokenizer you chose and the violation you identified.

B. Comment on why it is generally impossible to build non-trivial tokenizers that preserve concate-
nation.a

aA trivial tokenizer is one that uses the alphabet as vocabulary.

[Question 1.2] (Coding, 25 points) Byte-pair encoding (BPE) is a technique of learning a useful to-
kenizer from a text corpus. BPE first initializes the set of tokens as all characters in some alphabet, and
iteratively merges the most frequent pair of adjacent tokens (bigram) as a new token. Each iteration adds a
new token to the vocabulary while retaining the existing tokens.

1For example, the alphabet A could be the ASCII or the Unicode character set.
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DELIVERABLES FOR Q1.2

Make the following modifications to the starter code.

A. Implement the BPE algorithm by filling in ASCIIBPETokenizer.merge() in
src/tokenizer/bpe.py. Your implementation should pass all of the test_*_merge() test
cases in tests/test_tokenizer.py.

B. Now, implement encode() and decode() functions in src/tokenizer/bpe.py. Your implementa-
tion should pass test_encode() and test_decode().

Additional automatic tests may be performed after submission.

[Question 1.3] (Writing, 6 points) You have implemented an ASCII tokenizer that handles the ASCII
characters. One limitation of ASCII is that it does not include non-Latin characters, for example those of Hindi
or Chinese. In contrast, the Unicode standard supports chraracters from all writing systems.

The instructors have provided a unicode BPE tokenizer code implementation, src/tokenizer/bpe.py, and
a tokenizer file, data/english-tokenizer.json, that has been trained only on English text.
Run src/tokenizer/visualize.py to load in this tokenizer and observe the learned tokens.

DELIVERABLES FOR Q1.3

Answer the following questions with at most two sentences each:

A. What are the longest token that you see, and what does this tell you about the training data?

B. How can BPE tokenization compromise the privacy of its training data?

[Question 1.4] (Writing, 6 points) Try to tokenize a piece of provided English text and its translation
in Thai by running src/tokenizer/multilingual.py.

DELIVERABLES FOR Q1.4

Answer the following questions with at most two sentences each:

A. Is there a big difference between the number of tokens used to tokenize the same document in
English and Thai? Explain why.

B. How could this phenomenon be problematic for users of low-resource languages?

https://upload.wikimedia.org/wikipedia/commons/1/1b/ASCII-Table-wide.svg
https://upload.wikimedia.org/wikipedia/commons/1/1b/ASCII-Table-wide.svg
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Problem 2: Implementing a Transformer

In this problem, you will learn to implement components of the Transformer architecture.

Figure 1: Transformer decoder

You will first implement a decoder-only transformer model. An
outline of the code is provided for you in model.py. This outline
contains all the class and function declarations that are expected
for the submission. Do not modify the classes, functions, or
their arguments. Do not import new Python dependen-
cies. This may break the automatic code test pipeline and
result in failed unit tests. You should aim to have an effi-
cient implementation for the model to train in a reasonable amount
of time. This means calling PyTorch functions whenever possible,
and also means that you should not write matrix operations using
a for loop. That said, you may not use layers or functions (e.g.,
torch.nn.TransformerDecoder) that make implementation trivial.
If you are unsure whether using something is acceptable, ask course
staff. All relevant code for this question is in src/lm.

Recall the Transformer Decoder from Lecture 2, shown in Figure 1.
There are four classes within the transformer that you are expected
to implement:

1. MultiHeadAttention - the “Masked Multi-head Attention”
module.

2. FeedForward - the “Feed Forward” module.

3. DecoderBlock - a single decoder block, as described in “The
Decoder Step-by-Step” in Lecture 2. Note that since we are
implementing the decoder only, you do not need to implement
the Encoder-Decoder Multi-Head Attention or the second “Add
& Norm” operation.

4. DecoderLM - the full decoder model: the embedding step, mul-
tiple decoder blocks, and the final output logits.

[Question 2.1] (Written, 5 points) Press and Wolf (2017) propose a weight tying technique for projecting
hidden states of a language model to token logits.

DELIVERABLES FOR Q2.1

Read this paper, and in at most three sentences, explain what weight tying does.

[Question 2.2] (Written, 5 points) Let d be the hidden size of the model, v be the vocab size, b be the
batch size, and s be the sequence length. Suppose you have hidden states h ∈ Rb×s×d and token embeddings
E ∈ Rv×d stored in PyTorch tensors.

DELIVERABLES FOR Q2.2

Write one line of Python code here (potentially with functions in PyTorch) that computes the token
logits using weight tying.

[Question 2.3] (Coding, 25 points) Complete model.py, implementing all of the classes above. All the
unit tests are provided in the test script test_model.py. Your implementation will be awarded points for each
of the five unit tests that pass.

DELIVERABLES FOR Q2.3

Upload your code to Gradescope as instructed in the starter code README and make sure all test cases
pass.

https://aclanthology.org/E17-2025/
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Problem 3: Training the Transformer

Now that you have implemented the transformer, it is time to train the model! For ease of implementation and
testing, we will provide the tokenized input for you. We will train on a subset of the C4 corpus2, which is itself
a cleaned subset of the Common Crawl web corpus3. This dataset is downloaded automatically as a part of the
training script, and there is no need for you to access it manually.

An outline of the code is provided for you in src/lm/train.py. Keep in mind the various hyperparameters
that are relevant for training: batch size, learning rate (and its scheduler), gradient accumulation, etc. These
hyperparameters are read from a configuration file. We have provided sample configuration files for you for
adjusting the hyperparameters. There are five functions that you are expected to implement:

• train - the main training loop.

• random_batch_sampler - a data sampling function used in training that yields randomly shuffled batches
of the data.

• sequential_batch_sampler - a data sampling function used in validation that yields a sequential pass
through the data.

• cosine_lr_schedule - learning rate scheduler with Cosine annealing (see question 2.2).

• compute_language_modeling_loss - the loss function used for training and evaluating the model.

[Question 3.1] (Coding, 20 points) Complete train.py, implementing the above functions. All the unit
tests are provided in the test script test_train.py. Your implementation will be awarded points for each of
the five unit tests that pass.

Note: There is a special test case test_train_sanity_check(), which trains and evaluates your model on a
fundamentally unlearnable sequence (random integers sampled from {0, . . . , 7}). A test loss below log(8) ≈ 2.08
on this task suggests that your model is cheating by looking at the token it is trying to predict. This testcase
itself does not carry any points, but failing it would preclude you from scoring points for Q3.3, Q3.4 and Q3.5.

DELIVERABLES FOR Q3.1

Upload your code to Gradescope as instructed in the starter code README and make sure all test cases
pass.

[Question 3.2] (Written, 10 points) Cosine annealing with warmup is a commonly used dynamic learn-
ing rate schedule in training neural nets. It has two phases, in the warmup phase where t ∈ [0, a), the learning
rate increases linearly from 0 to lrmax. In the annealing phase where t ∈ [a, b), the learning rate decays from
lrmax to lrmin following a half-cosine curve. When t ≥ b, the learning rate stays at lrmin. Figure 2 shows an
example of this schedule.

Using the symbols provided, write down two expressions, one for the learning rate during warmup and one
for the learning rate during annealing.

DELIVERABLES FOR Q3.2

In your report, answer the following:

A. What is the mathematical expression for cosine annealing?

B. Why would one want to use cosine annealing? What are some advantages of cosine annealing over
a constant learning rate? Answer in at most two sentences.

2https://huggingface.co/datasets/allenai/c4
3https://commoncrawl.org/

https://huggingface.co/datasets/allenai/c4
https://commoncrawl.org/
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Figure 2: Example Cosine Schedule

[Question 3.3] (Written, 9 points) What is the validation loss after training with the configuration
provided in GPT-tiny.yaml? For approximately how many training steps should the model be trained to
achieve optimal performance? Report the training loss curve (use a screenshot from weights & biases: https:
//wandb.ai/site).

DELIVERABLES FOR Q3.3

In your report, answer the following:

A. Write the validation loss for GPT-tiny.

B. Write the number of training steps needed for GPT-tiny to saturate in training loss.

C. Plot the training curve for GPT-tiny.

[Question 3.4] (Written, 20 points) Next, you will perform hyperparameter tuning. When optimizing
neural networks, a common way to measure the total computation needed is with floating-point operations
(FLOPs). E.g., a single multiply-add of floats is counted as a FLOP. Assume that you have a compute budget
of 1e+15 FLOPs for training. Experiment with your model and training hyperparameters to find the best
configuration when training with at most 1e+15 FLOPs (the code for computing the number of FLOPs used
to train a model is provided in train.py). Note that the FLOP limit is intentionally low: it should not take
more than 10 minutes per hyperparameter test.

As long as you stay within the FLOP budget, you are free to modify any of the following hyperparameters,
all of which affect the number of FLOPs used: model hyperparameters such as n_embd, n_head, n_positions
and n_layer; and training hyperparameters such as batch_size, seq_len, grad_accumulation_steps, and
num_training_steps. You will use perplexity of a withheld validation set to evaluate which configuration is
best.

https://wandb.ai/site
https://wandb.ai/site
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DELIVERABLES FOR Q3.4

Report results for at most five hyperparameter configurations. For each, describe what hyperparameter
values were modified and the resulting validation set perplexity (PPL). For your best performing setting,
you should provide the final configuration (YAML file) for this setting. Your report should answer the
following questions:

A. In one paragraph, describe your experimental procedure.

B. In one paragraph, describe your experimental results.

C. Paste your final YAML configuration into your report.

[Question 3.5] (Coding, 20 points) Using the model configuration reported above, train your final model.
For training your final model, you may train 100x more FLOPs (i.e. up to 1e+17 FLOPS), but do not change
your model hyperparameters. Your final model should be able to achieve a PPL under 50 on the validation set.
Please include your final model checkpoint model.pt in your submission. We will verify your model with an
offline correctness test, which will measure the perplexity on a test dataset (not provided). Submissions with
PPL under 50 will get full points, and submissions with PPL under 75 will get half points. Note: Gradescope
allows a maximum upload size of 100MB. Please ensure that your model checkpoint does not
exceed this size.

DELIVERABLES FOR Q3.5

Report your final validation loss and PPL in your report and upload the model checkpoint as instructed.

Problem 4: Text Generation & Perplexity Analysis

In this problem, you will learn how to use your build-from-scratch model, as well as a pre-trained
model from HuggingFace to do text generation. You will use your final model from Question 3 and
the Pythia-1.4B model from HuggingFace. Outlines of the codes for text generation are provided for you in
generate.py and use_pythia.py.

[Question 4.1] (Coding, 10 points) To get generation working on your own model, there are two func-
tions that you are expected to implement in generate.py:

1. generate - given a DecoderLM and a list of prompts, generate tokens and compute perplexity of the
generated text.

2. softmax_with_temperature - given a set of logits and a temperature, transform them into probabilities
with the softmax function and temperature annealing.

Complete the two functions. A unit test is provided in the test script test_generate.py.

DELIVERABLES FOR Q4.1

Upload your code to Gradescope as instructed in the starter code README and ensure all test cases
pass. We may also run additional tests after the submission deadline.

[Question 4.2] (Written, 15 points) We have provided you code for generating continuations and calculating
perplexity with Pythia-1.4B in use_pythia.py and evaluate_perplexity.py.

Choose three prefixes by taking the first sentence to paragraph from a recent news article, blog post, or
other text source. You may also choose from the 5 examples we have provided in data/prefixes.jsonl or get
creative and write your prefixes.

For each of your three prefixes, you should experiment with performing at least 32 tokens of generation using
both your own model and Pythia-1.4B, using different temperature values.

https://huggingface.co/EleutherAI/pythia-1.4b
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DELIVERABLES FOR Q4.2

In your report, answer the following:

A. Report the prefixes you chose and the generation hyperparameter settings (temperature and
max_new_tokens) you chose. Copy and paste the generations of the two models separately.

B. What happens to the generations if the temperature is near zero, or near one? Answer in at most
two sentences.

C. Under the same temperature value, compare the quality and perplexity scores of generations be-
tween the two models. Report your findings and possible reasons behind them in at most three
sentences.

[Question 4.3] (Written, 10 points) So far, you have computed perplexity of a validation set drawn from
C4 and of a handful of generations. In this question, you will compute perplexity according to Pythia-1.4B of
a few other text sources.

Start by running /data/make_ppl_example_jsonl.py which creates a jsonl file with two documents in it:
(1) a few paragraphs from the Wikipedia article about CMU and (2) a famous nonsense poem by English writer
Lewis Carrol. Use evaluate_perplexity.py to compute the perplexity of each document.

DELIVERABLES FOR Q4.3

Answer the following questions in at most 3 sentences each.

A. What is the perplexity of the CMU Wikipedia paragraphs? What happens to perplexity if you
remove every instance of “the” in the text? Provide an explanation for the observed perplexity
change.

B. Write a mimic poem by swapping several of the nonsense word in each stanza of the Jabberwocky
to a different nonsense word. For example, you might replace “mimsy” with ”flimty” or “borogoves”
with “kittipoos”. Report the perplexity of the original Jabberwocky poem and your own version.
Despite both poems being filled with made-up nonsense words, one should have significantly lower
perplexity than the other. Give a reason why this could be the case.

https://penandthepad.com/directions-writing-mimic-poem-3668.html
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