RFT fine tuning



Agenda

Overview of Proximal Policy Optimization (PPO)

Introduction to Group Relative Policy Optimization (GPRO)
Understanding Reinforcement Fine-Tuning (RFT)

Comparative Analysis of OpenAl’s Reinforcement Fine-Tuning (RFT)

Look at Group Relative Reinforcement Fine-Tuning (GRFT)



Overview of Proximal Policy Optimization
(PPO)



Proximal policy optimization (w/ clipping)

Outer generation loop: repeat until dataset exhaustion

+ sampling likelihoods

Value model is updated at the end of the

. outer loop, after inner loops complete.
Prompts Policy model
: » @ Valuemodel - 5
, & % evaluate
What to do during || .......: > g ........ > \—L fo @ /]\ train {5}
a stopover in Paris? > sample Completions E

Values

calculate :

s ] Reward model ~---> Rewards -

H
v

Advantages

Inner optimization loop: repeat for k steps

advantages & sampling likelihoods

¢ Policy model
Estimated cacuate Importance N Current Svalate Q P
advantages sampling likelihoods -

— A

I

Completions

~\

l train with PPO-Clip {7}



Prompt

PPO This car is

Completion

This car is
a s

Probabilities of the next token
with the updated LLM

' 1 g S 71
LPOEICY — min (—Ta (e | Sl)) A, clip (_ﬂo (@ | ) ;1 =—e€1+ e) . Ar) b

M1 ((1., | St T o1a ((1., | St This car is

Completion

This car is

Probabilities of the next token Advantage term good ...
with the initial LLM )

Hyperparameters

/o \

LPPO LPOLICY L LVF-I-C LENT

\ J L &2 <o =)
A kA

Policy loss Value loss Entropy loss

Value
function

l

Va(s) (V\’

\/

Estimated
future total reward

0.34

Value
function

!

Vo(s) (*‘

\fJ

Estimated
future total reward

G

Value
loss

t=0 2
v i
Y
Estimated Known
future total reward  future total reward

l 1 T 2
LVF:2 (Z’yr,|so—s>
/

1.23 1.87



Update Actor using the gradient of J
" w.r.t parameters 6: VgJ

il - :
(LT ... Old treference) policy Update Critic using the gradient of MSE loss

Meolg(als) " 3 w.r.t parameters &: Vgl
N Nn | Twro(®)= E[s~P(S), a~Te,(Als)]
cor | o [ - etale) —— ————,
, ; ! [ melals) [ melals) .
/ // Policy ———"edd S 4(3, a), clip (n—emd @rs" 1-¢, 1 e) /t(s, a)]
Obs s » —_— A A

\ o) GAE

“ Crglc e V{,(S) ............ > A(S)



Introduction to Group Relative Policy
Optimization (GPRO)



PPO

e

Policy
Model

GRPO

[« H

Policy
Model

-

r D)
Reference

Model

Reward
Model

N f&

J

J-

5 Reference
1 Model
0, Reward
. Model

O¢g

Ay

Group A 2
Computation

Ag

Trained
Models

Frozen
Models

Figure 4 | Demonstration of PPO and our GRPO. GRPO foregoes the value model, instead
estimating the baseline from group scores, significantly reducing training resources.



def generate(model, input_ids, max_new_tokens=20, temperature=1.0, top_k=50, eos_token_id=None, pad_token_id=None,):
model.eval()
generated = input_ids.clone()

for _ in range(max_new_tokens):
# Get logits from model
outputs = model.forward(input_ids=generated)
logits = outputs.logits # shape: (batch_size, seq_len, vocab_size)

# Take the logits for the last token
next_token_logits = logits[:, -1, :] / temperature # shape: (batch_size, vocab_size)

# Top-k filtering
if top_k is not None:

top_k_values, top_k_indices = torch.topk(next_token_logits, top_k)

probs = torch.zeros_like(next_token_logits).scatter(1, top_k_indices, F.softmax(top_k_values, dim=-1))
else:

probs = F.softmax(next_token_logits, dim=-1)

# Sample from the distribution WITH RANDOMNESS
next_token = torch.multinomial(probs, num_samples=1) # shape: (batch_size, 1)

# Append to sequence
generated = torch.cat((generated, next_token), dim=1)

# Stop if EOS is generated
if eos_token_id is not None:
if (next_token == eos_token_id).all():
break

return generated



GRPO was designed to address the limitations of applying traditional PPO to language model fine-tuning. Its
primary innovation is the use of relative advantage estimation derived from a group of on-policy samples
rather than training a separate value network.

Traditional advantage estimation in RL is defined as:

At = Rt + YV (st41)-V(st)
or, in its Generalized Advantage Estimation (GAE) form, it seeks to predict the absolute “goodness” of actions
relative to a learned value function. However, GRPO introduces a relative advantage concept. Rather than

relying on an external value network, GRPO compares the rewards of multiple responses generated for the
same prompt.

Consider a given query (or state) g at policy parameters 6,q. We sample a group of GG responses:

01,02,...,0@G@

Each response o; is assigned a scalar reward R; (which may come from a learned reward model, rule-based
metric, or human feedback). We then compute the baseline reward for the prompt as:

— 1 G
R=z> R



Failure Points of GRPO



Failure Mode
Response Length
Bias
Question-Level

Difficulty Bias

Inadequate Data
Coverage

Limited
Generalization
Insufficient

Diversity in
Outputs

Scenario

Logic/Reasoning problems with
long CoT

Mixed-difficulty datasets, e.g.,
math benchmarks

Domains underrepresented in
data, e.g., geometry in math

Out-of-distribution prompts, e.g.,

novel problem types

Tasks needing varied responses,
e.g., creative generation

Reason

Normalization under-penalizes longer incorrect responses,
as noted in Evolution of Policy Optimization.

Normalization by std(r) skews focus to easy/hard questions,
per Evolution of Policy Optimization.

Lack of examples limits group-based advantage, from
DeepSeekMath Paper.

Focus on in-distribution tasks, inferred from DeepSeekMath

Paper.

Low diversity reduces advantage signal, inferred from
Predibase GRPO.



DAPO: Addressing Length Bias and KL Constraints
The DAPO paper highlights the limitations of the GRPO algorithm’s sample-

level loss in long-CoT scenarios, where longer responses are under-
penalized, leading to poorer quality outputs. The proposed solution is a
token-level normalization, which better handles longer sequences by
assigning more balanced rewards to individual tokens, regardless of

response length:

G |oi
Lparo(0) = — 55 1| z|2121

Additionally, the DAPO paper proposed the following innovations:

. Raise the Ceiling: Clip-Higher

DAPO introduces asymmetric clipping ranges (e_low) and (¢_high) to
address entropy collapse. With traditional symmetric clipping (¢=0.2),
high-probability tokens can easily be reinforced, but low-probability
“exploration tokens” struggle to increase significantly. By using a higher
upper bound, DAPO enables better exploration while maintaining

training stability.

. The More the Merrier: Dynamic Sampling

As training progresses, more prompts achieve perfect accuracy, leading
to zero advantage and thus no gradient signal. DAPO addresses this by
intelligently filtering the training batch, over-sampling to ensure all
prompts have accuracies between 0 and 1. This maintains consistent
learning signals throughout training, improving sample efficiency

without sacrificing performance.



Comparative Analysis of OpenAl’s
Reinforcement Fine-Tuning (RFT)



Score Model Grader

A ScoreModelGrader object that uses a model to assign a score to the input.

input array
The input text. This may include template strings.

v Show properties

model string
The model to use for the evaluation.

name string
The name of the grader.

range array
The range of the score. Defaultsto [0, 1] .

sampling_params object
The sampling parameters for the model.

type string
The object type, which is always score_model .

OBJECT Score Model Grader e
{
"name": "Example score model grader",
'input”: [
{
"role": "user",
"content": (
"Score how close the reference answer i

)

'model": "gpt-40-2024-08-06",

st
s 1,




Multi Grader

A MultiGrader object combines the output of multiple graders to produce a single OBJECT Multi Grader
score.

pe': "multi",
calculate_output string e

A formula to calculate the output based on grader results.

"example multi grader",

[

graders object

ext_similarity",

"example text similarity grader”,

"The graded text",

name string
The name of the grader.

"The reference text",

"evaluation_metric": "“fuzzy_match"

type string {
The object type, which is always multi .

"string_check",

"name": "Example string check grader",

"input": "{{sample.output_text}}",

"{{item. label}}",

"reference

]r

"calculate output": "0.5 * text similarity score +

w



Understanding Reinforcement Fine-Tuning
(RFT)



Question:
Sarah had $50. She bought a book for $15 and then a toy for $10. After that, she earned $25
from a part-time job. How much money does Sarah have now?

<think>
Sarah had $50 initially

She bought a book for 15 dollars, leaving her with 50 - 15 = 35 dollars
The book was about mermaids and knights ...
he then bought a toy for 10 dollars, leaving her with 35 - 10 = 25 dollars.

Finally, she earned 25 dollars from a part-time job, bringing her total to 25 + 25 = 40 dollars but
a then she got another $10

<think / >

Sarah ends up with $50



Q
<
®
2
5
=

o
=
@
[%2]
=3
o
=

She bought a book for 15 dollars, leaving her with 50 - 15 = 35 dollars

Question:

Finally, she earned 25 dollars from a part-time job, bringing her total to 25 + 25 = 40 dollars but
a then she got another $10

o]
=
@®
w
(=1
o
=

The book was about mermaids and knights ...

Question:

She then bought a toy for 10 dollars, leaving her with 35 - 10 = 25 dollars

Sarah ends up with $50



Reward Processing
Let there be M total segments indexed by k = 1,2, ..., M. Define:

¢ S;.: Thought score at segment k
e Py Progress score at segment k
e G Overall critic score

First, normalize the thought score using z-score normalization:

1 M ] M
e 2 ] — | Y
s =77 ;Sk, os M ;(Sk 1s)? + €sta

T
os

Apply asymmetric scaling:

Sk<— a-S’k, ifngO
§-Sk, ifSr<0

Define the moving average of past progress over window W:

k= 1 k-1
(W k1) > iemax(ie-w) Pin k>1

The progress delta:

APk =P, — Pk

Define the base progress effect:

AP - L, AP, >0
Erp={ —log(l+|AP)- 2, AP, <0
0, AP, =0

Define the progress multiplier:

mp = Sk
ETEX
Then the full progress effect is:
Qr = Ej. - my,

Finally, the combined segment score is:
Cr=G+ S’k + Qx

For normalization of combined scores (if required):

pe=—=—Y Cr oc= 4= (Cr—pc)®+e€sa
M = M —~



Symbol

Hc, O0C

aq

a3

Meaning
Overall critic score
Thought score at segment k
Progress score at segment k
Mean and standard deviation of S1,...,Sm
Small constant for numerical stability
Boost factor for positive normalized scores
Dampening factor for negative normalized scores
Window size for computing moving average of past progress
Divisors for scaling positive and negative progress
Base offset applied when progress is negative
Divisor for progress multiplier
Mean and standard deviation of combined scores C1,...,C)ys
Scaling factor for the final answer
Multiplier to cap the minimum segment score
Additive offset to cap the maximum segment score
Discount factor for future rewards

PPO clipping threshold for policy updates

Cyp

Cof

B

Yi

Ry

Sks Sk+1
Vg (s k)
Vaolout (3 k)
7%

Sk,j

)
Trollout
Tref

Ny,
Dxy,

Maximum allowed change in value predictions (clipping range)
Coefficient for the value-loss term

Coefficient for the KL-divergence penalty

TD target (reward + discounted next-state value)

Reward assigned to segment k (already defined in text, not table)
State before generating segment kor k + 1

Value prediction from current model @ at state s,

Value prediction from rollout policy at state sy,

Token jin segment k

State before generating token ¢, ;

Current model's policy (probability distribution over tokens)
Rollout model's policy

Reference policy (used for KL regularization)

Number of tokens in segment k

KL divergence between two distributions



Chain-of-Thought RFT Objective KL penalty:

Foreachsegmentk =1,...,M + 1, let: - Ni
Ly = ZDKL (rotout (+ | 8k5) || et (- | Sk.5))-
* s the state before generating the k-th chain-of-thought CLy, or the final answer. J=1

e Rj:reward assigned to segment k Total segment loss:

Define the temporal-difference target (return) and advantage: Li(6) = Lgmp ] LXF " ﬂLfL.
Yi = R + v Veoltout (8k11), Ak = Yie — Vig(s1)- Overall objective (minimize expected sum of segment losses):
Probability ratio: M+1

Lrp1(6) = Erorpu | Y In(6)-
Ny k=1
pr(0) = exp (Z [log g (tx.j | Sks) — 10g Trotiout (tk; | sk,j)])-

j=1
Clipped policy loss:

LCP — max (— Ay, pi(0), —Ax clip(pi(0), 1 — €, 1 +€)).
Value loss:
Let

V™ = Viotiout (8%) + clip (Vo(sk) — Veoliout (8%), —Cus €v)-
Then

ve 1 {max((Vg(sk) -Y3)2, (V® —-%3)%) ife, >0,

LVF=—
¢ 2 | (Vo(sk) — Ya)? ife, <0.



Value loss:

Let
chlip = Viollout (&) + clip(Va(sk) — Violiout (8k); —Cus €0)-
Then
LVF _ l{max((Ve(Sk) —Y3)?, (ch']ip -Y:)?) ife, >0,
2 | (Vo(sk) — Y)? ife L0
KL penalty:

Ni
L}fL = ZDKL (“rollout(‘ | sk,j) ” Wref(' | sk,j))'
=1

Total segment loss:
Lx(0) = L{™* + ¢y LT + BLE".

Overall objective (minimize expected sum of segment losses):

M+1
ﬁRFT(e) = IET""Wm]lunt [E Lk(e)] *
k=1



for epoch=1to F do
for each batch B C D do
Generate trajectory under mrpef
Sample CoT output @ = {CLy, ..., CLjps} from mes(| B)
Critic evaluation
Get G, (Sk, Py) from criticon a
Compute segment rewards
Fork=1,..., M, compute Ry
compute Rz for answer
Optionally whiten { Ry} 1
Precompute rollout values & log-probs
Fork=1,..., M +1:
compute Vies(sk), log mrer(ak|sk)
Policy update under 7y
Fork=1,...,.M +1:
Compute TD target Yy = R + YVier(8k+1)
Compute advantage Ay = Yi — Vy(sk)
Compute py = mo(ar|sk)/mret(ar|sk)
Compute LgLIP, LXF, L}f[‘

Ltotal e 21;1 LgLIP + cva}c/F oo ﬁLi{L]
Update 8 «— 0 — nV g Liotal
Update 7o <— g (Optional, periodic)



Reinforcement Fine-Tuning v2 (GRFT)



GRPO

KL T e

0,
Policy 0,
Model .
Og

Question:

She bought a book for 15 dollars, leaving her with 50 - 15 = 35 dollars

Question:

The book was about mermaids and knights ...

Reference " A
Model - L 4 ]
T, Group A,
Computation| “—
TG Ag




