

Compiling Google
Problem statement for the Final Round of Hash Code 2019

Introduction
Google has a large codebase, containing billions of lines of code across millions of
source �les. From these source �les, many more compiled �les are produced, and
some compiled �les are then used to produce fu�her compiled �les, and so on.

Given the huge number of �les, compiling them on a single server would take a long
time. To speed it up, Google distributes the compilation steps across multiple servers.

In this problem, we will explore how to e�ectively use multiple compilation servers to
optimize compilation time.

Task
Given a description of dependencies between �les in a massive codebase, a number
of build servers, and deadlines for the compilation targets, schedule the compilation
steps on the available servers.

Problem description

Compiled �les
In this problem, we only deal with compiled �les , which are produced by compilation
steps .

Each compiled �le is described by: name, dependencies (other compiled �les that
need to be ready before this �le can be compiled), the time it takes to replicate the �le
to all other servers, and the time it takes to compile it.

1

Dependencies between compiled �les form a directed acyclic graph with edges from
a dependency to the compiled �le (see Figure 1 below). The list of dependencies can
be empty.

Figure 1. A set of compiled �les (c0-c5) and their dependencies. The edge from c0 to

c2 indicates that c0 is required to compile c2.

For example , in Figure 1, in order to sta� compiling c4, a server needs to have both
c1 and c2 available �rst. If any of these �les are not compiled on the same server but
on a di�erent one, the server needs to wait until their replication has �nished (see
the Replication section below).

Compilation steps
Compiled �les are produced by servers executing compilation steps . Each server can
execute at most one compilation step at a time. Each step produces a single compiled
�le and takes the amount of time determined by the co9mpilation time of the �le being
compiled.

Servers are independent, which means that two compilation steps can run in parallel if
they are executed on di�erent servers.

2

Replication
When a compiled �le is �rst produced, it is only available on the server that compiled it.
Replication sta�s automatically once the �le is compiled: copies of the �le are sent to
all other servers, and become available to them a�er the replication time (de�ned for
each �le — see the Input data set section below) has passed.

For example , suppose that �le c0 has a compilation time of 23s (23 seconds) and a
replication time of 40s . If we sta� compiling it at server 0 sta�ing at second 0 , then
it will be available on server 0 at second 23 , and on all the other servers at second
63 (23s + 40s).

A single �le can be independently compiled by multiple servers (and it might be useful,
if the �le takes longer to replicate than to compile). All servers will be able to use the
�le as soon as the �rst copy has been replicated – see the Dependencies section
below for details.

Dependencies
In your submission, you will specify compilation steps to be executed on each server.
On each server, the steps are executed in the order that they appear in your
submission, possibly waiting for dependencies to be ready and replicated.

Each compilation step sta�s as soon as all of the following conditions are met:

● the server completed all previous compilation steps assigned to it
● all dependencies (other compiled �les) required for the compilation step are

available on the server – taking into account only the compilation steps
speci�ed earlier in your submission (see the Submissions section below).
Note that:

○ �les compiled earlier on the same server are immediately available
○ other �les are available when they are compiled by another server and

their replication is �nished

3

Target �les
The problem input will specify a list of target �les. Each target �le is one of the
compiled �les (see above) and is described by the following parameters:

● deadline — the latest time at which the �le needs to be compiled (on at least
one server, excluding replication time) to get a positive score for that target

● goal points — �xed number of points that will be given for compiling the �le
within the deadline (in addition to speed points which depend on how fast the
�le is compiled – see details in the Scoring section below)

For example , suppose a target �le has a deadline of 50s , a compilation time of 40s
and no dependencies. In order to score points for this target �le, we need to sta�
compiling it no later than at second 10 .

The target �les are a non-empty subset of all compiled �les.

Note : time sta�s at second 0 . Any compilation steps can sta� immediately on that
time instant. All deadlines, compilation and replication times are in whole seconds.

It’s not required to compile all target �les – the target �les that are not compiled at all
or compiled too late simply don’t earn points.

Input data set

File format
Each input data set is provided in a plain text �le containing exclusively ASCII
characters with lines terminated with a single '\n' character (UNIX- style line endings).
When multiple elements are stored in one line, they are each separated by a single
space.

The �rst line of the data set contains the following data:

● an integer C (1 ≤  C  ≤ 10 5) — the number of compiled �les
● an integer T (1 ≤  T  ≤ C) — the number of target �les
● an integer S (1 ≤  S  ≤ 100) — the number of available servers

4

This is followed by C sections (two lines each) describing individual compiled �les:
● a line containing the following elements:

○ the name of the compiled �le – an alphanumeric string (1 to 10
characters, ASCII le�ers and digits only), the names of the compiled �les
are unique

○ c (1 ≤  c  ≤ 10 6) — time required to compile it
○ r (1 ≤  r  ≤ 10 6) — time required to replicate it

● a line describing its dependencies (other compiled �les required to compile this
�le):

○ an integer n (0 ≤  n ≤ 100) — number of dependencies
○ if n > 0 : following n space-separated names of the dependencies. It is

guaranteed that all the dependencies are described earlier in the input
�le.

Finally, the last T lines describe the target �les. Each line contains:

● an alphanumeric string — the name of the compiled �le
● d (1 ≤  d  ≤ 10 6) — the deadline by which the target �le needs to be compiled
● g (1 ≤  g  ≤ 10 6) — goal points that will be earned for compiling this �le within the

deadline
A compiled �le can be referenced as a target at most once.

Example

Input file Description

6 3 2
c0 15 5
0
c1 10 18
0
c2 15 35
1 c0
c3 13 52
1 c1
c4 20 52
2 c1 c2
c5 15 21
2 c2 c3
c3 40 8
c4 45 15
c5 53 35

6 �les, 3 targets, 2 servers
Compiled �le c0 , needs 15 s to compile, 5 s to replicate

and has no dependencies
Compiled �le c1 , needs 10 s to compile, 18 s to replicate

and has no dependencies
Compiled �le c2 , needs 15 s to compile, 35 s to replicate

and has 1 dependency: �le c0
Compiled �le c3 , needs 13 s to compile, 52 s to replicate

and has 1 dependency: �le c1
Compiled �le c4 , needs 20 s to compile, 52 s to replicate

and has 2 dependencies: �les c1 and c2
Compiled �le c5 , needs 15 s to compile, 21 s to replicate

and has 2 dependencies: �les c2 and c3
Target �le c3 has deadline 40 s, and 8 goal points
Target �le c4 has deadline 45 s, and 15 goal points
Target �le c5 has deadline 53 s, and 35 goal points

5

Submissions

File format
Your submission should describe how the compilation process is distributed.

The submission �le must sta� with a line with a single integer E (1 ≤ E ≤   C × S  ) — the
number of executed compilation steps, followed by E lines, each containing:

● the name of the �le being compiled

● s — the index of the server that pe�orms the compilation step (0 ≤  s <  S) .

It is allowed to have the same compilation step listed multiple times (but note that
compiling the same �le on the same server more than once is never useful).

Remember that the dependencies of each compilation step have to be produced by at
least one of the compilation steps that appear earlier in the submission �le – see the
Dependencies section above.

Example

Submission file Description

7
c1 1
c0 0
c3 1
c2 0
c2 1
c4 0
c5 1

7 compilation steps
c1 is compiled on server 1
c0 is compiled on server 0
c3 is compiled on server 1
c2 is compiled on server 0
c2 is compiled on server 1
c4 is compiled on server 0
c5 is compiled on server 1

6

Figure 2. Example submission corresponding to the example �le above. Files in red are

the target �les. Files in black are compiled �les compiled on the given server. Files in
grey are copies of compiled �les that were compiled on another server and replicated
to the given server. The bo�om of each �le icon corresponds to the time at which it is

ready.

In the �gure above, the compilation of �les c0 and c1 sta�s as soon as possible: at
second 0. From the input in the example above, c0 is ready on server 0 at second 15
(needs 15s to compile) and c1 on server 1 at second 10. Compilation of �le c3 on server
1 can sta� at second 10, when c1 — its only dependency — is available. Since c3 needs
13s to compile, it is available at second 23 (13 + 10).

File c2 is compiled in both servers. On server 0, its dependency (c0) is available at
second 15 and c2 is produced 15s later. On server 1, c0 is initially not available and thus
is replicated from server 0. The replication step takes 5s. Even though c0 is available on
server 1 at second 20, compilation of c2 cannot sta� immediately: c3 is being compiled

7

between seconds 10 and 23. Once the previous step has �nished, c2 can be compiled
on server 1.

Similarly, c4 is ready on server 0 at second 50 and c5 on server 1 at second 53.

Scoring
For each target �le with deadline d and goal points g and for which compilation
completes at second x , the submission earns points only if x ≤ d . The points earned are
a sum of:

● speed points: d - x ,
● goal points: g

So in total, a target �le earns d - x + g if it has been compiled by the deadline, or 0 if it
has not been compiled at all, or is compiled a�er the deadline.

The �nal score of a data set is the sum of scores earned for each of the target �les.

For example , in the example above, only targets c3 and c5 are produced in time:
- c3 is ready at second 23, while the deadline is 40. The deadline is met, earning

8 goal points and 17 speed points.
score(c3) = (40 - 23) + 8 = 25

- c4 is ready at second 50, while the deadline is 45. The deadline is not met, so
no points are earned

- c5 is ready at second 53, precisely at the deadline. The deadline is met,
earning 35 goal points and 0 speed points.
score(c5) = (53 - 53) + 35 = 35

The total score for this submission is 25 + 0 + 35 = 60

Note that there are multiple data sets representing separate instances of the
problem. The �nal score for your team will be the sum of your best scores for the
individual data sets.

8

