
 So�ware engineering at scale
 Problem statement for the World Finals of Hash Code 2021

 Introduction
 Google stores the vast majority of its code in one monolithic codebase, holding
 billions of lines of code. As of 2016, more than 25,000 so�ware engineers were
 contributing to it 1 , improving existing services and adding cool new features to
 meet the demands of their users.

 With the growing size of the codebase and the increasing number of Google
 so�ware engineers, it is ge�ing challenging to schedule the engineers' work, so
 they can be productive and launch features that make users happy.

 Goal
 Given a number of services , a number of binaries , and a set of features to
 implement, decide how engineers should schedule their work to deliver features
 that would delight the users as much as possible.

 Problem description

 Architecture

 In this problem, we consider features, services and binaries:
 ● Features are the user-facing functionality of Google products. For example:

 video playlists in YouTube or weather forecasts in Google Search.
 ● Services are programs running in Google data centers. For example:

 YouTube may have a service responsible for storing user video collections.
 ● Binaries are groups of services which are combined to run together for

 e�ciency. For example: services running in the same binary can share
 resources such as a database connection.

 1 h�ps://dl.acm.org/doi/10.1145/2854146

 1

 Features

 Each feature is described by:
 ● The services it relies on.
 ● The number of daily users that bene�t from the feature (when it’s launched).

 Once a feature is implemented in all services that it relies on, it is immediately
 launched and users sta� to bene�t from it.

 Services and binaries

 Each service is pa� of exactly one binary, but one binary can contain multiple
 services 2 . Services can be moved between binaries and new binaries can be
 created as needed.

 When implementing a feature, the engineers take advantage of the fact that a
 binary contains multiple services - an engineer can implement a given feature in all
 relevant services in a given binary at once.

 Figure 1. There are two features (foo and bar), �ve services (sa, sb, sc, sd, se), three
 binaries (0, 1 and 2), and 2 engineers (G 0 and G 1). Binary 0 runs one service (se),

 binary 1 runs two (sa and sc) and binary 2 also runs two (sb and sd). To implement
 feature foo engineers need to work on services sb, sc, and sd, which means that

 they will need to work on two binaries (1 and 2). To implement feature bar, engineers
 need to work on features sa and sc, thus only binary 1.

 2 Initially each binary contains at least one service, but it is valid for binaries to
 become empty later on.

 2

 Scheduling work

 Your goal is to assign work to engineers to implement features so that as many
 users as possible bene�t from them.

 Google has G engineers who can implement the features. On each day an engineer
 can sta� any of the following tasks:

 ● Implement a feature F i in the services of binary B j .
 ● Move service S i from binary B j to another binary B k .
 ● Create a new empty binary.
 ● Wait for a number of days.

 None of these tasks can be interrupted, meaning that once an engineer sta�s
 working on a task, they will continue to do so for the duration of that task.

 Making changes to a set of services that are running in one binary is easier than
 making changes to services that are sca�ered across multiple binaries. On the
 other hand, many engineers working on services in one binary get in each other’s
 way, slowing down the work. This is described in more detail below.

 Task: Implement a feature

 An engineer can choose any binary B j and implement a feature F i in all relevant
 services in that binary at once.

 If an engineer works on a binary B j to implement a feature F i , this work will require
 D Fi + R Bj + C Bj days, where:

 ● D Fi is the di�culty of feature F i ,
 ● R Bj is the total number of services in B j (including services not relevant to F i) ,

 and
 ● C Bj is the number of engineers already working on features in B j on the �rst

 day of this work.

 Once the task is done, feature F i is implemented in all relevant services in B j .

 Multiple engineers can implement the same feature in di�erent binaries, but only
 one engineer at a time can implement a speci�c feature in one binary. If two
 engineers sta� working on the same binary (implementing two di�erent features)
 on the same day, the one listed earlier in the submission �le is the �rst to sta� and
 counts towards the number of engineers working on the binary for the second one.

 3

 (a) (b)

 (c) (d)
 Figure 2. (a) Engineer G 0 works on binary 2 to implement feature foo. In this case,

 R B2 = 3 as there are three services (sb, sc and sd) in binary 2, and C B2 = 0, as no other
 engineer is working on that binary that day. In total, the engineer needs D foo + 3 + 0

 days of work in binary 2 for feature foo. Similarly, engineer G 1 needs D bar + 1 + 0,
 where 1 is the number of services in binary 1 (service sa).

 (b) Both engineers work on binary 2 implementing di�erent features. Supposing
 that engineer G 0 sta�s �rst on this binary, G 0 needs D foo + 3 + 0 days: since no-one

 was working on binary 2, C B2 = 0. Engineer G 1 needs D bar + 3 + 1 days.
 (c) It is possible for two engineers to work on the same feature (here feature bar),

 but only if they work in two di�erent binaries.
 (d) It is not allowed for two engineers to work on the same feature on the same

 binary.

 4

 Task: Move a service

 An engineer can move a service S i from one binary B j to a di�erent binary B k . A�er
 the move, all features that needed service S i will need to have engineers working
 on binary B k instead of B j . Features already implemented in service S i remain
 implemented .

 It takes max(R Bj , R Bk) days to move service S i from binary B j to B k , where R Bj and R Bk
 are the number of services running in binaries B j and B k respectively, before the
 move.

 No other engineer can sta� working on binaries B j and B k until the move is
 �nished and the move can't sta� if any engineer is working on either binary at
 the time (implementing a feature or moving a service to/from one of these
 binaries) .

 Figure 3. Engineer G 0 moves service sc from binary 1 to binary 2. Observe that this
 a�ects both features (foo and bar).

 Task: Create a new binary

 An engineer can spend N days to
 create a new empty binary. Its ID is
 the minimum positive integer that is
 not used yet.

 Figure 4. Engineer G 1 creates a new
 empty binary (binary 3).

 5

 Task: Wait
 An engineer can wait for a number of days.

 Figure 5. An engineer takes a break and
 waits, for example watching cat videos.

 Input data set

 File format

 Each input data set is provided in a plain text �le. The �le contains only ASCII
 characters with lines ending with a single '\n' character (also called “UNIX- style” line
 endings). When multiple numbers or strings are given in one line, they are separated
 by a single space between each two elements.

 ● The �rst line:
 ○ time limit in days: L (1 ≤ L ≤ 10 3),
 ○ number of Google engineers G (1 ≤ G ≤ 10 5),
 ○ number of services S (1 ≤ S ≤ 10 4),
 ○ number of initial binaries B (1 ≤ B ≤ 10 4),
 ○ number of features F (1 ≤ F ≤ 10 4),
 ○ duration in days to create a new binary N (1 ≤ N ≤ 10).

 ● The next S lines describe the services and each of these contains:
 ○ the service name (string of 1-20 lowercase le�ers a-z and hyphens -),
 ○ an integer B i (0 ≤ B i ≤ B-1) - the ID of the binary where the service

 initially runs. Binaries are numbered from 0 to B-1 .
 ● The next F blocks of lines describe the features. On each block:

 ○ The �rst line contains:
 ■ the feature name (string of 1-20 lowercase le�ers a-z and

 hyphens -),
 ■ M i (1 ≤ M i ≤ S) - the number of services that need to be modi�ed

 to suppo� the i -th feature,
 ■ D i (1 ≤ D i ≤ 10 2) - the di�culty of the i -th feature,
 ■ U i (1 ≤ U i ≤ 10 5) - number of daily users that will bene�t from the

 feature once it is launched.
 ○ The second line contains a list of strings S i,1 , S i,2 , ... , S i,Mi - the

 names of the services to be modi�ed to suppo� the i -th feature.

 6

 Example

 The following example input dataset matches the one shown in Figure 1.

 10 2 5 3 2 5

 sa 1

 sb 2

 sc 1

 sd 2

 se 0

 foo 3 3 100

 sc sb sd

 bar 2 1 20

 sc sa

 10 days, 2 engineers, 5 services, 3 binaries and 2 features,

 we need 5 days to create a new binary.

 The first service is named 'sa' and runs in binary 1

 The second service is named 'sb' and runs in binary 2

 The third service is named 'sc' and runs in binary 1

 The fourth service is named 'sd' and runs in binary 2

 The fifth service is named 'se' and runs in binary 0

 foo feature is implemented in 3 services, its difficulty is 3

 and 100 users per day will benefit from it

 foo feature is implemented in services sc, sb and sd

 bar feature is implemented in 2 services, its difficulty is 1

 and 20 users per day will benefit from it

 bar feature is implemented in services sc and sa

 Note that the input �le does not contain any blank lines . Blank lines and line
 wrapping in the example above are added for clarity.

 Submissions
 Your submission describes the schedule of the engineers' work.

 File format

 ● The �rst line: E - the number of engineers that we plan the work for (0 ≤ E ≤ G)
 ● The next E blocks:

 ○ The �rst line: T (1 ≤ T ≤ L) - number of tasks for the given engineer.
 ○ The next T lines contain one of:

 ■ Literal impl followed by a feature name F i and a number B j -
 the engineer should implement the feature named F i in the
 binary with ID B j .

 ■ Literal move followed by service name S i and a number B j - the
 engineer should move service S i from binary B k (in which S i
 resides at the time of the move) to a di�erent binary B j .

 ■ Literal new - the engineer should sta� a new (empty) binary.
 ■ Literal wait followed by number W (1 ≤ W ≤ L) - the engineer

 should wait for W days.

 7

 Example

 2

 2

 move sc 2

 impl foo 2

 3

 wait 2

 impl bar 1

 impl bar 2

 Both engineers will work

 The first engineer will do 2 tasks

 Move service sc to binary 2

 Implement feature foo in binary 2

 The second engineer will do 3 tasks

 Wait for 2 days

 Implement feature bar in binary 1

 Implement feature bar in binary 2

 Figure 6. The timeline of the engineers' work.
 For engineer G 0 , moving cs from binary 1, where it is initially, to binary 2 will need

 max(R B1 , R B2), so 2 days. Implementing foo in binary 2 will require 6 days: D foo + R B2 +
 C B2 , where D foo = 3, R B2 = 3 and C B2 = 0. Similarly, for engineer G 1 we can calculate the

 days required to implement each of the binaries for the feature bar.

 (a) (b)

 8

 (c)
 Figure 7. The work of each engineer at every given time: (a) between days 0 and 2,
 (b) between days 2 and 4, (c) between days 4 and 8. A�er day 8, feature foo goes
 live, and stays live until the time limit (day 10), thus for 2 days. Feature bar goes live

 a�er day 9, and thus stays live for 1 day.

 Scoring
 The engineers execute the scheduled tasks, one immediately a�er another,
 according to the submission �le. If an engineer is scheduled to do a task but they
 can’t (e.g. they cannot move a service because another engineer is still working on
 the same binary), the solution is considered invalid and gets 0 points.

 It is valid for an engineer to �nish their tasks before the time limit. It is also valid to
 schedule tasks that will sta� or �nish a�er the time limit (such tasks are ignored).

 Once a feature is implemented in all relevant services before the time limit, it is
 immediately launched and the users sta� to bene�t from it. It is valid to only
 pa�ially implement a feature (e.g. if the engineer working on it would �nish a�er
 the time limit or not even sta� implementing the feature in some binaries), but it
 won’t earn any points. Likewise, features that get fully implemented a�er the time
 limit are allowed but won't earn any points.

 9

 Each feature launched before the time limit scores a number of points equal to

 U i ✕ max(0 , L - I i)

 where
 ● U i - number of users that bene�t from the i -th feature
 ● L - time limit in days
 ● I i - the day when the i -th feature was launched (number of days it took to

 fully implement i -th feature).

 The total score is a sum of the scores earned by each launched feature.

 Example

 For instance, in the example above, the �rst engineer will spend two days to move
 service sc from binary 1 to binary 2: initially there are 2 services in binary 1, and 2
 services in binary 2, so max(2, 2) = 2. The �rst engineer will then spend 6 days (3 + 3
 + 0) to implement feature foo there. So foo will be ready on day 8, meaning it will be
 live for two days (until day 10, which is the time limit), scoring 200 (= 2 days ✕ 100
 users) points.

 The second engineer will spend 2 days waiting and then 2 days (1 + 1 + 0)
 implementing feature bar in binary 1. They will then spend 5 days (1 + 3 + 1)
 implementing feature bar in binary 2. The feature will be live for 1 day, scoring 20
 points.

 The �nal score is 220 (200 + 20) points.

 Note that there are multiple data sets representing separate instances of the
 problem. The �nal score for your team will be the sum of your best scores for
 the individual data sets.

 10

