
Homework 3
(Revision 0)

Due date: 14:00 October 17, 2024

11-667 Fall 2024

As we have learned in class, language models struggle to perform tasks that require complex reasoning,
knowledge that they did not see during training, or interactions with the real world. In class, we learned
about two strategies to improve language model capabilities at these complex tasks: tool-use and retrieval
augmentation. Tool-use involves training an LM to call a computer program that runs externally to the LM.
Retrieval-augmentation involves conditioning a language model’s generations on retrieved information. In this
homework, you will train a very simple tool-use LM, where the tool is a basic calculator. You will also train a
retriever and build a system for retrieval-augmented generation.

Note: Unlike for HW1, there are two Gradescope submission pages for HW1, one for your code and one for
your report.pdf. Only report.pdf files submitted to the “written” Gradscope submission page will be graded.

Problem 1: Language Model with a Calculator Tool

Why do we want language models to use tools anyway? It turns out that many tasks are difficult, or funda-
mentally impossible for a language model to perform. One such task is basic arithmetic. In this question, you
will explore how to teach a language model to use calculators in math word problems.

[Question 1.1] (Writing, 5 points) First, let’s convince ourselves that numerical computation is indeed
difficult for even the best language models. Go to OpenAI’s API playground (https://platform.openai.
com/playground/chat?models=gpt-4o) to experiment with inference on GPT-4o. 1 Note, we are using the
playground interface because the “ChatGPT” interface already has tool-use built in. Try to come up with an
instruction that:

• requires an arithmetic expression involving basic operations (e.g., +, -, *, /) to answer

• the output of GPT-4o is off from the expected value by > 10%.

Feel free to use any sampling strategy that you like.

DELIVERABLES FOR Q1.1

In your report, write down the following five items:

• prompt

• model output

• result expected

• relative error rate

• choice of model (if choosing one other than GPT-4o)

[Question 1.2] (Coding, 5 points) We are going to use an elementary math word problem dataset,
ASDiv for training our language model to use a calculator. To do this, we have pre-processed the ASDiv
dataset for you into a format that allows language models to learn when and how to invoke the calcula-
tor tool. Inspect the dataset at https://huggingface.co/datasets/yimingzhang/asdiv, and examine the
text and target outputs. The model will be fine-tuned to produce target when prompted with text. For

1You will need to set up billing information with OpenAI in order to use the playground. If this is not an option for you, you
may alternatively use any other frontier language model which does not have tool use incorporated (e.g. LLaMA Instruct).

This homework 3
(revision 0) is due 14:00 October 17, 2024 and the date of submission is October 1, 2024.

https://platform.openai.com/playground/chat?models=gpt-4o
https://platform.openai.com/playground/chat?models=gpt-4o
https://huggingface.co/datasets/yimingzhang/asdiv


OK 11-667 Fall 2024 – 2

example, given the prompt “Question: Rachel bought 8 music albums online. If each album had 2
songs, how many songs did she buy total? Answer:”, the model is trained to first parse the expression
to be calculated inside angular brackets (“«8*2»”), followed by the value of the the expression (“16”).

During training, the model is just fine-tuned to produce the entire target (“«8*2»16”). You will implement
an inference-time check can_use_calculator() that returns true if the angular brackets are completed (i.e.,
generation ends with “»”), which suggests that the calculator tool can be used.

DELIVERABLES FOR Q1.2

Implement can_use_calculator().

[Question 1.3] (Coding, Writing, 8 points) Implement use_calculator(), the function that calls a cal-
culator (safe_eval) on partial model generation and appends calculator output back to the input. For example,
on the input string “Question: Rachel bought 8 music albums ... Answer:«8*2»”, use_calculator()
should return “Question: Rachel bought 8 music albums ... Answer:«8*2»16”. Return the input string
if it does not end with a well-formed arithmetic expression.

DELIVERABLES FOR Q1.3

A. Implement _use_calculator().

B. What if we were to use the built-in Python eval() function instead of safe_eval() for numerical
evaluation? Specifically, what can go wrong when executing unsanitized language model output?
Comment with at most 3 sentences.

[Question 1.4] (Writing, 5 points) Now you should have all you need to fine-tune a small language
model (Pythia-1b) that can use a calculator. Run python src/calculator/main.py to train and evaluate the
model (this should take no more than 10 minutes). You should now expect significant gains in accuracy when
the model is provided calculator access.

DELIVERABLES FOR Q1.4

Report test accuracy on ASDiv, with and without calculator access.

[Question 1.5] (Writing, 6 points) Model generations for the test instances (both with and without
calculator access) are dumped to pythia-1b-asdiv/eval.jsonl. Use this file to answer the following questions.

DELIVERABLES FOR Q1.5

A. Find a test instance where the fine-tuned model produces an incorrect answer without calculator
access, and produces the correct answer with calculator access. Report the example prompt, as
well as generations with and without calculator access. Include an one sentence discussion.

B. Find a test instance where the fine-tuned model produces an incorrect answer even with calculator
access. Where did things go wrong? Report the example prompt, as well as generations with and
without calculator access. Include an one sentence discussion.

Problem 2: Fine-tuning for Dense Retrieval

Dense retrievers, also known as embedding models, use hidden representations to capture the semantic meaning
of input sentences, transforming both queries and documents into dense vectors. These vectors enable effective
retrieval by measuring the similarity between query and document representations in a continuous embedding
space. Unlike traditional retrieval methods, which rely on sparse keyword matching, dense retrieval focuses
on semantic similarity, making it better suited for understanding complex relationships between queries and
relevant documents.

In this assignment, you will complete the missing functionality in the starter code and fine-tune a small
retrieval model. Do not delete this model; you will need it for the next problem.



OK 11-667 Fall 2024 – 3

[Question 2.1] (Coding, Writing, 5 points) Transformers produce token-level representations. Pooling
is the process of combining those representations into a single sentence-level embedding. In this homework, since
we are using a Decoder-only Transformer as the embedding model, you will implement last-token pooling. The
starter code provides a dataloader which forces an EOS-token as the last token of both queries and documents.
The representation of that token should be used as a sentence-level representation.

DELIVERABLES FOR Q2.1

A. Under retriever/modeling/encoder.py, implement pooling, which receives the token-level hid-
den states from the final layer, and returns the pooled representation after applying L2 norm.
Hint: By default, the model pads to the right. So you must account for the attention mask when
identifying the last token of each sequence in the batch.

B. Encoder-only Transformers (e.g., BERT) often resort to first-token pooling. Explain why it is more
sound to use last-token pooling with decoder-only models.

[Question 2.2] (Coding, 12 points) Another difference between pure language models and embedding
models is the training objective. Ultimately, we want queries and the respective relevant documents closer in
the embedding space, while irrelevant documents are further away. This can be achieved through a contrastive
loss:

L = −
Q∑
i=1

log
exp(sim(qi, p

+
i )/τ)∑Q×P

j=1 exp(sim(qi, pj)/τ)
,

where Q is the number of queries in a batch, P is the number of passages per query, p+i is the positive
passage for the ith query, sim(qi, pj) is the similarity between the ith query and the jth passage, and τ is the
temperature. Note that the starter code uses 1 positive passage and 9 negative passages per query. Hence, the
above formulation entails in-batch negatives, i.e., all 10 passages associated with query qi are used as negative
examples for all other queries qj , j ̸= i.

DELIVERABLES FOR Q2.2

For the following questions, do not import any more packages other than the ones already imported in
the file you are changing. All matrix operations should be conducted with PyTorch operators.

A. Under retriever/modeling/encoder.py, implement compute_similarity, which receives query
and passage embeddings as the input, and returns a query-passage similarity matrix. Use the
dot-product as the similarity metric, and apply the temperature parameter.

B. Under retriever/modeling/encoder.py, implement compute_labels, which should return a list
of indexes denoting the position of the positive passages in p_reps. Note that p_reps contains all
the passages in the batch, i.e., P passages per query. The first of every P is the positive for the
respective query.

C. Under retriever/modeling/encoder.py, implement compute_loss, which receives the similarity
matrix and the labels as input, and returns the loss. Hint: cross-entropy loss

Your implementations will be graded by passing the respective unit tests.

[Question 2.3] (Coding, Writing, 6 points) After implementing the above functions, you should be
able to run three scripts. In order:

• retriever/scripts/train_msmarco.sh to train your embedding model. (Roughly 60 minutes to run.)

• retriever/scripts/encode_fiqa.sh to generate embeddings for the test corpus and queries.

• retriever/scripts/search_fiqa.sh to conduct vector search and obtain evaluation results.

The file retriever/README.md contains details about each script. You do not need to change any of the
provided hyperparameters.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


OK 11-667 Fall 2024 – 4

DELIVERABLES FOR Q2.3

A. Present your train loss curve (paste from WandB).

B. Present the Mean Reciprocal Rank achieved by your model on the test dataset. Briefly comment
on how to interpret this metric.

[Question 2.4] (Writing, 5 points) The starter code implements a retriever through a bi-encoder ar-
chitecture, i.e., queries and documents are encoded independently. Re-rankers, such as BGE-reranker, use a
cross-encoder architecture, where queries and documents are jointly encoded. Refer to this paper for more
information on re-rankers.

DELIVERABLES FOR Q2.4

A. Consider the following pseudo-code for the bi-encoder you previously implemented:

def bi_encoder(query, passage):
query_reps = encoder(query)
passage_reps = encoder(passage)
similarity = cosine_similarity(query_reps, passage_reps)
return similarity

Assuming you have access to a linear layer Linear ∈ ℜhidden_dim×1, present pseudo-code for a
cross-encoder.

B. Name one advantage and one disadvantage of the bi-encoder architecture when compared to cross-
encoders.

C. Given a large document collection (millions) and access to both a bi-encoder and a cross-encoder,
describe a strategy to use both models effectively in an information retrieval system. Explain how
you would balance efficiency and effectiveness in this scenario.

Problem 3: Building a RAG System

Retrieval augmentation is a useful technique to improve LLMs’ performance in answering factoid queries, es-
pecially those regarding niche domains. In this problem, you will use the retrieval model you trained in the
previous section to build a small RAG system.

[Question 3.1] (Writing, Coding, 5 points) You will be using questions from TOFU, and an instruction-
tuned Pythia 6.9B model.

DELIVERABLES FOR Q3.1

A. Do you expect the chosen language model to be able to answer questions from the TOFU dataset?
Why?

B. Run .retriever/scripts/generate_without_rag.sh and present the questions and respective
completions.

[Question 3.2] (Writing, Coding, 5 points) The code under .retriever/driver/rag.py is built from
the inference code for Pythia on Homework 2. You need to extend its functionality by implementing a function
that augments prefixes with relevant passages.

https://huggingface.co/BAAI/bge-reranker-large
https://arxiv.org/pdf/1905.09217
https://locuslab.github.io/tofu/
https://huggingface.co/allenai/open-instruct-pythia-6.9b-tulu


OK 11-667 Fall 2024 – 5

DELIVERABLES FOR Q3.2

A. Implement the missing functions, and run .retriever/scripts/generate_with_rag.sh. Present
the queries and respective completions.

B. Look for the answers in the TOFU dataset, and comment on the effectiveness of the approach.

[Question 3.3] (Coding, Writing, 5 points) The performance of RAG systems is conditioned on the
quality of the retrieval step. Look at the top-N passages retrieved for each query. In this case, you should see
the relevant passage very close to the top.

DELIVERABLES FOR Q3.3

A. In more difficult scenarios where the retriever won’t be as effective, using a re-ranker is a common
step of the pipeline. Besides the cross-encoders introduced in the previous exercise, LLMs as list-
wise re-rankers have also been studied. Refer to this paper for more details. Name one advantage
and one disadvantage of cross-encoders when compared to LLM list-wise re-rankers.

B. In Question 3.2, the prefix was augmented with the top-1 passage. Present and comment on
changes in the generation results if we augment the questions:

• With the top-10 passages in-order.

• With the top-10 passages shuffled.

Problem 4: Use of Generative AI

If you used Generative AI for any part of your homework, you should fill out this question. Failure to do so is
an academic offense and will result in a failing grade on the homework. You may omit this question from your
submission if you did not use Generative AI.

[Question 4.1] (Writing, 0 points) Did you use a coding assistant (e.g. GitHub Copilot) that was built
into your code editor? If yes, which one did you use? Describe what parts of the code you wrote yourself and
which parts it wrote for you.

[Question 4.2] (Writing, 0 points) Did you converse with a chatbot agent (e.g. Gemini, Claude, or
ChatGPT) to help with either the coding or conceptual questions on this homework? If yes, include a table
that contains the following information:

• The prompt you passed to the agent.

• The agent’s output for that prompt.

• A brief description (∼1 sentence) of which homework question(s) you used this output for, and how it was
incorporated into your final answer.

[Question 4.3] (Writing, 0 points) Did you have any other use of Generative AI that you would like to
disclose?

https://locuslab.github.io/tofu/
https://arxiv.org/pdf/2304.09542

	1 Language Model with a Calculator Tool
	(1) Writing, 5 points
	(2) Coding, 5 points
	(3) Coding, Writing, 8 points
	(4) Writing, 5 points
	(5) Writing, 6 points

	2 Fine-tuning for Dense Retrieval
	(1) Coding, Writing, 5 points
	(2) Coding, 12 points
	(3) Coding, Writing, 6 points
	(4) Writing, 5 points

	3 Building a RAG System
	(1) Writing, Coding, 5 points
	(2) Writing, Coding, 5 points
	(3) Coding, Writing, 5 points

	4 Use of Generative AI
	(1) Writing, 0 points
	(2) Writing, 0 points
	(3) Writing, 0 points


