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Trajectory Optimization Through Contacts

and Automatic Gait Discovery for Quadrupeds
Michael Neunert, Farbod Farshidian, Alexander W. Winkler, Jonas Buchli

Abstract—In this work we present a Trajectory Optimization
framework for whole-body motion planning through contacts.
We demonstrate how the proposed approach can be applied to
automatically discover different gaits and dynamic motions on a
quadruped robot. In contrast to most previous methods, we do
not pre-specify contact-switches, -timings, -points or gait patterns,
but they are a direct outcome of the optimization. Furthermore,
we optimize over the entire dynamics of the robot, which
enables the optimizer to fully leverage the capabilities of the
robot. To illustrate the spectrum of achievable motions, we show
eight different tasks, which would require very different control
structures when solved with state-of-the-art methods. Using our
Trajectory Optimization approach, we are solving each task with
a simple, high level cost function and without any changes in the
control structure. Furthermore, we fully integrate our approach
with the robot’s control and estimation framework such that
we are able to run the optimization online. Through several
hardware experiments we show that the optimized trajectories
and control inputs can be directly applied to physical systems.

Index Terms—Multilegged Robots, Motion and Path Planning,
Optimization and Optimal Control

I. INTRODUCTION

IN motion planning and control, one major challenge is to

specify a high level task for a robot without specifying how

to solve this task. In legged locomotion such tasks include

reaching a goal position or manipulating an object without

specifying gaits, contacts, balancing or other behaviors. Tra-

jectory Optimization (TO) recently gained a lot of attention

in robotics research since it promises to tackle some of these

problems. Ideally, it would solve complex motion planning

tasks for robots with many degrees of freedom, leveraging the

full dynamics of the system. However, there are two challenges

of TO. Firstly, TO problems are hard problems to solve,

especially for robots with many degrees of freedom and for

robots that make or break contact. Therefore, many approaches

add heuristics or pre-specify contact points or sequences.

However, this then defines again how the robot is supposed to

solve the task, affecting optimality and generality. Secondly,

TO cannot be blindly applied to hardware but requires an

accurate model as well as a good control and estimation

framework. In this work, we are addressing both issues. In our

TO framework, we only specify high level tasks, allowing the

solver to find the optimal solution to the problem, optimizing
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Switzerland. {neunertm, farbodf, winklera, buchlij}@ethz.ch

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Sequence of images during execution of the rough manipulation task
in hardware. Time progresses line-wise from top left to bottom right.

over the entire dynamics and automatically discovering the

contact sequences and timings. Second, we also demonstrate

how such a dynamic task can be generated online. This work

does not present a general tracking controller suitable for all

trajectories. However, we show a successful integration of TO

with our estimation and control framework, allowing the exe-

cution of several tasks on hardware even under disturbances.

TO tries to solve a general, time-varying, non-linear optimal

control problem. There are various forms of defining and tack-

ling such a control problem. An overview can be found in [1].

With the increase of computational power, TO can be applied

to higher dimensional systems like legged robots. Thus, it

gained a lot of attention in recent years and impressive results

were demonstrated [2], [3], [4]. Yet, these approaches do not

present hardware results and [2], [3] do not discuss how to

stabilize the trajectory. One of the conceptually closest related

work is [5]. However, no gait discovery or very dynamic

motions are shown and hardware results are missing. Later

work [6] includes hardware results but the planning horizon

is short, the motions are quasi-static and contact changes

are slow. In [7] TO through contacts is demonstrated on

hardware. While the results are promising, the approach is only

tested on a single leg platform and for very simple tasks. In

general, work that demonstrates TO through contacts applied

to physical, legged systems is rare [8], especially on dynamic

motions and torque controlled robots. TO with dynamic mo-

tions demonstrated on quadruped hardware is presented in [9].

The results of this work are convincing and the authors are

also considering actuator dynamics. However, their approach

differs in key areas to the presented work: Contact sequences

are pre-specified and their approach optimizes over control

parameters for a fixed control structure, rather than whole body

trajectories and control inputs. Additionally, they are using

black box optimization. TO is also used for kinematic [10]

or kinodynamic planning [11]. However, these approaches fall
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short for evaluating stability or generating dynamic motions

such as jumping. Also, not all kinematic plans are dynamically

feasible since they may exceed torque limits or friction cones.

Often motion planning through contacts is solved using a hier-

archy of optimization problems [12], [13], [14], [7]. The issue

is that the lower hierarchies need to respect the constraints of

the higher hierarchies, often leading to heuristics which impair

the optimality of the overall solution.

A. Contributions

In this work, we apply TO in form of Sequential Linear-

Quadratic (SLQ) control [15] to the quadruped robot HyQ

[16], both in simulation and on hardware. Our work is one of

very few examples, where TO is used to plan dynamic motions

through contact changes on a whole-body 3D model and where

these trajectories are shown to work on hardware. Compared

to previous work on TO through contacts [2], [3], [4], [10],

these hardware results help to understand the capabilities and

limitations of the approach on physical systems. Furthermore,

this is possibly the first time that a gait-free whole-body TO

approach is shown on quadruped hardware. In contrast to

state-of-the-art approaches on quadrupeds [9], neither contact

switching times nor contact events nor contact points are

defined a priory. Instead they are a direct outcome of the

optimization. This allows us to generate a diverse set of mo-

tions and gaits using a single approach. By using an efficient

formulation based on Differential Dynamic Programming and

our high-performance solver, optimization times for these tasks

usually do not exceed a minute, even for complex trajectories,

outperforming state-of-the-art approaches [2], [9]. Thus, the

TO can be run online and adapt to the given situation. Hence,

this work is also one of the earliest examples of whole body

TO run alongside a control and estimation pipeline for a legged

robotic system. Many TO approaches [2], [3], [10] simply

”play-back“ trajectories for visualization rather than testing

them in a control framework. However, only by executing

trajectories in the loop with estimators and controllers, we

can see physical defects, argue about stability and verify our

model assumptions.

II. TRAJECTORY OPTIMIZATION

A. Optimal Control Problem

In this work, we consider a general non-linear system

ẋ(t) = f(x(t),u(t)) (1)

where x(t) and u(t) denote state and input trajectories re-

spectively. Our TO approach tries to find the optimal state and

control trajectories by solving a finite-horizon optimal control

problem which minimizes a given cost function

J(x,u) = h (x(tf )) +

∫ tf

t=0

l (x(t),u(t)) dt (2)

To solve this optimal control problem, we apply Sequential

Linear Quadratic Control [15], which optimizes a linear, time-

varying feedback and feedforward controller of the form

u(x, t) = uff (t) +K(t)x(t) where K(t) is the time-varying

control gain and uff (t) the feedforward control action.

Algorithm 1: SLQ Algorithm

Input: System dynamics: ẋ(t) = f (x(t),u(t))

Input: Cost function: J = h (x(tf )) +

tf∫

t=0

l (x(t),u(t))

Input: Initial state and control law: x(0),u(x, t)
repeat

x(0...tf )←
∫ tf
0 f(x(t),u(x, t)) // Rollout dynamics

ua(0...tf )← u(x(0...t), 0...t) // Record controller

for t = 0 to tf − 1 do
Linearize the system dynamics

A(t)← ∂f
∂x
|x(t),u(t)

B(t)← ∂f
∂u
|x(t),u(t)

Quadratize cost function

q(t)← J(t), q(t)← ∂J
∂x
|x(t),u(t), Q(t)← ∂2J

∂x2 |x(t),u(t)

P (t)← ∂2J
∂x∂u

|x(t),u(t)

r(t)← ∂J
∂u
|x(t),u(t), R(t)← ∂2J

∂u2 |x(t),u(t)

for t = tf − 1 to 0 do
Solve the Riccati-like difference equations:

P (t)← Q(t) + AT (t)P (t + 1)A(t)+
KT (t)HK(t) + KT (t)G + GTK(t)

p(t)← q+AT (t)p(t+1)+KT (t)Hl(t)+KT (t)g+GT l(t)
H ← R(t) + BT (t)P (t + 1)B(t)
G← BT (t)P (t + 1)A(t)
g ← r(t) + BT (t)p(t + 1)
K(t)← −H−1G //feedback update

l(t)← −H−1g //feedforward increment

α← 1 // Initialize line search

repeat
Line search

1. Update the control:

u(x, t)← ua(t) + αl(t) + K(t)x(t)
2. Forward simulate the system dynamics:

x(0...tf )←
∫ tf
0 f(x(t),u(x, t))

3. Compute new cost:

J = h (x(tf )) +
∫ tf
t=0 l (x(t),u(t)) dt

4. decrease α by a constant αd:

α = α/αd

until found lower cost or number of maximum line search steps reached

until maximum number of iterations or converged (l(t) < lt)

B. Sequential Linear Quadratic Control

Sequential Linear Quadratic Control is an iterative optimal-

control algorithm. SLQ first rolls out the system dynamics.

Then, the non-linear system dynamics are linearized around

the trajectory and a quadratic approximation of the cost

function is computed. The resulting Linear-Quadratic Optimal

Control problem is solved backwards. Since the solution to the

Linear-Quadratic Optimal Control problem can be computed in

closed form with Ricatti-like equations, SLQ is very efficient.

Algorithm 1 summarizes the algorithm. SLQ computes both,

a feedforward control action as well as a time-varying linear-

quadratic feedback controller. Handling input constraints in

SLQ is possible and we do so by saturating the control input

[17]. So far SLQ type algorithms were known to be unable

to handle state or state-input constraints. However, recent

research conducted after the herein presented work, shows that

SLQ is able to handle state and state-input constraints without

breaking its linear time complexity by using soft-constraints

[18] or by modifying the algorithm [19]. While not yet used in

this work, these approaches extend the applicability of SLQ.

C. Cost Function

While SLQ can handle non-quadratic cost functions, pure

quadratic cost functions increase convergence and are often

sufficient to describe complex tasks. Therefore, we assume
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our cost function to be of quadratic form

J = x̄(tf )
THx̄(tf ) +

tf
∫

t=0

x̄(t)TQx̄(t) + ū(t)TRū(t) dt

(3)

where x̄(t) and ū(t) represent deviations of state and input

from a desired state and desired input respectively. These

references are fixed, time-invariant setpoints, i.e. there are no

state or input trajectories. H , Q and R are the weightings

for final and intermediate state as well as control input cost

respectively. In some instances, we add intermediate state

waypoints to the cost function. These temporal costs are

weighted by the waypoint cost matrix W (x, t) and defined

as

W (x, t) =

N
∑

n=0

x̂n(t)
TW nx̂n(t)

√

ρn

2π
exp

(

−
ρn

2
(t− tn)

2
)

(4)

where ρp defines the ”temporal spread“ of the cost and tn
defines the time at which the waypoint is active. The waypoint

penalizes the deviation from a fixed, time-invariant, desired

state xn,d via the difference x̂n(t) = x(t)− xn,d. W n de-

fines the weighting, which is a purely diagonal matrix. We

limit the waypoint usage to two explicit cases: Firstly, when

a task cannot possibly be described by a pure quadratic cost

function and secondly to increase robustness during hardware

experiments. All quadruped gaits shown in Section V are

discovered without the use of waypoints.

III. SYSTEM MODEL AND ROBOT DESCRIPTION

For the experiments in this paper, we use the hydraulically

actuated, quadrupedal robot HyQ [16]. Each of the four legs

on HyQ has three degrees of freedom, namely hip abduc-

tion/adduction (HAA), hip flexion/extension (HFE) and knee

flexion/extension (KFE). Each joint is driven by a hydraulic

actuator. Joint torques and positions are measured via load

cells and encoders respectively. A hydraulic force control loop

is closed at joint level [20].

A. Rigid Body Dynamics

While it is a simplification, torque tracking performance on

HyQ is sufficient for modeling the robot as a perfectly torque

controlled system. Thus, we assume HyQ to behave like a

rigid body system defined as

M(q)q̈ +C(q, q̇) +G(q) = JT
c λ(q, q̇) + ST τ (5)

where M denotes the inertia matrix, C the centripetal and

Coriolis forces and G gravity terms. q is the state vector

containing the 6 DoF base state as well as joint positions

and velocities. External and contact forces λ act on the

system via the contact Jacobian Jc. Torques created by the

actuation system τ are mapped to the actuated joints via the

selection matrix S. To formulate our dynamics according to

Equation (1), we define our state as

x = [Wq Lq̇]
T = [WqB WxB qJ LωB LẋB q̇J ]

T (6)

where WqB and WxB define base orientation and position

respectively, which are expressed in a global inertial “world”

frame W . The base orientation is expressed in Euler angles

(roll-pitch-yaw). Base angular and linear velocity are denoted

as ωB and ẋB respectively and both quantities are expressed in

a local body frame L. Joint angles and velocities are expressed

as qJ and q̇J respectively. Expressing base pose and twist

in different frames allows for more intuitive tuning of the

cost function weights. Using Equations (5) and (6) our system

dynamics in Equation (1) become

ẋ(t) =

[

W q̇

Lq̈

]

(7)

=

[

RWL Lq̇

M−1(q)(ST τ + Jcλ(q, q̇)−C(q, q̇)−G(q))

]

where RWL defines the rotation between the local body frame

L and the inertial “world” frame W . While dropped for

readability, RWL is a function of Wq which needs to be

considered during linearization. For SLQ we need to linearize

the system given in Equation (7). For the derivatives of the

upper row with respect to the state x as well as all derivatives

with respect to τ we compute analytical derivatives. For the

derivatives of the lower row in Equation (7) with respect to

the state x, we use numerical differentiation.

B. Contact Model

Choosing or designing an appropriate contact model is

critical for the performance of TO. For TO it is beneficial

to use a smooth contact model which provides good gradients

of the dynamics. Yet, a soft model can lead to unphysical

effects such as ground penetration or sliding contacts. As

a trade-off we are using a non-linear spring-damper contact

model extending the model proposed in [15]. We consider

two contact models: one collinear and one orthogonal to the

surface normal. The orthogonal contact model is defined as

λN =











0 pn ≤ 0

(kn + dnṗn)
p2
n

2αc
ns 0 < pn < αc

(kn + dnṗn)(pn − αc

2 )ns pn ≥ αc

(8)

while the tangential model is defined as

λt =











0 pn ≤ 0

(ktptnd + dtṗtnv)
p2
n

2αc
0 < pn < αc

(ktptnd + dnṗnnv)(pn − αc

2 ) pn ≥ αc

(9)

Both models include proportional and derivative terms which

can be interpreted as springs with stiffnesses kn, kt and

dampers with damping ratios dn, dt respectively. The range

of parameter values used for the contact model are given

in Table I. For the normal direction the spring displacement

pn is defined as the ground penetration along the surface

normal ns. In tangential direction, the offset pt is computed

between the current contact location and the location where

the contact has been established. In case of the tangential

model, the force vector λt is composed of the spring force

in tangential displacement direction nd and a damping force

in displacement velocity direction nv . Both, the normal and
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TABLE I
TYPICAL VALUES FOR CONTACT MODEL PARAMETERS

αc kn dn kt dt

0.01 8000...90000 2000...50000 0...5000000 2000...5000

0.02

pn [m]

0.01
0-1

0

_pn [m/s]

100

200

0
1

6
n

[N
]

0.02

pn [m]

0.01
0-0.01

0

pt [m]

0

200

-200
0.01

6
t
[N

]

Fig. 2. Visualization of the contact model. The left plot shows the contact
force in surface normal direction as a function of penetration and its derivative.
The right plot shows the force in tangential direction as a function of
penetration and tangential displacement.

tangential contact models are visualized in Figure 2. To avoid

discontinuities during contact changes, the models are non-

linear towards zero ground penetration, i.e. for pn < α, where

αc is a smoothing coefficient.

Friction and friction limits are considered by the contact

model via friction cones. Thus, they are not included as

constraints but are a part of the dynamical system. This

allows the TO algorithm to reason about possible slippage and

contact force saturation. In this work, we assume that static

and dynamic friction coefficients are the same. Therefore, the

friction cone can be expressed as a contact force saturation

F t,sat = max(||F t||, µFn)nt, where F t and Fn are contact

forces parallel and orthogonal to the surface. The normal

vector nt defines the direction of the (unsaturated) tangential

contact force F t. The friction coefficient is denoted by µ.

Saturating the contact forces results in discontinuities in the

overall dynamics. However, due to numerical differentiation,

gradient information is recovered and line search helps to

mitigate the issue in practice. One could consider replacing the

hard limit by a (conservative) soft limit. While the presented

contact model works well for obtaining trajectories, there are

limitations when it comes to the robustness of the obtained

trajectories. While the friction cone is considered, violations

of it, i.e. sliding contacts, are not penalized. However, such

slippage can cause issues during execution. Additionally, the

previously mentioned trade-off between softness for gradients

and physical accuracy remains. These and other limitations are

discussed in Subsection VI-B.

IV. STATE ESTIMATION AND TRACKING CONTROL

Our TO is fully integrated into our estimation and control

framework, shown in Figure 3. This framework consists of

base state and ground estimators, the SLQ solver and tracking

controllers. The base estimator and controller run at 250 Hz,

while the joint controller operates at 1 kHz.

A. State Estimation

SLQ assumes full state-feedback. We directly measure joint

positions using encoders and compute joint velocities using

numerical differentiation. These measurements are fused with

IMU data to obtain a base state estimate [21]. While in

Fig. 3. Overview of the control and estimation pipeline. Base, stance
and ground estimators provide information about the location and contact
configuration of the robot. Joint and base controllers stabilize the robot.

the TO problem, we assume a soft contact model, our base

controller uses discrete contact state information. We obtain

the contact state by estimating ground reaction forces from

joint torques and compare them to a fixed threshold. We

then fit a ground plane to the last contact points of all feet,

which provides an estimate of the elevation and contact surface

normal. This plane is then also the reference for the soft

contact model in the TO. While this is a shortcut to ground

estimation or elevation mapping, the presented approach is

not limited to co-planar contacts. However, to maintain good

gradient information the ground height and normal should be

continuous and differentiable.

B. Tracking Controller

SLQ does not only optimize feed-forward control action but

also a feedback controller. While we have successfully applied

theses feedback gains to robotic hardware [22], we are not

using the optimized feedback gains in this work. The gains are

computed for a linearized model and thus significantly depend

on the linearization point. During execution, the robot’s state

will deviate from this nominal point and can thus lie outside

of the region of attraction of the controller. Therefore, we use

a combination of a joint and base state controller instead. A

base controller allows us to directly track the base state and

tune feedback gains on these states intuitively. Yet, for swing

legs, we still require a joint controller. Additionally, a joint

controller on stance legs increases robustness. Hence, we use

PD controllers on both, the base and all joint states. The base

PD task space controller can be described as

F cog = P x(Lx
∗
base−Lxbase)+Dx(Lẋ

∗
base−Lẋbase) (10)

which regulates errors between desired (Lx
∗
base, Lẋ

∗
base) and

actual (Lxbase, Lẋbase) base state. The desired body wrench

F cog is applied to the robot by converting it to forces at the

feet λc and then mapping them to the joint torques through

τfb = J
T
c λc. These torques are then added to the feedforward

control action obtained from SLQ. Since it is a model based

approach. the SLQ control action already includes torques that

counteract gravity and thus, gravity compensation does not

need to be added in Equation (10).

V. EXPERIMENTS

To validate the approach, we describe different choices of

cost functions and show the resulting gaits and motions. For
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Fig. 4. Time series of the optimized trajectories for each task. Poses are shown
as a color gradient over time ranging from red (initial pose) to green (final
pose). Intermediate poses are indicated in transparent white. All displayed
motions contain contact switches during dynamic maneuvers. These contact
switches result from optimization and are not pre-specified.

all tasks executed on hardware we use hard input constraints.

Not all tasks are executable on hardware for which a thorough

discussion is provided in Subsection VI-B.

For each task, the cost function is shown as a color code

below the heading. The colors indicate the individual, relative

weightings of the diagonal entries of each weighting matrix,

ranging from lowest (green) to highest (red) on a logarithmic

scale. No color means that the respective value is zero and all

off-diagonal elements are zero as well. The input cost matrix

R is set to identity in all experiments. All tasks are initialized

with a simple stance controller and no contact sequence or

timings are given. Snapshots of all tasks are shown in Figure 4.

The optimized trajectory and hardware experiments are shown

in the video. All cost functions, solver parameters and the

robot model are provided as supplementary material1.

A. Galloping

The first gait we demonstrate is galloping. The galloping

gait is a direct outcome of setting the final cost terms to penal-

ize the deviation from a desired final pose which is 2 m in front

of the robot. Additionally, we add some regularization on the

base and leg motion to prevent excessive motions of the body

or the limbs. As the results in Figure 5 illustrates, we obtain

a gallop motion with 9 steps which includes acceleration and

deceleration. Finally, the robot reaches a desired position at

x = 2.0 m. As expected, we see significant pitch motion of

the upper body. From Figure 6 we can tell that mostly the

hind legs are used for acceleration.

B. Trotting

1https://bitbucket.org/neunertm/hyq slq config
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Fig. 5. Plots of base pose and base twist during galloping as optimized by
SLQ. The robot takes in total 9 galloping steps. The desired final position at
x = 2.0 m is reached with good accuracy.
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Fig. 6. Torque profiles of the different joints during a galloping motion. As
the lower plots show, the hind legs and especially the HFE joints, contribute
greatly to the acceleration. The front leg torques seem to contribute fairly
evenly to the galloping motion throughout the trajectory.

One hypothesis for the previous task resulting in a galloping

behavior is the short time horizon and no penalty on the

orientation. If we increase the time horizon to 8 s and penalize

the base motion, i.e. we give HyQ more time and encourage

smoother base motions, we see that the optimization prefers

trotting over galloping. The trot consists of four steps per

diagonal leg pair with almost constant stride length. By setting

the desired position to the side instead of to the front, the

resulting trajectory is a sidestepping motion. If only a desired

yaw angle is set, the robot turns on the spot. In all cases the

diagonal leg pairs are moved together.

C. Squat Jump

Next, we test if our TO approach can leverage and reason

about the dynamics of our system. We do so by adding an

intermediate waypoint cost term for the base pose at 0.2 m

above the initial base height. Since reaching there by extending

the legs exceeds the kinematic limits of the robot, a jump is

required. By adding a penalty on the deviation from default

joint positions to the waypoint, we encourage a larger ground

clearance at the apex. After running our optimization, we
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Fig. 7. Plots of optimized (dashed) and executed (solid) base state during a
squat jump on hardware. The robot reaches the desired/planned apex height.
Due to insufficient damping, there is a small rebound motion after landing.
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Fig. 8. Plots of the applied torques during a squat jump on hardware. There
are two distinct torque spikes produced during take-off and landing.

obtain a near symmetric squat jump. The overall optimization

spans the entire motion, e.g. preparation for lift-off from

default pose, the lift-off itself, going to default pose in the air,

landing and returning to the default pose. The apex waypoint

is localized in time but contact switches and timings are

optimized. Figure 7 shows the optimized and executed squat

jump trajectory. Throughout the task, the base stays level.

The desired apex height of 0.2 m is reached with millimeter

accuracy (measured 0.192 m). Torques are shown in Figure 8

which also illustrate lift-off and touch-down times. In the left

image of Figure 9, we can further see that the robot’s legs

are in their default position in mid-air as specified in the cost

function.

D. Rearing

For the next task, we are using a similar cost function as

for the squat jump. Instead of penalizing the deviation from a

neutral base pose, we penalize deviations from a 30◦ pitched

base orientation and we lower the desired apex height to 0.7 m.

The final trajectory is a rearing motion, where HyQ lifts off

with the front legs, reaches the apex position and finally returns

to full contact as well as its default pose.

Fig. 9. Hardware tests for the squat jump (left) and the manipulation under
disturbance (center and right). As the algorithm is run online, the motion is
optimized to the terrain, e.g. leading to different hind leg joint angles.

E. Diagonal Balance

In order to demonstrate that SLQ can also find statically

unstable trajectories, we are demonstrating a diagonal balance

task. Here, we use a waypoint term in our cost function again.

This term penalizes the orientation and height of the base.

Furthermore, it encourages the robot to pull up its legs by

bending HFE and KFE of the left front and right hind leg. The

final trajectory shows the expected balancing behavior. Again

a screenshot at apex is shown in Figure 4 and the videoshows

the full motion. Interestingly, while we are using a single

intermediate term with a single time point and absolutely

symmetric costs, the lift-off and touch-down of the swing

legs is not synchronous but the front left leg lifts-off later

and touches down earlier. This asymmetry most likely stems

from the asymmetric location of the Center of Gravity and

asymmetric inertia of the robot’s main body.

F. Manipulate

As a last task we test a “rough” manipulation motion where

HyQ pushes over an obstacle with its front left leg. This

task involves submotions such as shifting the robot’s CoG

in the support polygon of the three stance legs, executing

the push motion and shifting the CoG back. While in classic

approaches these motions would possibly be all hand coded,

they directly result from a single cost function in our TO

approach. While the resulting trajectory works perfectly fine

in simulation, it lacks robustness on hardware. Since our TO

approach is deterministic and we penalize control input, the

algorithm tries to minimize the shift of the CoG, leading to a

risky trajectory. For visual purposes only, we add additional

intermediate waypoints for the front left leg. While we could

easily add the pallet push contact to our optimization, we leave

it unmodelled on purpose such that it becomes a disturbance

to our controller verifying its robustness. Figure 4 shows a

sequence of images of the optimized motion while Figure 1

shows a sequence of images taken during execution. One of

the advantages of TO and running it online is its capabilities
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Fig. 10. Base pose and twist trajectories (solid) and their respective references
(dashed) for the rough manipulating task on hardware. The plots show that
the planned and executed base trajectories only slightly deviate.

to adjust to different initial conditions. We vary the initial

conditions by placing HyQ’s feet over a wooden platform

in different configurations as shown in Figure 9. All these

tests are included in the video.In all motions, CoG shift

and leg lift-off overlap in time, i.e. the result is a fluid,

dynamic motion. Independent of the initial inclination, the

robot levels its base pose during execution. Also, depending

on the initial configuration, lift-off timings of the front left leg

vary significantly to obtain an optimal motion. This underlines

the importance of automatically discovering contact timings.

For the experiment in Figure 1, the base pose/twist tracking

is shown in Figure 10.

G. Humanoid Walk

While exceeding the capabilities of our hardware, we eval-

uate a humanoid walking task where HyQ gets up on its hind

legs, moves to a target point in front and then balances there. In

contrast to a humanoid with ankles, HyQ only has point feet,

increasing under-actuation and the difficulty of the task. The

first cost function waypoint, widely spread in time, penalizes

deviations in base orientation and height. This ensures that

HyQ stays upright during the entire task after getting up.

The stand up motion is encouraged by the second waypoint

penalizing base orientation, height and changes in forward

position. We add a third waypoint one second before the end

of the time horizon, defining the target pose and orientation.

While the last waypoint and the final cost specify the same

base pose, we separate them in time to demonstrate that HyQ

can stay upright and stabilize in place for a short time. Before

getting up HyQ pulls its hind left leg in, moving the contact

point closer below the center of gravity. Also, it uses the front

left leg (“left arm”) to get up, resulting in a very natural,

coordinated, asymmetric motion. After getting into a two-

leg standing phase, forward motion is initiated by a short

symmetric hopping but quickly changes to a walking pattern.

Such non-trivial motions are hard to obtain from fixed timing

methods [18].
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Fig. 11. Convergence rates for different tasks, which seem to be influenced by
the length and complexity of each task. The fastest convergence is observed
in the rearing task. Trotting converges the slowest.
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Fig. 12. Runtime per iteration for different tasks. From a theoretical point of
view, the relation between number of time steps and the runtime per iteration
should be linear. This plot nicely supports this hypothesis.

VI. DISCUSSION

A. Runtime and Convergence

When running TO online, runtime and convergence become

a major concern since these measures define how long the

robot “thinks” before executing a task. Especially in dynamic

environments, we want to keep the optimization procedures

short. In this section, we will look at both the number of

iterations for each task as well as the runtime of each iteration.

This gives us an indicator of the complexity of a task and

tells us how far we are from running our approach in Model

Predictive Control (MPC) fashion.

First, we measure convergence rates. To obtain comparable

results, we initialize all tasks with a stance controller and

normalize the costs with the initial cost of each task. The

results are shown in Figure 11. The curves suggest that there is

a relation between the complexity of a task and its convergence

rate. The trotting is a complex behavior with a long time

horizon which might explain slow convergence. In contrast, the

rearing task is relatively simple and converges quickly. When

it comes to runtime, SLQ has a major advantage over other TO

approaches: The complexity scales linearly with discretization

steps and thus with time horizon. Figure 12 shows the runtime

as a function of time steps, underlining this linear relation.

The timings are measured on a quadcore laptop computer

and averaged over all iterations for each task as indicated in

Figure 11. To achieve these runtimes, we use a custom multi-

threaded solver and optimized code for the system dynamics

computation generated by RobCoGen [23]. Given the runtimes

and the required iterations, we achieve convergence times of

less than a minute for most tasks.

B. Robustness and Model Accuracy

There are various reasons why some of the motions and

especially the gaits cannot yet be executed on hardware.
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First, some tasks, such as the humanoid walking, exceed the

physical limitations of the system. But since they illustrate the

capabilities of the approach we still include them. Second, our

TO is a deterministic approach without a notion of robustness.

In some tasks robustness can be increased by cost function

tuning. However, it remains an issue for all deterministic

TO approaches since such methods cannot determine how

sensitive a trajectory is to disturbance or model errors. E.g.

the found trotting behavior would be more robust with an

increased stepping frequency. Third, some tasks show slippage

behavior leading to risky behaviors, potentially resulting in

accidents. This slippage can have two sources: the friction

cone and contact model softness. In the current form, there is

no penalty for exceeding the friction cone. Therefore, sliding

is not penalized or avoided, even when setting conservative

limits. Additionally, the inherent trade-off in the contact model

parameters between good gradients and physicality remains.

Lastly, our control framework cannot modify step timings or

locations to stabilize gaits efficiently. While heuristics like

capture points methods exists, we think that running the

approach in receding horizon fashion could address this issue

in a more principled way.

VII. CONCLUSION AND OUTLOOK

We have presented a fully dynamic, whole-body TO frame-

work able to create motions which involve multiple contact

changes. The approach does not require any priors or initial

guesses on contact points, sequences or timings. We demon-

strate the capabilities on various tasks including squat jumps,

rearing, balancing and rough manipulation. Furthermore, our

TO is able to discover gaits such as galloping, trotting and

two legged walking. Hardware results show that optimized

trajectories can be transferred to physical systems. Despite the

versatility of our approach, we obtain an optimized trajectory

in less than one minute without warm starting. However, there

are also some shortcomings. The solution space is huge, i.e.

we can apply our TO to a broad variety of tasks. While this

generality is a strength, it also requires to “choose” a solution

by modifying cost function weights or adding additional terms.

While this is a more or less intuitive approach, one would

wish to further reduce the number of open parameters. Another

drawback is that we can currently not transfer some motions

onto hardware. We believe that running the approach as a

model predictive controller will mitigate some of these issues.

The presented timings suggest that - when warm starting and

using shorter time horizons - SLQ is fast enough to be run

with a receding horizon, even for complex systems such as

HyQ. In previous work [22], we have already shown such an

approach for stabilization, rapid replanning and disturbance

rejection.
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