
Vortex proposal for triton &
subsequent changes

Agenda

The essentials required by triton

TritonIR & TritonGPU IR

Pytorch support

Instructions vortex needs to support

architecture changes

CUDA/OpenCL Triton

Memory Access: Allows direct load/store operations from global
memory. Programmers manage global, shared, and local memory
explicitly.

Thread Model: Uses threads organized in a hierarchy of blocks
and grids. Threads within a block can share data via shared
memory.

Synchronization: Provides explicit synchronization primitives
within a thread block (e.g., __syncthreads()).

Operates on various kinds of data Tensors, buffers, images all of
which may have differing access patterns

● Triton does not have a way to load/store from global
memory by design

● instead users and can load a "slice" of a tensor from global
memory to shared memory

● or store a "slice" of a tensor from shared memory to global
memory

● Synchronization: Abstracts many synchronization details,
simplifying the programming model for ML

● Pretty much only operates on tensors

Example of simple add triton kernel

Triton Ops which requires Arch/ISA changes

tl.load/store: Vortex does not have a way to perform async shared memory operations

tl.dot: Vortex Tensor cores are WIP and can be used for dot ops*

Misc instructions: warp shuffle,tl.atomics, tan etc

Shared memory

Shared
memory

Shared memory

load from gmem to smem
store from smem to gmem
store from smem to smem(copy)

Will require a different Address
space, ISA instructions

TritonIR vs TritonGPU IR

 •Memory Operations: Triton IR uses generic loads/stores; TritonGPU IR has specialized async and local memory
operations

 •Execution Model: Triton IR is more abstract; TritonGPU IR explicitly manages asynchronous execution and
synchronization

 •Memory Hierarchy: TritonGPU IR exposes GPU-specific memory types (shared, local) and layouts (#blocked, #mma)
 •Hardware Specificity: TritonGPU IR includes GPU-specific attributes (CTAs, warps) and optimizations for tensor cores
 •Optimization Level: Triton IR is higher-level and more portable; TritonGPU IR allows for more fine-grained GPU-specific

optimizations

Snippet of TritonIR

Snippet of TritonGPU IR

Async memory operations for TritonGPU IR

triton_gpu.async_commit_group

triton_gpu.async_copy_global_to_local

triton_gpu.async_wait

Will likely require copy queues and "DMA" units to asynchronously copy
elements between Global memory and Shared memory

Adding compiler support

(TritionGPU* IR +Tensor + Arith, other MLIR dialects)->

 (SPIRV + Vortex Instrics)->

 (RISC V assembly)

PyTorch

triton requires tensors to be located on "device"

a Pytorch backend for vortex would be necessary

Only memory operations support is necessary

