
City of Gangsters: Map Modding Part 2
Updated Sept 23 2021

City of Gangsters: Map Modding Part 2
Generating a blank city
Adding a river
Adding hills
Naming neighborhoods
Updating the screenshot
Uploading and playtesting

Previously in Part 1, we created a new map file and uploaded it to Steam. In this Part 2, we will
make a new map that we will customize.

Generating a blank city

Let’s make our own version of the city of Louisville, Kentucky.

Start a new game with the “Custom City” option, and overwrite the city name and state name to
say “Louisville” and “Kentucky”.

Then set the parameters as follows - it’s important that rivers, hills, and coasts be set to “none”,
the rest is up to you. For the “based on” starting city, pick Cincinnati if you have the Deluxe
edition, or if not, pick Detroit:

Start the game, which should produce a flat map, and export it as a mod, as described in Part 1:

This should produce a new folder:

Each mod is a directory that always has the same files and structure:

- Preview.png - this is the image that shows up on the Workshop page
- Description.txt - name and description that shows up both in Workshop and in the

game, for example:

- Data folder contains Data.txt which is the map definition we’re going to edit.

If you open Data.txt, it might look something like the following:

d

Most of this data is not going to be useful, but look for the following sections:

- mapsize - defines size of the map in game units (e.g. 400x400). For reference, a
single-family building is one unit wide, and a city block is typically 10 units long (say, 8
houses plus a road which is two units wide), with some variation.

- waternodes - this defines segments of water that make up rivers and lakes
- mountainnodes - defines hills (they’re not tall enough to be mountains, honestly ;))
- districts - defines named neighborhoods that show up on the map

We’ll learn how to mod them in that order.

Adding a river

Map size cannot be changed, but we will use it as a guide for placing everything else.

Find the mapsize in your map file. If you also started from Cincinnati, it should say:

mapSize { width 400 height 400 }

Also, here are the map sizes for the four started cities:
- Chicago: 300 x 400
- Cincinnati: 400 x 400
- Detroit: 400 x 400
- Pittsburgh: 400 x 300

Now let’s find a map of the city that we’re going to try to emulate. In this example we will mimic
the S-curve that the Ohio River etches as it meanders around the city of Louisville:

We’ll need to find various points that correspond to segments of this river. It’s probably easiest
to open this map in an image editing program like Photoshop or Paint.NET and then:

- Make a new file and paste the map screenshot
- Resize the image to be the same as map size, e.g. 400x400 in this case
- Draw points and lines that roughly follow the shape of the river

Now generate a list of coordinates for these nodes. We’ll give each node a name and
x-and-y-position, and list what previous node it connects to:

Now one more step: Photoshop has the (0, 0) coordinate in the upper left corner, but in-game
maps use the (0, 0) coordinate in the lower left corner. So in this case we need to flip the Y
coordinate, by computing y = 400 - y for each node:

Ok, we’re now ready to re-type this into the save file.

Open the Data\Data.txt file again, and look for section named “waternodes”. It should look
something like this:

This means “waternodes” is an empty array. Let’s add some new entries in that section for the
first three nodes, which we will call A B and C:

{ id "A" width 5 forceStart { x 2 y 66 } connectingNodes [] }
{ id "B" width 5 forceStart { x 35 y 99 } connectingNodes ["A"] }
{ id "C" width 5 forceStart { x 53 y 136 } connectingNodes ["B"] }

The fields for each entry are:
- id is the node name, in double quotes
- width is the width of the river at that point, in map units
- forceStart is the position of the node, in map units
- connectingNodes is the list of other water nodes it connects to (there may be multiple)

Your resulting list of nodes should look like this:

Save this, and let’s load this up in the game and see the beginnings of the Ohio River!

First don’t forget to enable the new mod:

Then we start a new game:

Now if we look in the corner of the map, we should see the beginnings of the river!

Go back to Data.txt and add all of the other remaining points. Also fix widths to be much more
proportional:

NOTE: there is no comma between nodes H and I, or pretty much anywhere else in this file.
This format is not the same as JSON, and commas and colons will cause errors.

Let’s load this in the game - now that’s more like it:

NOTE: as you edit mod files, MAKE SURE to balance the curly braces { } as well as square
braces [], so that there is an equal number of opening and closing braces, and in the correct
order. Unbalanced braces will cause errors.

Adding hills

Hills are collections of oblong blobs that get placed at specific locations.

Let’s place some hills like so:

Similarly as before we’re going to define them as entries under the “mountainnodes” array, with
the following fields:

- id - unique ID as before
- size - expansion size of the hill (not exactly map units, takes a bit of experimentation)
- forceStart - hill center

Now replace the empty mountainnodes array:

Find that and replace with a new list of nodes, like this:

And there we go, we get some nice low hills on the outskirts of town:

Naming neighborhoods

For neighborhoods, look for the “districts” field in the data file. This field will already be pre-filled
with some existing neighborhoods, and it might look something like this:

Each entry has the following fields:
- customname is the name displayed on screen

- You can use “\n” to force a line break, e.g. “HELLO\nWORLD”
- start is the x, y position of the district
- radius is the radius in map units
- tags is an array of tags, which can be one or more of the following:

- downtown tag specifies the center of town
- bizcenter tag specifies a commercial center, e.g. high-density hotels and stores
- indcenter tag specifies an industrial center, e.g. large factories and warehouses

Let’s replace exiting definitions with something more thematic, at correct locations, maybe like
this:

And when we run the game, we should see the following:

Updating the screenshot

One more thing: we changed the mod, we should also update the preview screenshot! The
Preview.png file in the mod folder is the old image of a flat map:

Simply replace it with a better screenshot in Photoshop or another image editor, for example:

Uploading and playtesting

Now that we have a mod we’re happy with, let’s export it to Steam and test it.

Follow instructions from Part 1 to go through the following steps:

- In the game, in Settings > Mods, share the local Louisville map on Workshop
- In Workshop, find the new item and then

- Change its visibility to “Public”
- Subscribe to the item yourself

- Quit and restart the game, and you should now see two Louisvilles, one local and one
remote

- Disable the local one and enable the remote one
- Start a new game in Louisville and verify it’s working correctly!

Also, let’s try to update this existing mod with some new changes:

- Go back to the mod text files, and try changing some aspects of it, such as name or
description

- Quit and restart the game, to force a refresh, and again go into Settings > Mods
- Select your local version of the mod (it should reflect the changes), and hit the “Update”

button
- In Workshop, you should see that the mod got updated

Congratulations! You have now made a customized map, and shared it with the world :)

