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The validity of the results is frequently criticized by opposing experts. We break down why you 
shouldn’t jump to conclusions. 
 

The role of experts in the American jurisprudence system has been expanding over time and has 
become an increasingly valuable source of specialized technical knowledge that trial lawyers 
seek. Originally, courts allowed expert testimony only when facts were considered too complex 
for lay jurors to understand. The Federal Rules of Evidence have liberalized this rule, allowing 
greater use of experts. Rule 702, which governs testimony by expert witnesses, states:  
 

A witness who is qualified as an expert by knowledge, skill, experience, training, or 
education may testify in the form of an opinion or otherwise if: 
 
(a) the expert’s scientific, technical, or other specialized knowledge will help the trier of 

fact to understand the evidence or to determine a fact in issue;  
(b) the testimony is based on sufficient facts or data; 
(c) the testimony is the product of reliable principles and methods; and 
(d) the expert has reliably applied the principles and methods to the facts of the case. 
 

One of the areas in which economists have specialized training is the application of statistical 
methods to the study of economic data and problems. One such method, regression analysis, has 
frequently been used by expert witnesses in judicial proceedings to explain the relationship 
(typically a linear relationship) among variables of interest. Regression analysis can provide the 
trier of fact with valuable insights into understanding what would have happened “but for” 
certain events. For example, regression analysis, in the form of an event study, is frequently used 
in securities litigation to predict the values of financial assets “but for” the defendant’s alleged 
illegal actions. In labor and employment, regression analysis is used to test whether there is 
“statistically significant” evidence of discrimination in employment outcomes across a group of 
employees.  
 
The validity of the results of regression analysis is frequently criticized by opposing experts on 
the basis of improper selection of the underlying data sample used for model estimation. An 
opposing expert may argue that the results of an expert’s analysis are unreliable if they are based 
on sample data that include obvious “outliers.” Using a case study example, this article suggests 
that, before criticizing the results of an opposing expert’s regression analysis, it is essential to 
 

1. implement proper statistical testing commonly used to detect “outliers” in the data and 
2. make a statistical distinction between an “outlier” (an “outlier” in a dependent variable) 

and an “influential observation” (an “outlier” in an independent variable).  
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Case Study: Expert A’s Proposed Regression Analysis  
The data used and the case presented below were created for illustrative purposes only. Assume 
that Expert A has been asked by legal counsel to investigate whether a certain executive has been 
harmed by his company’s executive compensation policy relative to predetermined industry 
standards. Expert A suggests that the level of executive incentive compensation is directly 
related to a company’s performance (earnings). Expert A hypothesizes that the variation in the 
executive’s compensation package is related in large part to the variations in the performance of 
the company that this executive manages. The ability to show a strong correlation between a 
company’s performance and incentive pay across companies in the industry enables Expert A to 
determine the level that an executive should have been paid given the level of his or her 
company’s performance and to determine whether this level is significantly different than what 
the executive actually did receive. Expert A collects data on incentive pay (Y variables) and 
companies’ performances (X variables) across a number of companies in the industry and 
quantifies the linear relationship between them using the regression analysis presented in figure 1 
below.  
 

 

The regression in figure 1 demonstrates the existence of a “statistically significant” relationship 
between two variables of interest, as measured by the slope coefficient t-value of 22. The t-value 
(or statistic) is the estimated value of the regression coefficient divided by its standard error and 
is used in determining whether the estimated regression coefficient meets the test of statistical 
significance. The statistical significance of the coefficient of an explanatory variable means that 
there is reasonable evidence that this explanatory variable will have an effect on a dependent 
variable. A t-statistic with an absolute value of 2.58, 1.96, or 1.65 or greater denotes statistical 
significance at the 1 percent, 5 percent, or 10 percent confidence level, respectively. It is 
conventional to use a 5 percent confidence level, but 10 percent or 1 percent are also commonly 
used. See Chris Brooks, Introductory Econometrics for Finance 72 (Cambridge Univ. Press 

y = 0.0355x + 0.2583
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Figure 1: Data Sample Used In Regression By Expert A

R2 = 0.9738 
Slope coefficient t-value = 22

Firm XYZ
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2002). A 5 percent confidence level is usually accepted as a threshold value by courts. In this 
illustrative case, the independent variables X (companies’ performances) are statistically 
significant in explaining the dependent variables Y (incentive pays) at the 1 percent confidence 
level.  
 
The regression in figure 1 also shows that the linear model explains 97 percent of the variation in 
incentive pays in the selected sample of companies as measured by R2 of 0.9739. The R2 
statistic, also called the coefficient of determination, measures the proportion of variability in a 
dependent variable that is accounted for by a statistical model or the movement in independent 
(explanatory) variables. In this illustration, the R2 statistic provides a statistical measure of 
“goodness of fit,” or how well the regression line approximates the real data points. An R2 of 1 
indicates that the regression line perfectly reflects the underlying data. In such a case, one can 
predict the value of a dependent variable with 100 percent certainty, given the values of 
independent variables used in a regression model.  

 
Based on the above results, Expert A concludes that incentive pay is related primarily to 
variations in a company’s performance and that the predicted incentive pay of a hypothetical 
executive is not significantly different from the actual pay to suggest an disparate impact on the 
executive.  

 
Case Study: Expert B’s Criticism of Expert A’s Regression Results  
Expert B suggests that visual inspection of the data plot used in Expert A’s regression model 
shows that Firm XYZ is a single obvious “outlier” because observations for all other firms are 
clustered in the lower left corner of the graph. Expert B opines that relying on the results of a 
regression that does not account for (or includes) outliers is a fundamental mistake, especially 
when it can be found that the results of the regression are dominated by one or more outliers in 
the sample. For this reason, Expert B suggests modeling the linear relationship between incentive 
pay and companies’ performances using a data sample that excludes the outlier (observation for 
the Firm XYZ). The results of this regression are presented in figure 2.  
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Expert B opines that removing the observation for Firm XYZ completely changes the regression 
results, as also illustrated in figure 2. The new regression shows no statistically significant 
relationship between incentive pay and a company’s performance (the slope coefficient t-value 
of 0.92 is lower than the critical value of 1.96 at the 5 percent confidence level), and it suggests 
that only 6.5 percent of the variation in incentive pay can be explained or attributed to variations 
in companies’ performances. For this reason, Expert B opines that Expert A’s conclusions are 
fundamentally flawed and unsupported because they are based on predictions that rely on a 
flawed regression model.  
 
Case Study: Which Expert Is Right? 
Before criticizing Expert A’s regression analysis on the basis of identifying an outlier by visual 
inspection of the data plot, the appropriate steps Expert B should have taken would be  
 

1. to implement proper statistical testing that is commonly used to detect outliers in data and 
2. to make a statistical distinction between an outlier and an influential observation. 

 
Testing for outliers. An outlier in linear regression is defined as an observation with a 
large “residual.” See Peter Kennedy, A Guide to Econometrics 373 (MIT Press 5th ed. 
2003). In other words, an outlier is an observation whose dependent variable (Y variable) 
value is unusual given values of the independent or explanatory variables (X variables). 
“Studentized residuals” (i.e., the residual divided by its standard error) have been 
commonly used in statistics to detect outliers in data. See Dennis R. Cook, “Detection of 
Influential Observations in Linear Regression,” 19 Technometrics 15–18 (Feb. 1977). 
The idea behind using studentized residuals is to identify observations whose residual 
(difference between actual value of Y or dependent variable and model predicted value of 
Y) is statistically different from the residuals of other observations. As a rule of thumb, 

y = 0.0355x + 0.2583

y = 0.0174x + 0.4515
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Figure 2: Regression Result with and without 
Observation for Firm XYZ

With "Firm XYZ"
R2 = 0.9738 
Slope coefficient t-value = 22

Without "Firm XYZ"
R2 = 0.0654 
Slope coefficient t-value = .92

Firm ABC



5 
 

an outlier can be considered any observation with a studentized residual above 1.96 (one 
should be even more concerned about observations with studentized residuals above 2.5 
or even 3). Calculation of studentized residuals for each observation used in Expert A’s 
regression shows no statistical evidence that Firm XYZ is an outlier because its 
studentized residual is 0.95 and, therefore, much lower than the critical value of 1.96. 

 
Now, consider the observation for another company, Firm ABC, shown in figure 2. There 
is strong evidence that Firm ABC is an outlier because its studentized residual is 5.66. 
Note that visual observation of data plots does show Firm ABC having an unusually high 
value of Y for a given level of X relative to other observations. 
 
Alternatively, one can test for the existence of an outlier by using a modified form of the 
original regression model that, in addition to the X variables (companies’ performances), 
would also have an “observation-specific dummy” (an observation that takes a value of 1 
if observation was for the Firm XYZ; otherwise, zero) as an explanatory variable. See 
Kennedy, supra, , at 379. The statistical significance of the coefficient on this “dummy 
variable” will indicate whether this particular observation (observation for Firm XYZ) is 
an outlier. In other words, the “coefficient value” on the “dummy variable” for Firm XYZ 
would explain by how much the difference between actual and predicted dependent 
variable Y (incentive pay) for Firm XYZ is different from the rest of the companies. If 
the difference is statistically significant, then the difference cannot be attributed to chance 
and the observation is an outlier. This approach also shows no statistically significant 
evidence that Firm XYZ is an outlier (tDUMMY=0.95), but it does find statistically 
significant evidence that Firm ABC is an outlier (tDUMMY=5.67). 
 
If an argument is made for the exclusion of an outlier from the regression analysis, then 
only Firm ABC should be a possible candidate for exclusion, suggesting that the opinions 
offered by Expert B are incorrect. Figure 3 shows the results of Expert A’s regression 
analysis, with and without observations for Firm XYZ, using a data sample that excludes 
observations for Firm ABC.  
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Figure 3 illustrates that the regression without Firm ABC shows a slight improvement in 
the “fit” relative to Expert A’s original regression. There is a slight increase in the 
explanatory power of the model, from 97 percent to 99 percent, and there is a significant 
increase in statistical significance of the slope coefficient (the t-value increases from 22 
to 40.85). 
 
The distinction between outliers and influential observations. When talking about 
outliers, it is important to distinguish between an outlier and an “influential observation.” 
The type of outlier discussed above, an outlier in the dependent or response Y variable, 
typically signals model failure. An influential observation, on the other hand, is an 
observation with an unusual value of an independent or explanatory X variable. A good 
example would be a graph of the dependent variable plotted against a single explanatory 
variable, with a group of observations clustered in a small area, and a single observation 
with a markedly different value of the explanatory variable in the same pattern of data 
displayed in Expert A’s regression. See Peter Kennedy, A Guide to Econometrics 373–74 
(MIT Press, 5th ed. 2003). Influential observations that are not outliers improve the 
precision of the regression coefficients. 
 
Detection of influential observations is typically done by comparing regression 
coefficient estimates calculated using the entire data set to regression estimates calculated 
using the entire data set less one observation. Any observation that, when eliminated, 
causes the regression estimates to change markedly is identified as an influential 
observation. Id. at 379. Expert B’s opinion that the removal of Firm XYZ from the 
regression completely changes the regression results is a good indication that Firm XYZ 
is an influential observation. There are two statistics that are commonly use to identify 
influential observations: DFITS and Cook’s D. Id.  

 

y = 0.0359x + 0.0857

y = 0.0207x + 0.25
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Figure 3: Expert A's Regression Result, without 
observation for Firm ABC (Results with and without 

Observation for Firm XYZ) 

Firm "ABC" 
exclude from 
the sample

With "Firm XYZ"
R2 = 0.9929 
Slope coefficient t-value = 40.85

Without "Firm XYZ"
R2 = 0.2916 
Slope coefficient t-value = 2.13
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DFITS measures the (normalized) change in the regression estimate of the ith value of the 
dependent variable resulting from omitting the ith observation when calculating the 
regression coefficient estimate. A rough rule is that observations with DFITSi greater 
than 2 ∗ ඥ݌/݊ should be investigated, where p is the number of independent variables 
and n is the number of observations. See D.A. Belsley, E. Kuh & R.E. Welsch, 
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (John 
Wiley 1980). In our illustrative case, this translates to 2*ඥ1/15 or 0.51. This test 
identifies two observations that can be considered “influential”: Firm ABC (DFITS=1.58) 
and Firm XYZ (DFITS=11.54).  
 
Alternatively, Cook’s Distance (Cook’s D) can also be used to detect influential 
observations. Cook’s D is based on the sum of squared differences between estimated Y 
values using all observations and estimated Y values eliminating the ith observation. This 
value is then normalized by dividing it by the estimated variance of the error term (the 
mean square error of the regression model) times the number of explanatory variables. 
The conventional threshold value for detection of influential observations is 4/n. See 
K.A. Bollen & R. Jackman, “Regression Diagnostics: An Expository Treatment of 
Outliers and Influential Cases,” in Modern Methods of Data Analysis 257–91 (J. Fox & J. 
Scott Long eds., Sage 1990). Cook’s D again identifies Firm ABC (Cook’s D=.37) and 
Firm XYZ (Cook’s D=67.08) as influential observations. 

 
Although removal of Firm ABC from the regression may be warranted given that this 
observation has been identified as an outlier in addition to being influential (bad influential 
observation), the same cannot be said for Firm XYZ. Kennedy concludes that removing 
influential observations from a model would be a major mistake. He posits that influential 
observations are the most valuable observations in a data set because they may reflect unusual 
facts that could lead to an improvement in the model’s specification. For example, if energy 
prices do not change significantly over time, when they do change, the new observations would 
be very useful in providing an estimate of future prices. See Kennedy, supra, at 374. Given that 
there is no evidence suggesting that this data point is a result of measurement error or other 
irregularity, there is no justification for removing this variable from the regression. Expert B is 
therefore wrong in opining that Expert A’s conclusions are fundamentally flawed and 
unsupported because they are based on predictions produced by a flawed regression model. 
Expert A’s regression is correct in including Firm XYZ observations in the model estimation. 
Figure 3 shows that, even if Firm XYZ is removed from the regression in addition to removing 
Firm ABC, the resulting coefficient on the X variable still shows a statistically significant 
positive relationship between incentive pay and company performance. 

 
Conclusion 
Although regression analysis has found widespread acceptance throughout the judicial system, 
the results of regression analysis have not gone unchallenged by opposing experts. An opposing 
expert may challenge the results of a regression analysis on the basis of the appropriateness of 
inclusion or exclusion of certain explanatory variables in or from the regression model. Or the 
opposing expert may argue that the results of a regression analysis are unreliable because they 
are based on sample data that include obvious outliers. Focusing on this latter criticism, this 
article illustrates that one should not jump to quick conclusions and criticize the results of an 
opposing expert’s regression analysis based on the detection of outliers through visual inspection 
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of data plots only. To support an opinion for exclusion of an outlier from the sample used for 
regression estimation, one is required to implement proper statistical testing commonly used to 
detect outliers in data and make a statistical distinction between an outlier and an influential 
observation. 
 
Keywords: litigation, trial evidence, regression analysis, statistical significance, outlier, 
influential observation 
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