A Multi-Physics Eulerian Framework for Long-Term Contrail Evolution*

Contrails Analysis Workshop Imperial College, London, Sept 16–18, 2025

Amin Jafarimoghaddam & Manuel Soler

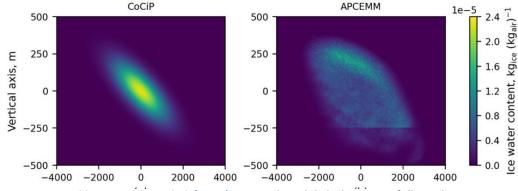
Aircraft Operations Lab.

Aerospace Engineering Department,
Universidad Carlos III de Madrid

Motivation

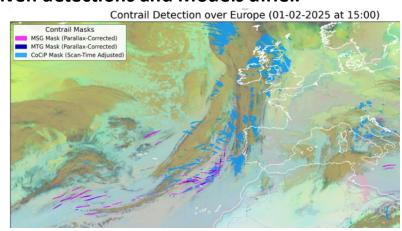
Current contrail climate impact estimation models being used in ATM studies exhibit significant discrepancies.

Predicted lifetimes and RF of CoCiP & APCEMM differ by factors of 2-5



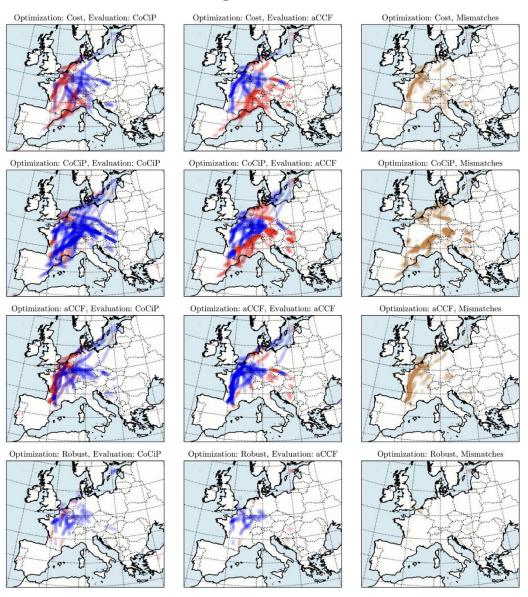
Akhtar Martínez el al. (2025). Contrail models lacking post-fallstreak behavior could underpredict lifetime optical depth. EGU Sphere, 1-26.

Data-Driven detections and Models differ.



Contrails detected by a deep learning model using data from Meteosat Second Generation (MSG) and Meteosat Third Generation (MTG), compared to those simulated by CoCiP. (Ortiz, Soler et. al, 2025 at EGU)

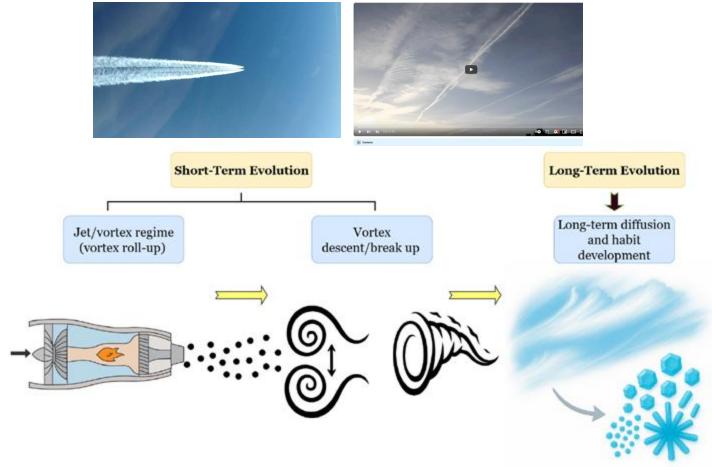
Contrail Avoidance strategies sensitive to model uncertainties



Simorgh, Abolfazl and Simorgh, Abolfazl and Soler, 2025, Manuel, Feasibility of Integrating Multiple Climate Impact Estimation Models to Enhance Confidence in Environmentally-Friendly Aircraft 2 Trajectory Optimization (January 10, 2025). Available at SSRN: http://dx.doi.org/10.2139/ssrn.5409422

Contrail Modelling (Contributions)

Contrails undergo multiple regimes/stages right after their birth to eventually becoming cirrus clouds.



Are Lagrangian models

Do not incorporate habit development Do not incorporate multi-phase flow settling

Existing Contrail Models:

APCEMM

(Fritz et al., 2020)

COCIP

(Schumann, 2012)

CFD approaches (LES & RANS) (Unterstrasser & Gierens, 2010 -I,II-) (Lewellen, 2020)

Phase 1: Short-Term

- Ice-Particle Transport (Macrophysics)
- Induced Engine Jet Flow (Macrophysics)
- Ice-Particle Growth (Microphysics)
- Nucleation (Microphysics)
- Aggregation (Microphysics)

Phase 2: Long-Term

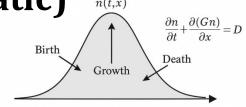
- Ice-Particle Transport (Macrophysics)
- Ice-Particle Growth (Microphysics)
- Habit Development (Microphysics)
- Aggregation (Microphysics)
- Multi-Phase Flow Settling (Macrophysics)

Our model is:

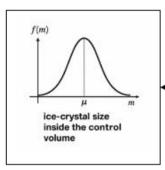
- Focus only on long-term
- Eurlerian
 - Quasy Analytic representation of the sol.
 - Includes habits and multi-phase flow settling.

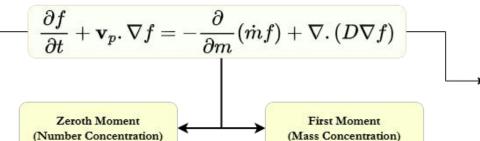
Advection-Difussion Contrail Modelling (Schematic)

$$\begin{array}{ll} \text{Population} & \frac{\partial f}{\partial t} + \mathbf{v}_p \cdot \nabla f = -\frac{\partial}{\partial m} \Big(\dot{m} \, f \Big) + \nabla \cdot \Big(\tilde{\mathcal{D}} \, \nabla f \Big) + S_f, \end{array}$$
 Balance Eq. (PBE)



Population Balance Equation



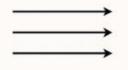




Wind Model

Vortex cores

Anticyclonic



Free stream segments

Dipoles and sheared zones

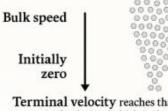
$$\mathbf{u}(\mathbf{x}) = \mathbf{u}_{\infty} + \sum_{l=1}^{M_d} \mathbf{M}_l^{(d)} + \sum_{k=1}^{M_d} \mathbf{M}_k^{(v)}$$

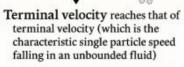
Multi-Phase Flow Settling Velocity

Macoscale Ice-

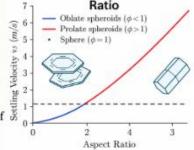
Particle Modeling

Settling velocity



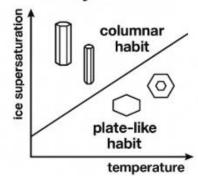


Settling Velocity vs. Aspect Ratio — Oblate spheroids (φ < 1)</p>



Ice Particle Microphysics

ice crystal habit



$$egin{aligned} rac{d\phi}{dv} &= rac{\Gamma(T,s_i)-1}{\Gamma(T,s_i)+2} rac{d\sigma}{dt} \ &=
ho_{ice} f_v(v,\phi,\mathbf{x}) \end{aligned}$$

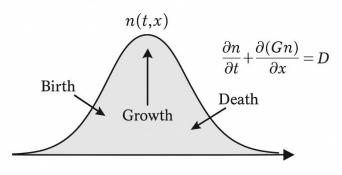
Problem Statement: Ice Particle Transport

Starting with PBE:

$$\frac{\partial f}{\partial t} + \mathbf{v}_p \cdot \nabla f = -\frac{\partial}{\partial m} \left(\dot{m} f \right) + \nabla \cdot \left(\tilde{\mathcal{D}} \nabla f \right) + S_f,$$

Together with the particle velocity v_p (long-term regime):

$$\mathbf{v}_p = \mathbf{v}_{slp} + \underbrace{(w_x, w_y, w_z)^\top}_{\text{background velocity}} \approx (0, 0, v_s)^\top + \underbrace{(w_x, w_y, w_z)^\top}_{\text{background velocity}} = (w_x, w_y, w_z + v_s)^\top.$$



Population Balance Equation

We can derive the moment equations as:

$$\begin{split} &\frac{\partial c_{N}}{\partial t} + \mathbf{v}_{p} \cdot \nabla c_{N} = \nabla \cdot \left(\tilde{\mathcal{D}} \, \nabla c_{N} \right) + S_{c_{N}} \\ &\frac{\partial m}{\partial t} + \mathbf{v}_{p} \cdot \nabla m = \tilde{\mathcal{D}} \, \nabla^{2} m + (\nabla \tilde{\mathcal{D}}) \cdot \nabla m + \frac{2 \, \tilde{\mathcal{D}}}{c_{N}} \, \nabla m \cdot \nabla c_{N} + \rho_{dep} f_{v} + S_{c_{M}} \end{split}$$

where, $m(\mathbf{x},t)$ is the representative particle mass in control volume, and $c_N(\mathbf{x},t)$ is number concentration.

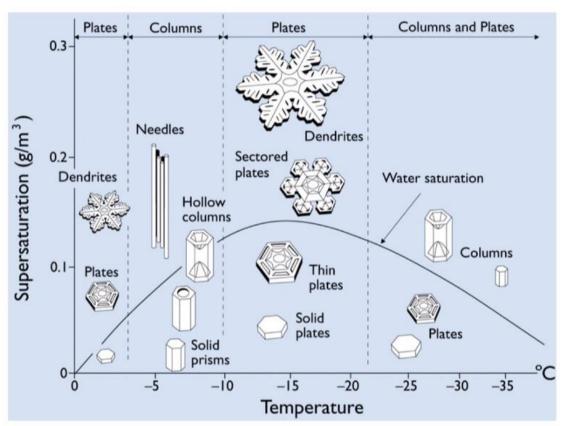
Problem Statement: Ice Particle Growth and Habit Development

Mature contrail cirrus (on the order of 1–10 hours old in ice-supersaturated layers) transition into the same regime as natural cirrus, where habit classification based on temperature and supersaturation becomes appropriate.

To summarize:

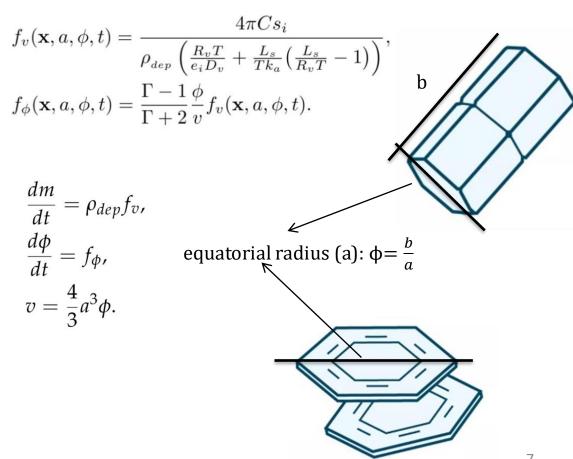
Fresh contrail (< 5 min): <u>Tiny polycrystalline droxtals</u>; no habit classification. Early contrail cirrus (5 min-20 mins): <u>Mixed phase</u>; spheres and rough aggregates.

Mature contrail cirrus (20 mins-10 h): <u>Crystals \geq 20-30 μ m</u>; faceted habits consistent with natural cirrus and subject to the standard temperature-supersaturation-habit relationship.



Microphysics for ice-particle growth and shape evolution:

(Cheng and Lamb, 1994)



Problem Statement: Multi-Phase Flow Settling

In Eulerian framework, settling velocity requires more careful implementation to account for self-diffusion effect:

- Bulk of particles in a turbulent mixing
- Loitering and sweeping
- V_s not equal to V_{ter} for all times (sol. to Stokes eq.)

Starting with the classical multi-phase flow equation in an Euler-Euler framework for the particle phase:

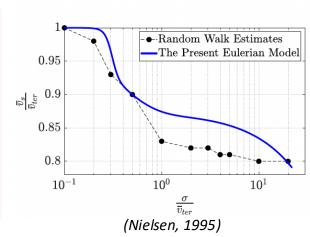
$$\frac{\partial (\epsilon_p \rho_p \mathbf{v}_{slp})}{\partial t} + \nabla \cdot (\epsilon_p \rho_p \mathbf{v}_{slp} \mathbf{v}_{slp}) = -\epsilon_p \nabla p + \nabla \cdot \tau_p + \epsilon_p \rho_p \mathbf{g} + F_d,$$

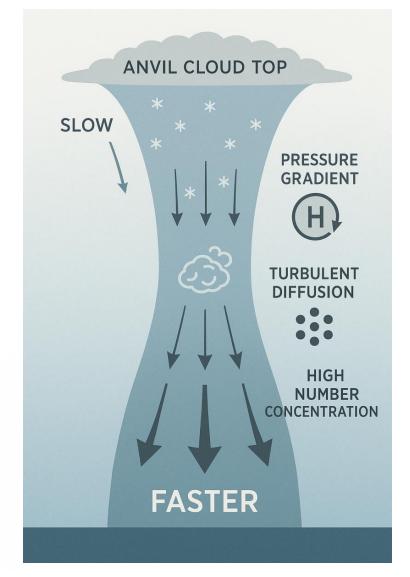
We can show that the equation can be reduce to the following reduced-order model (A Burgues-type PDE):

$$\frac{\partial v_s}{\partial t} + v_s(z, t) \frac{\partial v_s}{\partial z} = \nu_{t,ef} \frac{\partial^2 v_s}{\partial z^2},$$

$$v_s(z_{ref}, 0) = 0, \quad \lim_{z \to -\infty} v_s = v_{ter}, \quad \lim_{t \to \infty} v_s = v_{ter},$$

$$Re^2 C_D(Re^*) = B. \quad v_{ter} = \frac{Re \mu_{ef}}{\rho_f d_v}.$$

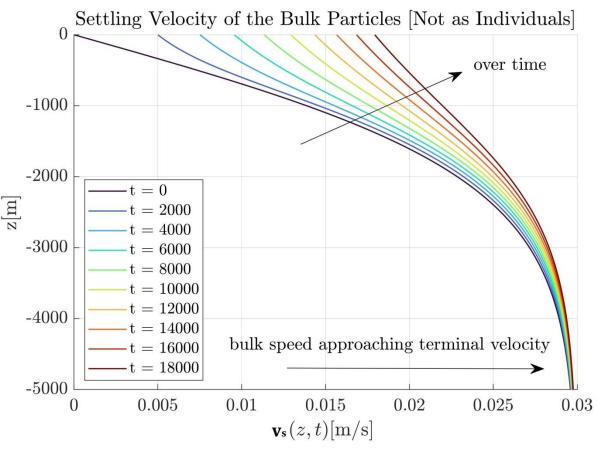


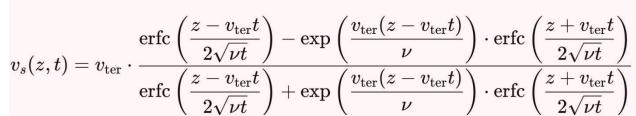


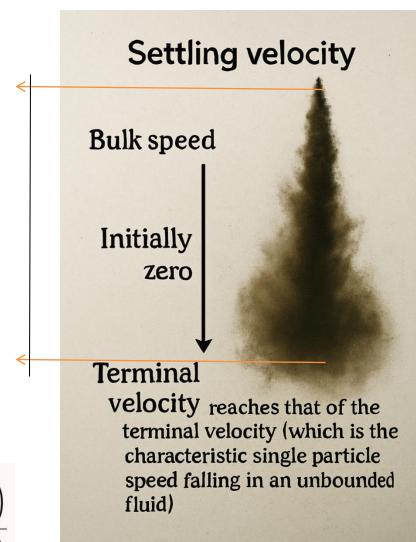
The schematic shows *Free-Fall* of particles as a bulk

Problem Statement: Multi-Phase Flow Settling

In Eulerian framework, settling velocity requires more careful implementation to account for self-diffusion effect:







Problem Statement: System of Equations

It turns out the homogeneous boundary and initial conditions allow separation of variables through:

wind turbulence

$$c_{N}(x,y,z,t) = F(x,y,t) g(z,t),$$

$$\widetilde{\mathcal{D}}_{ij}(c_{N}) \longrightarrow \begin{cases} \widetilde{\mathcal{D}}_{xx}(F(x,y,t)), & w'_{x}(x,y,t) = \sigma_{w_{x}} \Re \left\{ \mathcal{F}^{-1} \left[\sqrt{E(k_{x},k_{y})} \, \xi_{w_{x}}(k_{x},k_{y},t) \right] \right\}, \\ \widetilde{\mathcal{D}}_{yy}(F(x,y,t)), & w'_{x}(x,y,t) = \sigma_{w_{x}} \Re \left\{ \mathcal{F}^{-1} \left[\sqrt{E(k_{x},k_{y})} \, \xi_{w_{x}}(k_{x},k_{y},t) \right] \right\}, \\ \widetilde{\mathcal{D}}_{zz}(g(z,t)). & w'_{y}(x,y,t) = \sigma_{w_{y}} \Re \left\{ \mathcal{F}^{-1} \left[\sqrt{E(k_{x},k_{y})} \, \xi_{w_{y}}(k_{x},k_{y},t) \right] \right\}. \end{cases}$$

Therefore, following the assumption of local (piece-wise) constant temperature, we can show that the system breaks down into:

$$\begin{split} &\frac{\partial F}{\partial t} + w_x(x,y,t) \, \frac{\partial F}{\partial x} + w_y(x,y,t) \, \frac{\partial F}{\partial y} = \frac{\partial}{\partial x} \Big(\widetilde{\mathcal{D}}_{xx}(F) \, \frac{\partial F}{\partial x} \Big) + \frac{\partial}{\partial y} \Big(\widetilde{\mathcal{D}}_{yy}(F) \, \frac{\partial F}{\partial y} \Big), \\ &\frac{\partial g}{\partial t} + v_s(z,t) \, \frac{\partial g}{\partial z} = \frac{\partial}{\partial z} \Big(\widetilde{\mathcal{D}}_{zz}(g) \, \frac{\partial g}{\partial z} \Big), \\ &\frac{\partial m}{\partial t} + v_s(z,t) \, \frac{\partial m}{\partial z} = \frac{\partial}{\partial z} \Big(\widetilde{\mathcal{D}}_{zz}(g) \, \frac{\partial m}{\partial z} \Big) \, + \, \frac{2 \, \widetilde{\mathcal{D}}_{zz}(g)}{g} \, \frac{\partial m}{\partial z} \, \frac{\partial g}{\partial z} \, + \, \rho_{\mathrm{dep}} \, f_v(z,t), \\ &\frac{\partial \phi}{\partial t} + v_s(z,t) \, \frac{\partial \phi}{\partial z} = \frac{\Gamma(T(z,t)) - 1}{\Gamma(T(z,t)) + 2} \, \frac{\phi}{v} \, f_v(z,t), \\ &\frac{\partial v_s}{\partial t} + v_s(z,t) \, \frac{\partial v_s}{\partial z} = \nu_{t,ef} \, \frac{\partial^2 v_s}{\partial z^2}, \\ &v_s(z_{ref},0) = 0, \quad \lim_{z \to -\infty} v_s = v_{ter}, \quad \lim_{t \to \infty} v_s = v_{ter}, \\ &\mathrm{d} X = -\frac{X - \mu}{\tau} \, \mathrm{d} t \, + \, \sigma_X \, \mathrm{d} W_t, \quad X \in \{\tilde{v}_s, \tilde{\mathcal{D}}_{xx}, \tilde{\mathcal{D}}_{yy}, \tilde{\mathcal{D}}_{zz}\}, \\ &v(z,t) = \frac{m(z,t)}{\rho_{\mathrm{dep}}}. \end{split}$$

number concentration

microphysics evolution

Terminal Velocity

$$Re^{2} C_{D}(Re^{*}) = B.$$

$$v_{ter} = \frac{Re \,\mu_{ef}}{\rho_{f} d_{v}}.$$

settling velocity

stochasticity

Sol. Approach: <u>Directional-ODE Discretization*</u>

$$rac{\partial u}{\partial t} = Drac{\partial^2 u}{\partial x^2} + f(x,t).$$
 traditional way $rac{u_i^{n+1} - u_i^n}{\Delta t} = D \cdot rac{u_{i-1}^n - 2u_i^n + u_{i+1}^n}{(\Delta x)^2} + f(x_i,t_n,u_i^n)$

modern wav

$$\frac{du_i}{dt} = D \frac{u_{i-1}(t) - 2u_i(t) + u_{i+1}(t)}{(\Delta x)^2} + f(x_i, t_n, u_i^n), \quad t \in [t_n, t_{n+1}].$$

Constant Neighboring Nodes:

$$\frac{du_i}{d\tau} = -Au_i(\tau) + B, \quad u_i(0) = u_i^n, \quad \tau := t - t_n, \quad \tau \in [0, \Delta t], \quad \Delta t := t_{n+1} - t_n.$$

Solution with Constant Neighboring Nodes:

$$u(t) = -\frac{B'}{A'} + (\frac{B'}{A'} + u_i^n)e^{A'(t-t^n)}.$$

Global Update Formula with Non-Constant Neighboring Nodes:

$$u_i(\tau) = \left(u_i^n - \frac{s}{2\bar{a}} - \sum_{p=0}^P \frac{a_p}{2} \frac{(-1)^p p!}{(2\bar{a})^p}\right) e^{-2\bar{a}\tau} + \sum_{p=0}^P \frac{a_p}{2} \sum_{q=0}^p \frac{\tau^{p-q} (-1)^q p!}{(2\bar{a})^q (p-q)!} + \frac{s}{2\bar{a}}.$$

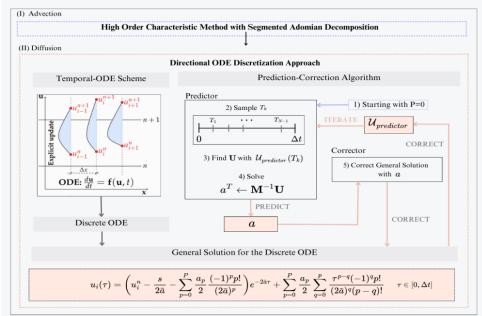
Amin Jafarimoghaddam, Manuel Soler, and Irene Ortiz. A directional-ode framework for discretization of advectiondiffusion equations. arXiv preprint arXiv:2506.06543, Jun 2025. arXiv:2506.06543 [math.AP].

a. Advection-Diffusion Process

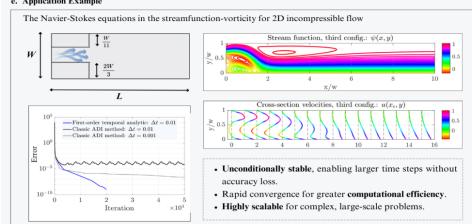
b. Advection-Diffusion Equation

$\frac{\partial u}{\partial t} + \mathbf{V} \cdot \nabla u = \bar{d}\Delta u + f(\mathbf{x}, t, u)$

d. Discretization Method



e. Application Example



Simulation Results

Plume Initialization:

Reference altitude: 10 km,

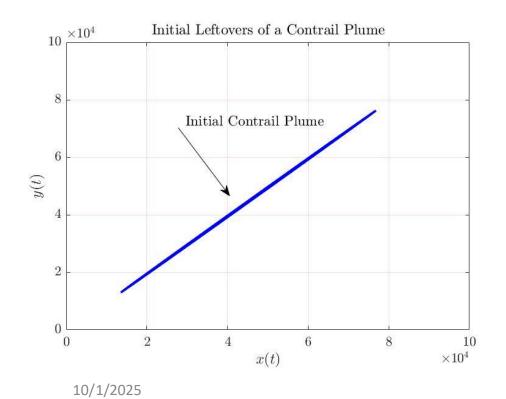
Reference Temperature: -61 C (Yang et al., 2010)

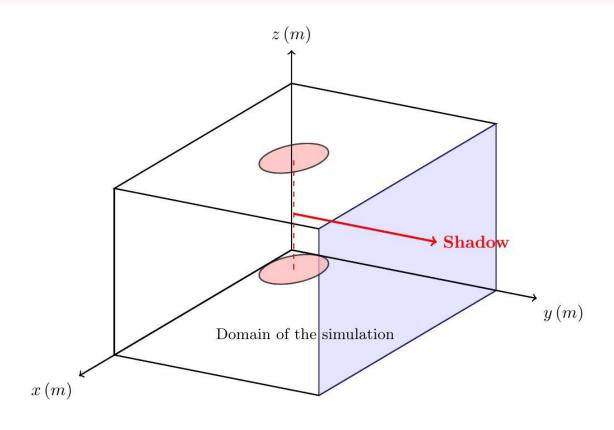
Background ISSR: Varied Magnitude, ~1.3 km thick,

Background ISSR Profile: Gaussian-Like, Peaking up to 27% + Linear Negative Decay up to 8%

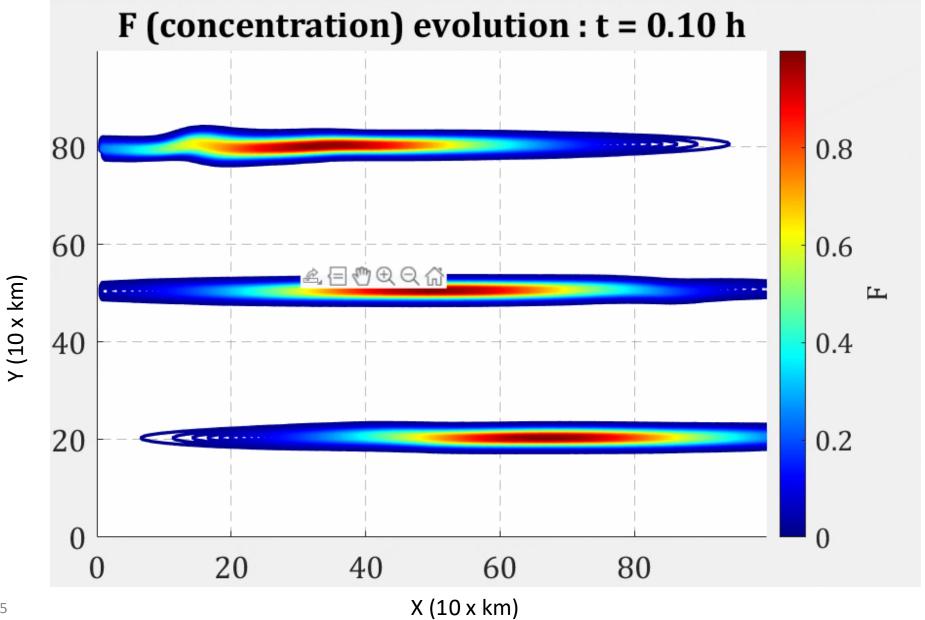
Initial Particles' Shape: Spherical

Initial Particles' Size: 1 micro-meter



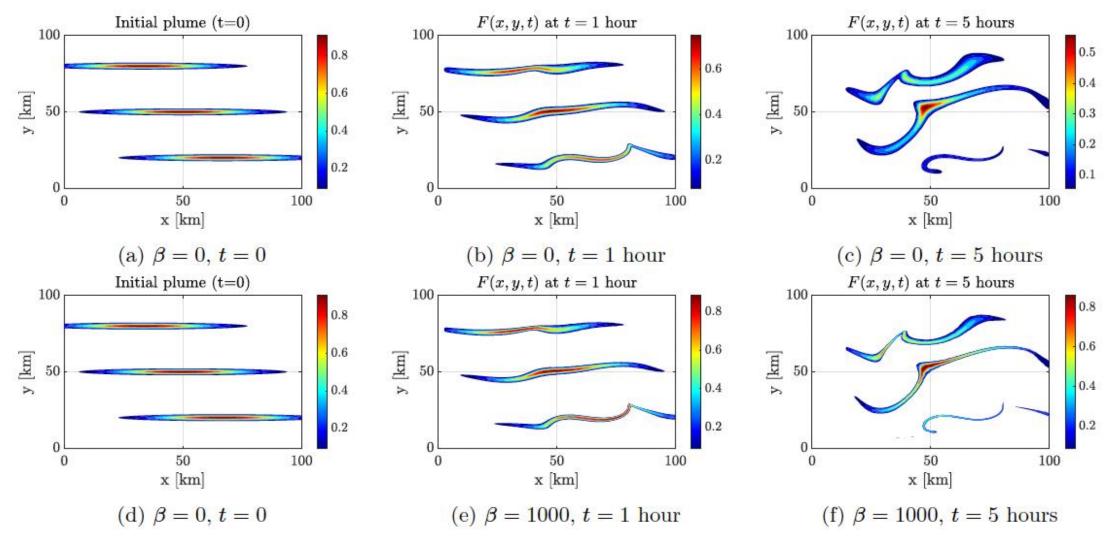


Horizontal Evolution of the plume



13

Horizontal Evolution of the plume (diffusion-blocking coefficient)

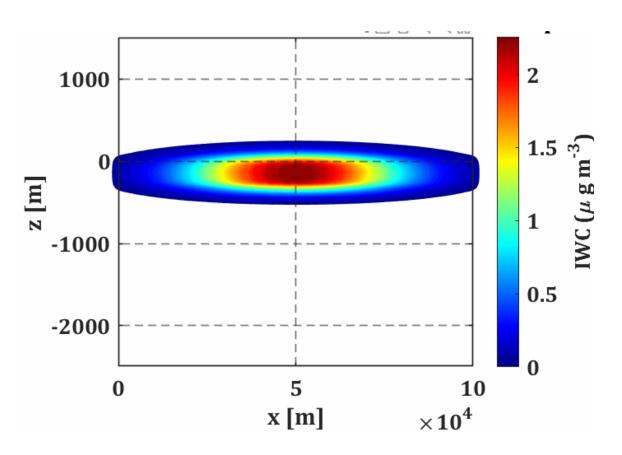


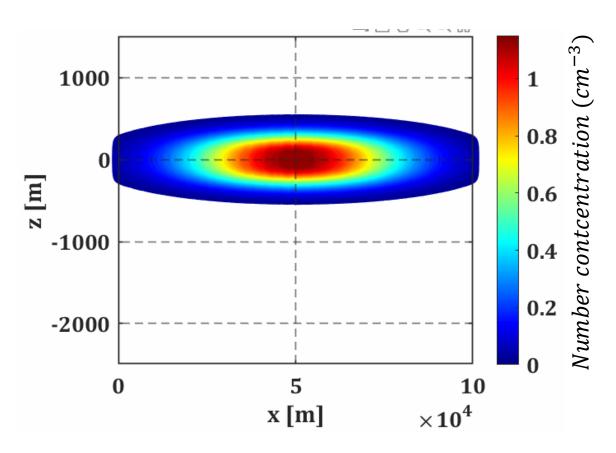
Horizontal evolution of F(x,y,t) –number concentration– for two diffussion-blocking coefficients β

10/1/2025

Vertical Evolution of the plume

T=-61 C, ISSR Peak=17% Habit Dynamics Model

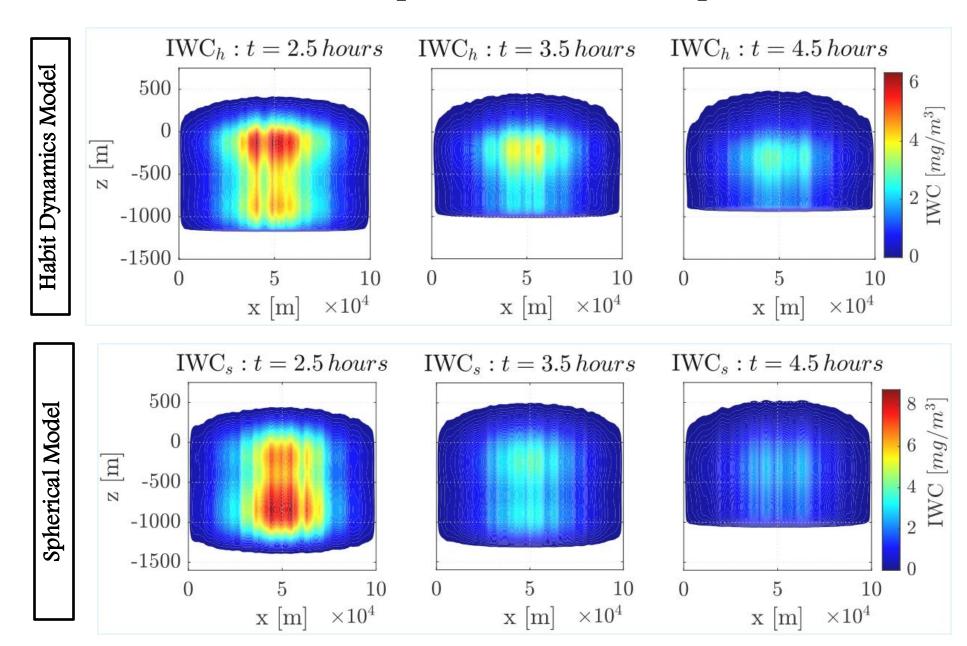




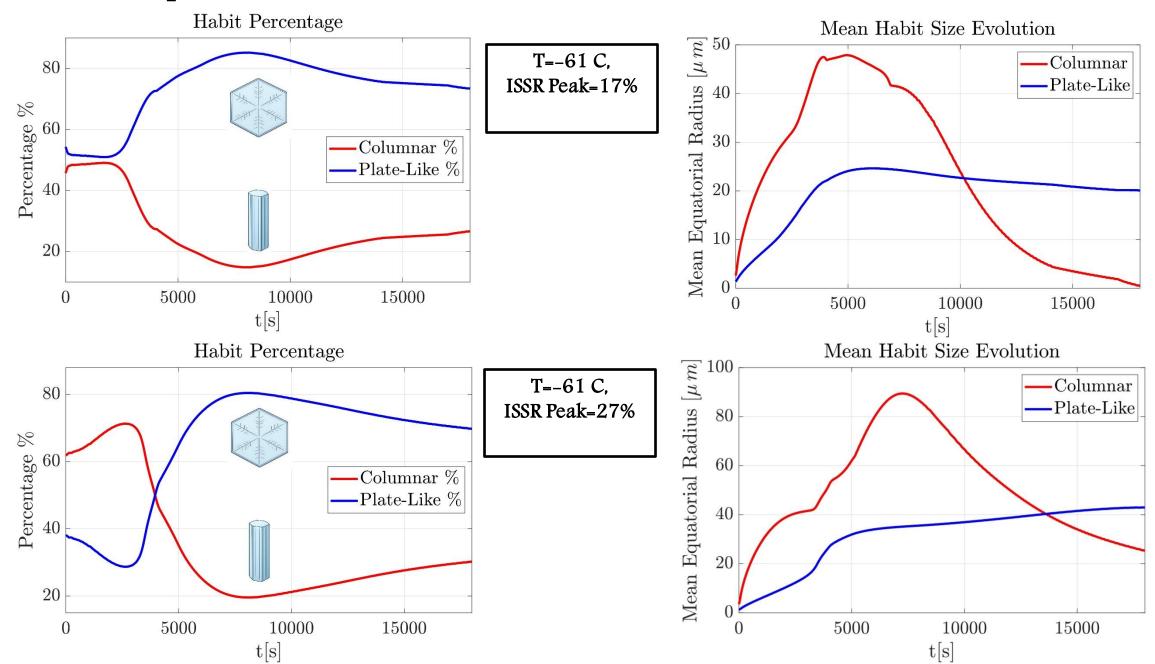
IWC: from about 3 mins to 6 hours with about 3 mins step

Number Cons.: from about 3 mins to 6 hours with about 3 mins step

T=-61 C, ISSR Peak=17%



Habit Shape



(Some) Future Work

- Benchmarking w.r.t. state of the art contrail models (e.g.,CoCiP and APCEMM)
- Validation using Remote sensing devices (e.g., EarthCARE LIDAR) &
 Ground Visible and IR Cameras.
- PINNs for contrail detection.
- Integrating/parametrizing short-range phases.
- Application to Monitoring Reporting and Verification.

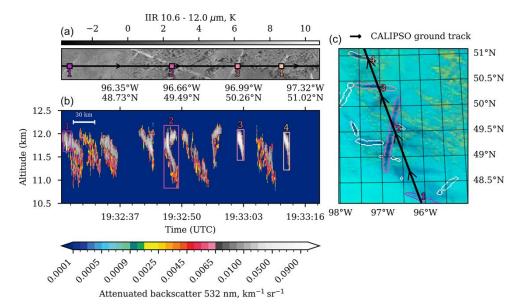
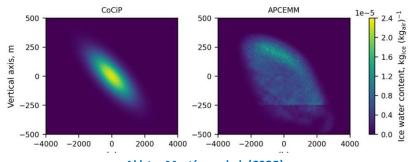
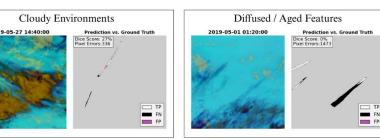
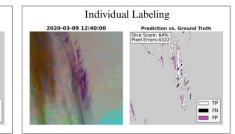


Figure 17: Example from Meijer et al. (2024) showing contrails detected in GOES-16 ABI imagery (c) located in CALIOP LIDAR data (b). Contrails are numbered to enable comparison between the LIDAR cross-sections and the "top view" from the GOES-16 satellite.



Akhtar Martínez el al. (2025).





(Ortiz et al., 2025)

Contrails.org visualization

A Multi-Physics Eulerian Framework for Long-Term Contrail Evolution*

Contrails Analysis Workshop Imperial College, London, Sept 16–18, 2025

Amin Jafarimoghaddam & Manuel Soler

Aircraft Operations Lab.

Aerospace Engineering Department,
Universidad Carlos III de Madrid

Thanks!

References

• Amin Jafarimoghaddam, Manuel Soler, and Irene Ortiz. A directional-ode framework for discretization of advection-diffusion equations. *arXiv* preprint arXiv:2506.06543, Jun 2025. arXiv:2506.06543 [math.AP].

 Jafarimoghaddam, A., & Soler, M. (2025). A Multi-Physics Eulerian Framework for Long-Term Contrail Evolution. arXiv preprint arXiv:2509.00965.

10/1/2025