

Assembling sma�phones
Problem statement for the Final Round of Hash Code 2020

Introduction
In this problem statement, we will explore the idea of operating an automated
assembly line for sma�phones.

Building a sma�phone is a complex process that involves assembling numerous
components, including the screen, multiple cameras, microphones, speakers, a
processing unit, and a storage unit.

In order to automate the building of a sma�phone, we will be using robotic arms that
can move around the assembly workspace pe�orming all necessary tasks.

Summary
You are given a description of robotic arms and possible mount points, as well as the
locations the arms need to visit during the assembly of a sma�phone. Create a plan
that uses the robotic arms to build a sma�phone, completing as many tasks as
possible.

Problem description

Assembly workspace

The assembly workspace consists of a rectangular grid of cells that has a width of W
columns and a height of H rows (so it contains W x H cells in total). Some of the cells
are mount points for robotic arms or assembly points that need to be visited by a
robotic arm.

1

Mount points

Mount points are cells that can be used as the initial positions of a robotic arm. At most
one robotic arm can be mounted in any single mount point.

Robotic arms

There are R robotic arms that can be used for the assembly. Each robotic arm has to
be installed at a mount point and is equipped with a gripper. Initially, the gripper of
each robotic arm is in the same cell as the mount point of the arm.

Robotic arms can move the gripper and expand to one of the four neighbouring cells
(up/down/right/le� - not diagonally). Robotic arms can expand as far as needed inside
the assembly workspace. Robotic arms can also retract , moving the gripper back into
the previous cell occupied by the robotic arm, and toward the direction of the mount
point. Robotic arms can also wait in place without moving (for example, waiting to
expand until a neighboring cell becomes free).

Robotic arms cannot expand into a cell that is already occupied by a robotic arm (be it
a di�erent robotic arm or the same robotic arm) or a mount point, even if there is no
arm mounted there. However, an arm can expand to a cell that is currently occupied by
the gripper of another robot, if that gripper retracts at the same time. Robotic arms
cannot expand outside the grid of the assembly workspace. Robotic arms can expand
to any other cell (not occupied by a robotic arm and not containing a mount point),
including cells that contain assembly points (visiting assembly points is, indeed, the
goal of their movement).

2

Figure. The robotic arm mounted at [1, 1] can stay at its current position [2, 2], retract
to [1, 2], or expand upwards [2, 3]: The assembly point at [2, 3] is not blocking it.

However, it cannot go down to [2, 1], as this cell is occupied by another robotic arm
(assuming the other robotic arm doesn't retract), and it cannot go right [3, 2] as this

cell is a mount point.

Figure. However, if the robotic arm mounted at [2, 0] retracts, then the one mounted
at [1, 1] can now expand to position [2, 1]

Steps

The entire assembly process proceeds in L steps (“step” here is a unit of time). In each
step, each arm can make at most one movement (expanding or retracting the gripper
by one cell).

Assembly points and tasks

You are given a list of T tasks that should be completed by the robotic arms. Each task
has a score awarded for completing it. Each task can only be completed once, but you
do not need to complete all tasks.

3

Each task consists of one or more assembly points that need to be visited in the given
order by a single robotic arm. The same assembly point may appear in the description
of multiple tasks, and may appear multiple times in the description of a single task. An
assembly point will never be in the same cell as a mount point.

Each robotic arm can only work on one task at a time (i.e. it cannot sta� a new task
before �nishing the current task). If needed, it can still visit assembly points not related
to the current task (see the example below).

For example , if there are two tasks:

● task 0 with 2 assembly points: [0,0], [0, 2]
● task 1 with 1 assembly point: [0, 1]

A robotic arm that visits cells [0, 0], [0, 1], [0, 2] to complete task 0, still needs to
move the gripper back to [0, 1] to complete task 1 a�erwards, even though this arm
visited this cell already while working on task 0.

Figure. The green assembly points need to be visited for task 0. Even though the
gripper also visits the assembly point at [0, 1], this does not count toward completing

task 1, because the arm was working on task 0 when the gripper was in [0, 1].

The work of the gripper in an assembly point doesn't take any additional steps to
complete. Note that this also means that if a task's �nal assembly point is the same as
the �rst assembly point of another task, an arm can work on both tasks while being at
that point, during the same step.

4

For example , with the following tasks:

● task 0 with 2 assembly points: [0, 0], [0, 1]
● task 1 with 1 assembly point: [0, 1]
● task 2 with 1 assembly point: [0, 1]
● task 3 with 2 assembly point: [0, 1], [0, 2]

A single arm mounted at [1, 0] can �nish all those tasks in 3 steps, �rst visiting the cell
[0,0], then [0,1], then [0,2].

initial position step 0 step 1 step 2

Figure. The arm works on task 0 �rst. In step 0 , the arm moves the gripper from [1,
0] to [0,0], which is the �rst assembly point needed for task 0. In step 1 , the arm

moves the gripper to [0, 1], completing task 0. The arm then works on task 1, which is
immediately completed because the gripper is already in the cell [0, 1], which is the

only assembly point needed for task 1. The arm then works on task 2, which is
similarly immediately completed. Finally the arm then works on task 3. In step 2 , the

arm expands to [0, 2] and �nishes task 3.

5

Input data set

File format

Each input data set is provided in a plain text �le. The �le contains only ASCII
characters with lines ending with a single '\n' character (also called “UNIX- style” line
endings). When multiple numbers are given in one line, they are separated by a single
space between each two numbers.

The �rst line of the data set contains:

● an integer W (1 ≤  W  ≤ 10 3) – the width of the assembly workspace (number of
columns),

● an integer H (1 ≤  H  ≤ 10 3) – the height of the assembly workspace (number of
rows),

● an integer R (1 ≤  R  ≤ 10 2) – the number of robotic arms available,

● an integer M (R  ≤  M  ≤ 10 3) – the number of mount points,

● an integer T (1 ≤  T  ≤ 10 3) – the number of tasks available, and

● an integer L (1 ≤  L  ≤ 10 4) – the number of total steps for the assembly process.

This is followed by M lines describing the mount points. Each such line contains
integers x (0 ≤  x  <  W) and y (0 ≤  y  <  H) describing the coordinates of the mount points. A
cell can have at most one mount point.

This is followed by T sections describing the tasks. Each task is described in two lines.
The �rst line describing each task contains:

● an integer S (1 ≤  S  ≤ 10 6) – the score awarded for �nishing the task,

● an integer P (1 ≤  P  ≤ 10 3) – the number of assembly points of this task.

The second line describing the task contains 2 · P integers x 0 , y 0 , x 1 , y 1 , ..., x P-1 , y P-1
(0 ≤  x i  <  W , 0 ≤  y i  <  H) – the coordinates of the assembly points in order, the �rst
assembly point having the coordinates [x 0 , y 0] and the last assembly point having the
coordinates [x P-1 , y P-1].

6

Example

Note that the example input �le below contains extra blank lines for clarity, the
input �les in the Judge System don’t contain blank lines.

Input �le Description

5 4 2 3 3 5

1 1
1 3
3 2
10 2
2 3 3 3
5 1
4 0
1 1
3 3

The workspace is 5 cells wide, 4 cells high, there are 2 arms and 3
mount points, 3 tasks and 5 steps.
Mount point in cell [1, 1].
Mount point in cell [1, 3].
Mount point in cell [3, 2].
Task 0 is wo�h 10 score points with 2 assembly points:

[2, 3] and [3, 3]
Task 1 is wo�h 5 score points with 1 assembly point:

[4, 0]
Task 2 is wo�h 1 score point with 1 assembly point:

[3, 3]

Figure. The example input above corresponds to this con�guration of the assembly
workspace.

7

Submissions

File format

Your submission describes where the robotic arms are installed and how they are
used.

The submission �le must sta� with a line containing the number A (0 <  A  ≤  R) of robotic
arms you want to use.

This is followed by A sections describing each robotic arm. Each section must consist
of three lines. The �rst line must contain:

● two integers x (0 ≤  x  <  W) and y (0 ≤  y  <  H) describing the coordinates of the
mount point where the robotic arm is installed,

● an integer Z (1 ≤  Z  ≤  T) – the number of tasks the robotic arm completes, and

● an integer K (1 ≤  K  ≤  L) – the number of instructions for the robotic arm.

The second line must contain Z 0-based indices of tasks the robotic arm should work
on. The tasks must be given in the order the robotic arm works on them. (The robotic
arm needs to visit all assembly points of the �rst task, then the second task, and so on
in that order.)

The third line must contain K space-separated instructions for the robotic arms. The
following instructions are available:

● R – move the gripper one cell right, i.e. increasing the column by 1,
● L – move the gripper one cell le�, i.e. decreasing the column by 1,
● U – move the gripper one cell up, i.e. increasing the row by 1,
● D – move the gripper one cell down, i.e. decreasing the row by 1, and
● W – wait for one step.

Note that each robotic arm has to be installed at a mount point and no two robotic
arms can be installed at the same mount point. No two robotic arms can work on the
same task.

8

Example

Note that the example �le below contains extra blank lines for clarity, the
submission �les sent to the Judge System cannot contain blank lines.

Submission �le Description

2
1 1 1 5
0
U R W U R

1 3 1 4
2
R R L L

2 robotic arms are used
arm mounted at [1, 1] working on 1 task with 5 commands
the arm only works on task 0
the arm gripper moves U p, R ight, W aits, and then moves U p,
R ight; visiting cells: [1, 2], [2, 2], [2, 2], [2, 3], [3, 3]
arm mounted at [1, 3] working on 1 task with 4 commands
the arm only works on task 2
the arm gripper moves R ight, R ight and contracts by going L e�,
L e� visiting cells [2, 3], [3, 3], [2, 3], [1, 3]

initial position step 0 step 1

step 2 step 3 step 4

9

Scoring
Your score is the sum of all scores of the tasks �nished.

In order for your submission to be valid, you must ensure that:

● the arms are never instructed to expand beyond the workspace, to a mount
point (regardless of whether any arm is mounted there – but note that an arm is
always allowed to retract to its own mount point) or to a cell occupied in the
same step by some robotic arm, and

● each task is assigned to at most one arm, and
● each arm completes all tasks assigned to it.

Note that the robotic arms can be in any con�guration a�er �nishing a task and don't
need to be retracted to the initial position. You don't need to �nish all tasks to receive
points for your submission.

In the example submission, the robotic arm mounted at [1, 1] completes task 0 which
awards a score of 10 and the arm mounted at [1, 3] completes task 2 which awards a
score of 1. Thus, the total score of the submission is 11.

Note that there are multiple data sets representing separate instances of the
problem. The �nal score for your team will be the sum of your best scores for the
individual data sets.

10

