
Google Cloud Cortex
Demand Sensing
Deployment and User Guide

Table of Contents
1. Solution Overview

1.1. Solution Components
1.2. Deployment Overview
1.3. Deployment Steps

2. Deployment Prerequisites
2.1. Deploy the Data Foundation content
2.2. Identify Data Foundation projects and datasets
2.3. Prepare your cloud environment
2.3. Plan for regional availability
2.4. Create and populate external datasets [optional]

2.4.1. Promotion Calendar
2.4.2. Demand Plan
2.4.3. Time Dimension Requirements

3. Deploy Demand Sensing
3.1. Deploy Demand Sensing from Google Cloud Marketplace

3.1.5. Run Google Cloud Cortex Demand Sensing container
3.1.6. Complete Additional Con�guration
3.1.7. Execute Demand Sensing Deployment

3.2. Validate Deployment
3.2.1. Validate Deployment Jobs and Solution Components
3.2.2. Validate Demand Forecast

3.3. Incorporating additional external datasets [optional]
3.3.1. Data Requirements.
3.3.2. Data Acquisition.
3.3.3. Customer and Product A�ribution.
3.3.4. Demand Sensing source code.
3.3.5. SQL Changes.

Joining with historical sales.
Joining with the Demand Plan.

3.3.6. Python Code Changes.
3.3.7. Running deploy.sh.

4. Re-training the model and producing Demand Forecasts

Google Cloud Cortex Framework

2

4.1. How to Train the model
4.2. Validate ML Model
4.3. Produce ML Forecast
4.4. Logging, Monitoring and Servicing

4.4.1. Vertex AI Logging and Monitoring
4.4.2. Vertex AI Managed Datasets and BigQuery Datasets servicing

5. Con�gure Looker

6. Feedback and updates

1. Solution Overview
An accurate demand plan is essential for reducing business costs and maximizing pro�tability. Identifying near
term changes in demand is mission critical to be�er manage and match demand with supply.

Google Cloud Cortex Demand Sensing provides prede�ned solution content to help you get started quickly with
a cloud based demand sensing solution leveraging the best of our Data Cloud services like BigQuery, Vertex AI,
and Looker together with SAP ERP data and additional data sources like Search Trends, Weather, and more.

The solution leverages Cortex Data Foundation prede�ned BigQuery data models as a baseline and delivers
advanced use case speci�c analytics and machine learning models on top. Once deployed the solution helps kick
start new insights and highlights potential impacts to near term demand plans.

These insights can be consumed through prede�ned dashboards available on the Looker Marketplace as a follow
on installation. Alternatively, other preferred visualizations solutions can be used to consume the models and
sample data sets provided.

By bringing together SAP and Non SAP data sets, Cortex Demand Sensing helps unlock new insights from diverse
demand signals beyond historical sales and allows organizations to be more nimble, through more holistic
integration of demand drivers.

Get started today! See our deployment guideline below.

1.1. Solution Components
The following Google Cloud services are used by the solution:

● BigQuery
● Cloud Build
● Cloud Source
● Vertex AI
● Google Cloud Storage

Google Cloud Cortex Framework

3

https://cloud.google.com/data-cloud
https://cloud.google.com/bigquery/?utm_source=google&utm_medium=cpc&utm_campaign=emea-gb-all-en-dr-skws-all-solutions-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_574804267345-ADGP_Hybrid+%7C+SKWS+-+EXA+%7C+Txt+~+Data+Analytics+~+BigQuery%23v4-KWID_43700053283638057-kwd-47616965283-userloc_9045888&utm_term=KW_bigquery-NET_g-PLAC_&gclid=CjwKCAjwve2TBhByEiwAaktM1G4RYCKgruFoqv_l8_GaX3HYjX6nnlF03he4py9RDTz_w118oWUNuxoCwFwQAvD_BwE&gclsrc=aw.ds
https://cloud.google.com/vertex-ai/?utm_source=google&utm_medium=cpc&utm_campaign=emea-gb-all-en-dr-skws-all-all-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_574560924426-ADGP_Hybrid%20%7C%20SKWS%20-%20EXA%20%7C%20Txt%20~%20%20AI%20%26%20ML%20~%20Vertex%20AI-KWID_43700066529969066-aud-606988878374%3Akwd-553582750299-userloc_9045888&utm_term=KW_vertex%20ai-NET_g-PLAC_&gclid=CjwKCAjwve2TBhByEiwAaktM1GVOgHaVLs8Tb-1k0mxrVPX3TIA3TAl9PoRAOg4x13vI0yp5C-4aghoC6bcQAvD_BwE&gclsrc=aw.ds
https://cloud.google.com/looker
https://cloud.google.com/datasets
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://cloud.google.com/bigquery
https://cloud.google.com/build
https://cloud.google.com/source-repositories
https://cloud.google.com/vertex-ai
https://cloud.google.com/storage

● IAM - Service Accounts

We recommend you or the team implementing this solution are familiar with the technical details of these
pla�orms and tools to ensure a successful implementation.

1.2. Deployment Overview
This guide provides an overview of all prerequisites, setup steps and inputs required for a successful deployment
of Google Cloud Cortex Demand Sensing solution content.

This guide is useful for and should be completed by: Google Cloud Data and Machine Learning Technical
Practitioners (or similar pro�les) and So�ware Developers/Architects (or similar pro�les). Readers will bene�t from
having previous understanding of general cloud-native development principles and containers.

By the end of this guide, you will:
1. Have deployed Cortex Demand Sensing solution components
2. Have ful�lled the prerequisites for data availability to train Demand Sensing forecasting models
3. Have a functional Vertex AI pipeline for Demand Sensing
4. Understand the recommended design pa�erns and how to e�ectively enhance your models from the
Data Foundation with external datasets
5. Be able to tweak the pipeline and redeploy or re-train with your own datasets

1.3. Deployment Steps
The deployment is automated through the Demand Sensing con�gurator and deployer you will execute from the
Demand Sensing container published in the Google Cloud Marketplace. At the end of the deployment, your
Google Cloud project will contain a set of sample data, BigQuery tables and a Vertex AI model. You will also have a
copy of the code to adjust and retrain the model according to your source data and business needs.

The key deployment steps are summarized below:

1. Deploy Cortex Data Foundation 5.0.1 or higher
a. Set SAP mandt set to 900 (SAP->mandt value in con�g/con�g.json)
b. Weather and Trends must be enabled in K9 Se�ings (src/k9/con�g/k9_se�ings.yaml)

k9s:
- date_dimension
- holiday_calendar
- trends
- weather

Note: Schema of k9_se�ings.yam in Data Foundation 5.0.1 was changed. Now you only need to list k9s to
deploy ((as shown above), regardless of their stage.

2. Identify the projects and datasets used to deploy the Data Foundation (from con�g/con�g.json).

Google Cloud Cortex Framework

4

https://cloud.google.com/iam
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

3. Execute Demand Sensing con�guration and deployment by running its container from the Google Cloud
Marketplace.

4. Validate the deployment and logs.
5. Explore the source code available in your Google Cloud Storage bucket.
6. Re-train the Vertex AI models if needed.

The following diagram illustrates the interaction between Cortex Data Foundation and Demand Sensing
components:

2. Deployment Prerequisites
2.1. Deploy the Data Foundation content
Deployment requires Cortex Data Foundation to be implemented as a prerequisite. Demand Sensing will require
the following minimum components from Cortex Data Foundation:

● Reporting Views (and their underlying tables):
○ SalesOrders
○ CustomersMD
○ MaterialsMD

Google Cloud Cortex Framework

5

https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-reporting

● External Sources loaded from the following DAGs
○ Trends
○ Weather
○ Holiday Calendar

If using test data, deploy the Data Foundation in full using SAP Client 900 and SQL �avor ECC. The test data in
Mandant 900 for ECC was speci�cally created to feed the Vertex AI models.

All test data has been generated from an ECC source and used to tune the ML models to provide an end to end
sample of a working solution. There is currently no curated demo test data for S4, so model execution and quality
are not reliable if you are using the delivered test data for S4 model training.

If using your own data and not the delivered test data, con�gure Analytics Hub or a similar available source of your
choice as outlined in the documentation.

The following diagram illustrates the components required from the Data Foundation and the components added
to the CDC and reporting datasets as part of the Demand Sensing requirements.

Google Cloud Cortex Framework

6

https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets
https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets

2.2. Identify Data Foundation projects and datasets
● Source Google Cloud Project: Project where the source data is located, from which the data models

consume.

● Target Google Cloud Project: Project where the Data Foundation for SAP prede�ned data models was

deployed. This may or may not be di�erent from the source project depending on your needs.

● Source Raw BigQuery Dataset: BigQuery dataset where the source SAP data was replicated to or where

the test data was created.

● CDC BigQuery Dataset: BigQuery dataset where the CDC processed data lands the latest available

records.

We call it below “CDC_PROCESSED”.

● Target BigQuery reporting dataset: BigQuery dataset where the Data Foundation for SAP prede�ned data

models was deployed.

● K9 Processing Dataset.

● K9 Reporting Dataset.

2.3. Prepare your cloud environment
Make sure you can ful�ll the following prerequisites before starting the deployment:

1. Setup your Cloud Shell environment

Launch the Cloud Shell by clicking in the following icon: located in the top right corner of the
console. Alternatively navigate to: h�ps://shell.cloud.google.com/?show=terminal

2. Make sure you have permissions and roles:

a. Permissions to enable components/APIs in a Billing-enabled project.

b. Storage Object Admin.

c. Service Account Creator.

d. Cloud Build Editor.

e. BigQuery Data Editor and BigQuery Job User.

If you create Service Accounts and manage their permissions during this deployment, you also should

have a Service Account Admin and Project IAM Admin roles. If you need to create resources and assign

permissions in advance, please follow instructions in 3.1.6. Complete Additional Con�guration section.

Google Cloud Cortex Framework

7

https://cloud.google.com/shell
https://shell.cloud.google.com/?show=terminal
https://console.cloud.google.com/billing?_ga=2.205167317.4517887.1655783527-1310832498.1655783527
https://cloud.google.com/storage/docs/access-control/iam-roles
https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
https://cloud.google.com/build/docs/iam-roles-permissions
https://cloud.google.com/bigquery/docs/access-control#bigquery
https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
https://cloud.google.com/resource-manager/docs/access-control-proj

2.4. Plan for regional availability
Vertex AI region is one of the parameters used for deploying and running Demand Sensing.

When using Vertex AI, make sure you run its jobs in the region where the Vertex AI Forecasting feature is available,

closest to where your source data is stored in BigQuery. If your BigQuery datasets are multi-regional, choose a

Vertex AI location closest to you in the same multi-region.

You will also create a Storage Bucket in the same region you choose to run Vertex AI jobs in.

2.5. Create and populate external datasets [optional]

Note: If you used test data with Data Foundation deployment, this section can be skipped. In such cases, make
sure you also use test data with Demand Sensing.

If you are not using test data for the initial deployment, you will need to create and populate the tables used
for training of the forecasting model. These tables are additional to the external datasets populated in the Data
Foundation and are outlined below with instructions on how to populate.

IMPORTANT: If you are not using test data with Cortex Data Foundation or Demand Sensing, you must populate
the raw and CDC datasets with data using the corresponding Data Foundation capabilities. Otherwise, the
Forecasting Model will not be trained at the time of Demand Sensing deployment.

If you don’t populate the Demand Plan dataset as described below, the model will not be able to produce
forecasts.

Alternatively, you can use test data for the initial deployment and replace it a�erwards. The code will be available
to you in a Cloud Storage Bucket to recreate tables and re-train the Vertex AI pipelines.

Note: All data in the BigQuery reporting views, external datasets and forecasts are aggregated on the weekly
basis, with weeks starting on Monday and ending on Sunday. For example, the week of June 20th, 2022 goes
from Monday June 20th to Sunday June 26th. You can adjust this in the DAGs and view SQL in the data
foundation if required.

2.5.1. Promotion Calendar

If not using test data, you will need to create and populate the Promotion Calendar table. This table includes
information on planned promotions for a given product and customer, on a weekly basis.

The following is the structure of the table:

Google Cloud Cortex Framework

8

https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai/docs/general/locations#feature-availability
https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets

Field Name Data Type Description

StartDateofWeek DATE Monday’s date of the target week

CustomerId STRING
Customer ID corresponding to SAP's Master Data table KNA1, field
KUNNR

CatalogItemId STRING
Material ID corresponding to SAP's Material Master table MARA,
field MATNR

IsPromo BOOLEAN

Is TRUE when there is a promotion running on the week of
StartDateOfTheWeek for material CatalogItemId with customer
CustomerId.

DiscountPercent FLOAT
optional field indicating the promotion discount in %%. It is currently
not used by the forecasting model.

The table is expected to exist in the CDC_PROCESSED dataset before the deployment of Demand Sensing. If
using test data, the deployment process will create and populate the table for you.

Here is a sample statement to create the table if not using test data.

CREATE TABLE IF NOT EXISTS `{{ project_id_src }}.{{ dataset_cdc_processed

}}.Promotion_Calendar`

(

StartDateOfWeek DATE,

CustomerId STRING,

CatalogItemId STRING,

IsPromo BOOLEAN,

DiscountPercent FLOAT64

)

The promotion data must be aggregated on the weekly basis. In other words: If there is a promotion or discount
for a product and customer in a speci�c week, there should be a corresponding record in the Promotion_Calendar
table.

IMPORTANT: To train a high quality forecasting model, it is necessary to populate the Promotion Calendar both
with the historical and future promotions. Ideally, the promotions in the table should go as far as the earliest
order date. Future promotions are needed as far as the forecast horizon, up to 13 weeks from the full week with
last known sales (presumably the week before the current one).

Google Cloud Cortex Framework

9

2.5.2. Demand Plan

If not using test data, create and populate the Demand_Plan table in the CDC_PROCESSED dataset.

The following is the expected structure of the table:

Field Name Data Type Description

WeekStart DATE Monday’s date of the target week

CustomerId STRING
Customer ID corresponding to SAP's Master Data table KNA1, field
KUNNR

CatalogItemId STRING
Material ID corresponding to SAP's Material Master table MARA,
field MATNR

DemandPlan FLOAT

Planned cumulative order quantity (as in VBAP-KWMENG field)
aggregated over the week, per customer (CustomerId), per material
(CatalogItemId)

Here is a sample statement to create the table if not using test data.

CREATE TABLE IF NOT EXISTS `{{ project_id_src }}.{{ dataset_cdc_processed }}.Demand_Plan`

(

WeekStart DATE,

CustomerId STRING,

CatalogItemId STRING,

DemandPlan FLOAT64

)

The demand plan data must be aggregated on the weekly basis, per material, per customer. When there is no sale
planned on a certain week, make a row with 0 (zero) in the DemandPlan �eld.

IMPORTANT: Demand_Plan table should be populated as far as the forecast horizon, up to 13 weeks from the
full week with last known sales (presumably the week before the current one).

Any Demand Plan data made for periods before the last known sales data will be ignored by the forecasting
model.

Google Cloud Cortex Framework

10

2.5.3. Time Dimension Requirements

The �elds named WeekStart or StartDateOfWeek denote the time period for that record in all external
datasets tables in BigQuery used as sources of predictive variables used in the ML model. It stands for the full
week starting on that date with Monday as the �rst date of the week. A value of 2022-01-17, for instance,
covers the time period from Jan 17th, 2022 through Jan 23rd, 2022, Monday to Sunday.

Values for this �eld must be valid parseable dates. Furthermore, the data must not have missing WeekStart values.
To clarify, if the minimum value is 2019-01-07 and the maximum value is 2022-03-21, every single week in that
period must be present in the datasets.

3. Deploy Demand Sensing
3.1. Deploy Demand Sensing from Google Cloud Marketplace
The instructions in this section outline how to deploy Cortex Demand Sensing from Google Cloud Marketplace.
You should only proceed if you have already deployed the Data Foundation content as it is a prerequisite.

3.1.5. Run Google Cloud Cortex Demand Sensing container

In the Cloud Shell, execute the following command:

gcloud auth configure-docker gcr.io && \
docker run -it --rm \
marketplace.gcr.io/cortex-public/cortex-demand-sensing:latest

This command will pull and run the Demand Sensing container from Google Cloud Marketplace.

The container starts from running the Demand Sensing deployment con�gurator.

The con�gurator will guide you through the deployment con�guration by asking a few questions:

f. Source GCP Project: The source project where data replication and CDC processing datasets
are. Refer to the Data Foundation documentation for more information.

g. Target GCP Project: The target project where Reporting views are (may be the same as the
source depending on your deployment of the Data Foundation). Refer to the Data Foundation
documentation for more information.

h. Raw Landing Dataset: BigQuery dataset where SAP data is replicated.

Google Cloud Cortex Framework

11

https://shell.cloud.google.com/?show=terminal
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

i. CDC Processed Dataset: BigQuery dataset where the CDC processed data is. We also call it
“CDC_PROCESSED” in this Guide. The additional external tables (see Section 2.5. Create and
populate external datasets) are expected to be found here if not using test data.

j. Reporting Dataset: The dataset for reporting used in the Data Foundation.

k. K9 Processing Dataset: Data Foundation K9 Processing Dataset.

l. K9 Reporting Dataset: Data Foundation K9 Reporting Dataset.

m. Data Foundation BigQuery Location: BigQuery location (multi-region) used with Data
Foundation. If it was not speci�ed, the Data Foundation used US. Default value is taken from the
Raw Landing Dataset location.

n. Vertex AI Region: Region where the Vertex AI pipelines will run. Must be a single region (e.g.
us-central1), same as you used for Vertex AI bucket. Be sure to keep within the same multi-region
location chosen for BigQuery.

o. Vertex AI service account: Service Account to run Vertex AI jobs. If it doesn’t exist, you can
create one a�er con�guring Demand Sensing deployment, but before executing the deployment.
Default value is “cortex-ds-vertexai-sa” in the source project.

p. Storage Bucket for Vertex AI : GCS bucket for Vertex AI to store intermediate assets during
model training and scoring. If it doesn’t exist, you can create one a�er con�guring Demand
Sensing deployment, but before executing the deployment. This bucket must be created in the
region speci�ed as “Vertex AI Region” parameter above. Default value is a combination of the
source project id, “-cortex-ds-vertexai-” string and Vertex AI region.

q. Forecast Horizon (weeks): How far in the future you want to make predictions, up to 13 weeks.
Leave the default (13) if using Test Data. See section 4. Re-training the model and producing
Demand Forecasts for more details on this parameter.

r. Context Window (weeks): How far back the model looks during training (and for forecasts).
Leave the default (52) if using Test Data. See section 4. Re-training the model and producing
Demand Forecasts for more details on this parameter.

s. Model Training Budget (hours): How many whole hours Vertex AI AutoML will spend actually
training the model. 1 hour is the minimum time. Leave the default (1) if using Test Data. See section
4. Re-training the model and producing Demand Forecasts for more details on this parameter.

t. Deploy Test Data: Answer yes if you used test data with Demand Sensing and would like to use
Test Data with Demand Sensing.

If you didn’t run Data Foundation with �ags testData: true and would like to use Demand Sensing
Test Data, please make another deployment of Data Foundation into new datasets. Simply running
Data Foundation over the same datasets will not provision test data because it’s using “--noreplace

Google Cloud Cortex Framework

12

�ag” with “bq load” commands. Refer to the Data Foundation documentation for more
information.

u. Mandant/Client: Use 900 for test data (previous parameter is yes). Otherwise, use the right client
for your source SAP system.

3.1.6. Complete Additional Con�guration

Demand Sensing deployment con�gurator will inform you about next steps required to execute Demand Sensing
deployment, and will o�er a command snippet you may use to perform necessary con�guration steps:

Most of the names in the examples below are going to be di�erent for you. Vertex AI Service Account and Vertex
AI Bucket names below are shown with their default values generated from the source project id
“your-source-project”.

To deploy Google Cloud Cortex Demand Sensing, please complete additional configuration steps:

1. Enable Vertex AI in the source project.
2. Create your-source-project-cortex-ds-vertexai-us-central1 storage bucket for Vertex AI in us-central1

region.
3. Create cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com service account for Vertex AI.
4. Grant cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com service account objectAdmin

role on your-source-project-cortex-ds-vertexai-us-central1 storage bucket.
5. Grant cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com service account the following

roles in the source project:
🤖 aiplatform.user
🤖 bigquery.dataEditor
🤖 bigquery.jobUser

6. Grant cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com service account the following
roles in the target project:
🤖 bigquery.dataEditor
🤖 bigquery.jobUser

7. Grant source project's Cloud Build account (12345678@cloudbuild.gserviceaccount.com)
iam.serviceAccountUser role for cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com
service account.

8. Grant source project's Cloud Build account (12345678@cloudbuild.gserviceaccount.com) aiplatform.admin
and storage.admin roles on the source project.

9. Run ./ds-deploy command to continue deploying Cortex Demand Sensing.

Would you like to get a command snippet to perform the operations above? yes

Complete additional con�guration steps as instructed by the con�gurator.

Once the con�gurator �nishes, you will stay in a Bash session running inside the Demand Sensing container.

To complete additional con�guration, you can use command snippets provided by the con�gurator (if answered
yes) or use your own way, with the command line or Google Cloud Console.

Google Cloud Cortex Framework

13

https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

Set the source project as the active project
gcloud config set project your-source-project

Enable Vertex AI and Cloud Source Repositories APIs in the source project
gcloud services enable aiplatform.googleapis.com sourcerepo.googleapis.com --project="your-source-project"

Create a storage bucket for Vertex AI if it doesn't exist
gsutil ls -b gs://your-source-project-cortex-ds-vertexai-us-central1 2> /dev/null || \

gsutil mb -l us-central1 gs://your-source-project-cortex-ds-vertexai-us-central1

Create a service account as Vertex AI Service Account (if it doesn't exist)
gcloud iam service-accounts describe cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com 2> /dev/null || \
gcloud iam service-accounts create cortex-ds-vertexai-sa \

--description="Vertex AI Demand Sensing" \
--display-name="Vertex AI Demand Sensing" \
--project="your-source-project"

Grant Vertex AI Service Account permissions on the bucket
gsutil iam ch \

serviceAccount:cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com:objectAdmin \
gs://your-source-project-cortex-ds-vertexai-us-central1

Grant BigQuery and Vertex AI permissions in the source project.
for role in 'roles/aiplatform.user' 'roles/bigquery.dataEditor' 'roles/bigquery.jobUser';
do

gcloud projects add-iam-policy-binding your-source-project \
--member="serviceAccount:cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com" \
--role="$role"

done

Grant BigQuery and Vertex AI permissions in the target project.
for role in 'roles/bigquery.dataEditor' 'roles/bigquery.jobUser';
do

gcloud projects add-iam-policy-binding your-target-project \
--member="serviceAccount:cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com" \
--role="$role"

done

Grant Cloud Build account iam.serviceAccountUser role for Vertex AI Service Account
gcloud iam service-accounts add-iam-policy-binding \

cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com \
--member="serviceAccount:12345678@cloudbuild.gserviceaccount.com" \
--role="roles/iam.serviceAccountUser"

Grant Cloud Build account Vertex AI and Storage roles in the source project.
for role in 'roles/aiplatform.admin' 'roles/storage.admin';
do

gcloud projects add-iam-policy-binding your-source-project \
--member="serviceAccount:12345678@cloudbuild.gserviceaccount.com" \
--role="$role"

done

IMPORTANT: A�er �nishing Demand Sensing deployment con�guration, your Cloud Shell will stay in the
context of running Demand Sensing container. Do not close it. You can execute all necessary CLI
commands from there.

Google Cloud Cortex Framework

14

If your Cloud Shell session gets suspended, you will need to run docker run -it --rm
marketplace.gcr.io/cortex-public/cortex-demand-sensing:latest command in Cloud Shell again and use the
same con�guration parameters.

3.1.7. Execute Demand Sensing Deployment

Once you created Vertex AI BigQuery Dataset, GCS bucket for Vertex AI, Vertex AI Service account, and
con�gured IAM roles for Cloud Build Service Account and Vertex AI Service Account, you can execute Demand
Sensing deployment using ./ds-deploy command.

Make sure you run ./ds-deploy in the same Cloud Shell session you used with steps 1 and 2 above. You will see
/usr/src/app as your current directory.

If everything was con�gured correctly, ds-deploy script will start Demand Sensing deployment and Vertex AI
Pipeline execution.

Note: ds-deploy script checks whether Vertex AI bucket, Vertex AI BQ dataset and Vertex AI service account
exist.
It also makes sure Vertex AI service account and Cloud Build service account have necessary IAM roles on the
projects and resources.

If you prefer con�guring more precise permissions on resources, run ds-deploy with --no-iam-check �ag:

./ds-deploy --no-iam-check

3.2. Validate Deployment
The deployment process starts with validating deployment con�guration.

root@cbb72d09dbfd:/usr/src/app# ./ds-deploy
🤖🤖🤖 Google Cloud Cortex Demand Sensing deployment 😺😺😺
Updated property [core/project].
Checking configured resources...
✅ Service Account cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com exists.
✅ Bucket your-source-project-cortex-ds-vertexai-us-central1 exists.
✅ Dataset your-source-project:VERTEX_AI_DATA exists.
✅ Service Account cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com has necessary roles in project
your-source-project
✅ Service Account cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com has necessary roles in project
your-target-project
✅ Service Account cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com has storage.objectAdmin on bucket
your-source-project-cortex-ds-vertexai-us-central1

Google Cloud Cortex Framework

15

✅ Service Account 12345678@cloudbuild.gserviceaccount.com has necessary roles in project your-source-project
✅ Service Account 12345678@cloudbuild.gserviceaccount.com has necessary roles in project your-target-project
✅ Service Account 12345678@cloudbuild.gserviceaccount.com has iam.serviceAccountUser role on Service Account
cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com

…there will be more output here…

3.2.1. Validate Deployment Jobs and Solution Components

1. The deployment process continues with a series of Cloud Build jobs. The last job will start a Vertex AI
pipeline for training a Forecasting model and producing its �rst forecast.

If the job successfully triggers the build process, you can �nd the Build logs in Cloud Build.

Errors will be easier to troubleshoot from there. You will �nd a parent build process that has two steps :

These steps will sequentially complete the following tasks:

1. Trigger the creation of the test harness if requested,
2. Create the tables and views for training if they do not exist
3. Spawn another build process for the Vertex

Google Cloud Cortex Framework

16

https://console.cloud.google.com/cloud-build/builds

At the end of the second step, if successful, you will also �nd a link to the Vertex AI pipeline:
https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pip
eline-PIPELINE_ID?project=PROJECT_ID

Line “Vertex AI Machine Learning Pipeline is still running, please refer to its logs and Vertex AI
console for status.” indicates that the Vertex AI forecasting pipeline has been submi�ed.

The training and scoring pipeline will continue to run for about an hour on test data. You will �nd more
instructions about monitoring these pipelines in section 4.4.1. Vertex AI Logging and Monitoring.

Note: At this point, you can leave the Demand Sensing container in Cloud Shell using exit command.

3.2.2. Validate Demand Forecast

When the Vertex AI pipeline is �nished, it is expected to �ll the Demand_Forecast table in the CDC_PROCESSED
dataset you speci�ed in the source GCP project.

The following table shows the expected structure of the DemandForecast table in the CDC_PROCESSED dataset.

Google Cloud Cortex Framework

17

https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pipeline-PIPELINE_ID?project=PROJECT_ID
https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pipeline-PIPELINE_ID?project=PROJECT_ID
https://console.cloud.google.com/vertex-ai/pipelines

DemandForecast view in the reporting dataset (target project) will have the same data.

To understand the forecasting results, please follow section 4.3. Produce ML Forecast. Please note that the
forecast is always made using the best Demand Sensing model, not the last one.

3.3. Incorporating additional external datasets [optional]
Every business has its own speci�c set of processes and respective data that can be signi�cant for demand
planning and forecasting.

You can integrate additional datasets into Demand Sensing through code modi�cations. You will need to join the
new data into the structures consumed by Vertex AI for it to be incorporated into the machine learning model.

Note: Please get familiar with Demand Sensing source code by running it manually as described in 4. Re-training
the model and producing Demand Forecasts

3.3.1. Data Requirements.

Below are the requirements for any external data to make it useable by the Demand Sensing prede�ned
forecasting model:

1. Every data point (row) must be a�ributable to at least one of the following:
a. Customer (from SAP table KNA1)
b. Material or Product (from SAP table MARA)

2. For historical purposes you need to have data all the way back to the date of the �rst sales order in SAP.
You can get this from the �eld AUDAT from table VBAK or the existing SalesOrder view in the Data
Foundation.

3. If future values can be forecasted, populate them all the way to the last week of your Demand Plan.

Google Cloud Cortex Framework

18

4. If data changes over time, it has to be aggregated on the weekly basis. For data with �ner granularity, such
something that changes daily, depending on what exactly the data represents, use one of the following
strategies:

a. Addition (summarize over all week days). Useful for events that directly drive sales. More of them
over the week can be a�ributed to higher sales numbers (tra�c, clicks, subsequent retail sales).

b. Weekly average. Useful for slow indicators with extreme values having lesser or indirect impact on
sales, peak events don’t ma�er as much. Precipitation is an example.

c. Max or min. Even a single event in a week has a signi�cant impact: heat wave, sales promotion,
holidays.

d. Combination of a and c or b and c, similar to what Demand Sensing uses for temperature.

We use Point-of-Sale (PoS) data as an example of incorporating a new dataset.

3.3.2. Data Acquisition.

Acquire data on the same cadence as you update your Demand Plan. The easiest way to do this is by creating a
Cloud Composer DAG as in Cortex Data Foundation.

Point-of-Sale datasets can be acquired from Retailer Direct Data or syndicated data from Nielsen, IRI, or other
sources. These are optional datasets that can be added to the model if you think they may be relevant.

3.3.3. Customer and Product A�ribution.

As part of the the data acquisition step, make sure your data is a�ributed to Customer/Location and/or Materials
so it can be joined by CustomerId (KNA1.KUNNR), Customer location (country and postal code, KNA1.LAND1 and
KNA1.PSTLZ/ADRC.POST_CODE1) and/or MaterialId (MARA.MATNR).

PoS transactions cannot always be a�ributed to a particular customer. Sometimes they are mapped to a DMA
Location (Designated Market Area) or a group of customers. In such cases, there must be a way to a�ribute
weekly sales per product per customer the same way, so the PoS data can be successfully joined with the sales
data.

With Point-of-Sale data in this guide, for simplicity, we assume that every transaction can be mapped to a
customer and a product/material.

3.3.4. Demand Sensing source code.

Download Demand Sensing source code. A copy in your Cloud Storage bucket is created by the deployment, a�er
the process is successful.

Google Cloud Cortex Framework

19

https://github.com/GoogleCloudPlatform/cortex-dag-generator/tree/main/src/template_dag

It’s located at gs://VERTEX_AI_PIPELINE_BUCKET/cortex_demand_sensing_1_0, where
VERTEX_AI_PIPELINE_BUCKET is the bucket name you used as Vertex AI pipeline bucket when deployed Demand
Sensing.

mkdir -p cortex_demand_sensing & cd &\

gcloud storage cp -r gs://VERTEX_AI_PIPELINE_BUCKET/cortex_demand_sensing_1_0 .

3.3.5. SQL Changes.

Create a table in CDC_PROCESSED dataset and �ll it with data. If you choose to aggregate it, do so on a weekly
basis. As you probably noticed in the source code, we refer to CDC_PROCESSED dataset as

`{{ project_id_tgt }}.{{ dataset_cdc_processed }}`.

Here is how it should look for Point-of-Sale data. Assume it’s called PoS.

Column Type Description

TransactionDate DATE Retail sale date

CustomerId STRING KNA1.KUNNR

CatalogItemId STRING MARA.MATNR

RetailUnitsSold FLOAT Number of retail units sold.

General guidance on sales numbers is to stick with the number of items sold rather than money.

Joining with historical sales.

Next step is to add this data into the AugmentedWeeklySales view. Modify sql/AugmentedWeeklySales.sql`�le

1. In the last SELECT statement, add selecting PoS.RetailUnitsSold aggregating it over a week:

SUM(PoS.RetailUnitsSold) OVER (PARTITION BY DATE_TRUNC(PoS.TransactionDate,
WEEK(MONDAY))) AS RetailUnitsSold

2. Add one more JOIN to the same statement:

LEFT JOIN

`{{ project_id_tgt }}.{{ dataset_cdc_processed }}.PoS` AS PoS

ON

WMSPCPL.WeekStart = DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))

AND WMSPCPL.CustomerId = PoS.CustomerId

Google Cloud Cortex Framework

20

AND WMSPCPL.CatalogItemId = PoS.CatalogItemId

This is how that piece sql/AugmentedWeeklySales.sql of would look like:

Joining with the Demand Plan.

If future data is forecasted and can be leveraged, it needs to be in AugmentedDemandPlan view as well.

This is not the case for Point-of-Sale data because future retail transactions are unknown, but we
demonstrate respective changes in sql/AugmentedDemandPlan.sql �le for the purpose of learning.

The approach is very similar to the modi�cations of the view AugmentedWeeklySales. Modi�cations to
sql/AugmentedDemandPlan.sql �le are:

1. In the last SELECT statement, add selecting PoS.RetailUnitsSold aggregating it over a week:

SUM(PoS.RetailUnitsSold) OVER (PARTITION BY DATE_TRUNC(PoS.TransactionDate,
WEEK(MONDAY))) AS RetailUnitsSold

2. Add one more JOIN to the same statement:

LEFT JOIN

`{{ project_id_tgt }}.{{ dataset_cdc_processed }}.PoS` AS PoS

ON

CWA.WeekStart = DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))

AND CWA.CustomerId = PoS.CustomerId

AND CWA.CatalogItemId = PoS.CatalogItemId

This is how that piece sql/AugmentedDemandPlan.sql of would look:

Google Cloud Cortex Framework

21

3.3.6. Python Code Changes.

This part depends on whether you have future data in a forecasted or planned form.

For instance, you can have a Weather forecast, planned promotions or known holidays, but Point-of-Sale data
always comes a�er the fact.

If future data is known, and you have it up to the last week of the Demand Plan, you don’t need to make any
changes in the source code in regards to the dataset. As described above, Vertex AI will expect the same column
to be in AugmentedWeeklySales and AugmentedDemandPlan views.

If future data is unknown, just like with Point-of-Sales dataset, we need to tell Vertex AI Forecasting about it:

1. Open src/pipeline_utils_ops.py �le, locate make_table_spec function.
2. In make_table_spec function, change primary_table dictionary, so that

unavailable_at_forecast_columns list has columns from AugmentedWeeklySales related to your
dataset joined into that view. For Point-of-Sale example, this is what primary_table with RetailUnitsSold
�eld added would look like:

primary_table = {

"bigquery_uri": f"{training_dataset_bq_url}.{training_table}",

"table_type": "FORECASTING_PRIMARY",

"forecasting_primary_table_metadata": {

"time_column": "WeekStart",

"target_column": "SalesQuantity",

"time_series_identifier_columns": ["CatalogItemId", "CustomerId"],

"unavailable_at_forecast_columns": [

"SalesQuantity",

"AvgInterest",

"RetailUnitsSold"

Google Cloud Cortex Framework

22

],

"time_granularity": {"unit": "WEEK", "quantity": 1},

},

}

Every time you change model the dataset structure, with new set of columns or di�erent columns known at
training/prediction, the scoring pipeline needs to make sure it always picks the right model - one with the same set
of columns it was trained on. To di�erentiate between model variants, use di�erent model labels in
src/pipeline_constants.py �le. For your new version, change model_label_value in PipelineConstants class:

model_label_value: str = "1_1_PoS" # new label for model with PoS

3.3.7. Running deploy.sh.

Run deploy.sh script

./deploy.sh \

--source-project SOURCE_PROJECT \

--target-project TARGET_PROJECT \

--storage-bucket VERTEX_AI_PIPELINE_BUCKET \

--cdc-processed-dataset CDC_PROCESSED_DATASET_NAME \

--k9-processing-dataset K9_PROCESSING_DATASET_NAME \

--vertex-ai-sa VERTEX_AI_SERVICE_ACCOUNT \

--raw-landing-dataset RAW_LANDING_DATASET \

--target-reporting-dataset REPORTING_DATASET \

--target-models-dataset MODELS_DATASET \

--location GCP_LOCATION \

--vertex-ai-region VERTEX_AI_REGION \

--mandt MANDT \

--forecast-horizon FORECAST_HORIZON \

--context-window CONTEXT_HORIZON \

Google Cloud Cortex Framework

23

--model-training-hours MODEL_TRAINING_HOURS \

.

Make sure you use the same parameter values as for the initial deployment. Notice the trailing dot (.) in the
command line.

4. Re-training the model and producing Demand
Forecasts
To perform forecast model training and scoring a�er deploying Demand Sensing package from the Marketplace,
download Demand Sensing code from your Storage Bucket used for Vertex AI (VERTEX_AI_PIPELINE_BUCKET
parameter above).

mkdir -p cortex_demand_sensing & cd &\

gcloud storage cp -r gs://VERTEX_AI_PIPELINE_BUCKET/cortex_demand_sensing_1_0 .

Cortex Demand Sensing uses Vertex AI Forecasting - a specialized AutoML o�ering based on Deep Learning
models. Demand Sensing trains the forecasting model on the following historical data:

1. Weekly sales per product per customer location.
2. Weather per customer location, from NOAA_GFS0P25 dataset.
3. Google Trends average interest per product category per customer’s location region. Product category is

taken from a higher level of product hierarchy (T179 and T179T).
4. Holiday Calendar.
5. Promotion Calendar with weekly promotions per product per customer.

In simple terms, when training the model, it’s building a set of dependencies between weekly sales and the rest of
the data. In addition to regular seasonal changes, the model will get a sense of how sales of a certain product
depend on weather, Google Trends, di�erent holidays, and promotions. The model is not only ge�ing same week
correlations, but also catching lagging indicators, such as dependencies between current Google Trends and
future sales.

When building a forecast by scoring the model, the following data is used:

1. Weather forecast. It uses 16-days forecast from NOAA_GFS0P25 dataset, plus historical weekly climate
averages up to 13 weeks ahead.

2. Holiday Calendar.
3. Promotion Calendar.

Google Trends’ average interest is unknown for the future, therefore it’s only used as a lagging indicator for
products and locations that demonstrated such dependency.

When training the model, there are 3 key variables to adjust:

Google Cloud Cortex Framework

24

https://cloud.google.com/vertex-ai/docs/tabular-data/forecasting/overview

1. Forecast horizon (13 weeks by default) - how far in the future you want to make predictions, up to 13
weeks. While a longer horizon gives a great opportunity to make a forecast in advance, it reduces the
overall quality of the model. Depending on your supply chain, manufacturing and delivery timing, you may
want to reduce the horizon.

2. Context window (52 weeks by default) sets how far back the model looks during training (and for
forecasts). In other words, for each training datapoint, the context window determines how far back the
model looks for predictive pa�erns. Increasing the context window has the following e�ects:

a. Increases the required training time
b. With a larger context window, the model uses more data points in training, causing the training

time to increase
c. Increases the required amount of history for prediction data. Your prediction data should provide

at least as many historical data points as the value of the context window.

With enough historical data, you can set the context window up to 5 times the size of the forecast horizon.

If you expect to have a lot of prediction data that does not extend into the past (cold starts), begin by
se�ing the context window to 0. Otherwise, a context window between the size of the forecast horizon
and 10 times the size of the forecast horizon should work well.

3. Training time budget (1 hour by default) - how much Vertex AI AutoML will spend actually training the
model. 1 hour is the minimum time. If the model quality is not great (r^2 metric below 0.85), you may want
to reduce the context window in half, and increase the training time up to 6 hours. If the evaluation metrics
show substantial improvement, train the model again, increasing the context window to 5 times the size of
the forecast horizon. Consider making a proportional increase to the training budget (if you trained for 6
hours, increase the training budget to 30 hours).

AugmentedWeeklySales view in the Reporting dataset is used as training data for the forecasting model. It
contains weekly sales per product and customer location augmented with Weather, Promotion and Trends.

For more information, please read the o�cial documentation.

Google Cloud Cortex Framework

25

https://cloud.google.com/vertex-ai/docs/datasets/bp-tabular#context-window

4.1. How to Train the model
There is a copy of Demand Sensing code in your Cloud Storage bucket (Storage Bucket for Vertex AI). The
README.md contains the documentation on using Demand Sensing source code directly for training and scoring
the forecasting model in Vertex AI.

We recommend re-training your forecasting model every few weeks, once you get more historical sales data,
updated holiday calendars, re�ned weather forecasts, etc.

We recommend launching the pipelines from Google Cloud Shell in your source GCP project.

1. Download Demand Sensing code from Cloud Storage

mkdir -p cortex_demand_sensing & cd &\

gcloud storage cp -r gs://PIPELINE_BUCKET/cortex_demand_sensing_1_0 .

PIPELINE_BUCKET - Google Cloud Storage Bucket to use with Vertex AI (Storage Bucket for Vertex AI).

2. Run python3 -m pip install --upgrade -r requirements.txt
3. Run src/submit_pipeline.py script as python3 src/submit_pipeline.py with the parameters described

below.

python3 src/submit_pipeline.py [-h] [--debug] \

--model-command {train,score,train_score} \

--region REGION \

--bigquery-location LOCATION \

--pipeline-bucket PIPELINE_BUCKET \

--k9-processing-dataset K9_PROCESSING_DATASET_NAME

--vertex-ai-sa VERTEX_AI_SA \

--source-project SOURCE_PROJECT --target-project TARGET_PROJECT \

--target-reporting-dataset TARGET_REPORTING_DATASET \

--cdc-processed-dataset CDC_PROCESSED_DATASET \

--forecast-horizon-weeks FORECAST_HORIZON_WEEKS \

[--context-window-weeks CONTEXT_WINDOW_WEEKS] \

[--training-node-hours TRAINING_NODE_HOURS] \

[--score-on-recent-model]

Google Cloud Cortex Framework

26

https://cloud.google.com/shell

Parameters:

● -h, --help - displays command line help.
● --debug - Debug Logging mode if speci�ed.
● --model-command - Forecasting Model command, train, score or train_score. For training, use

train or train_score train which performs both training and scoring.
● --region - Vertex AI GCP region.
● --bigquery-location - BigQuery Location, one you used with Data Foundation,
● --pipeline-bucket - Google Cloud Storage Bucket to use with Vertex AI when needed.
● --k9-processing-dataset - Data Foundation K9 Processing Dataset.
● --vertex-ai-sa - Service Account for Vertex AI to use. Make sure you use the principal of the account, not

its name.
● --source-project - Source Data GCP project (CDC Processed dataset should be there).
● --target-project - Target GCP project (Target Reporting dataset should be there).
● --target-reporting-dataset - Target Reporting dataset name.
● --cdc-processed-dataset - CDC Processed dataset name.
● --forecast-horizon-weeks - Vertex AI Forecasting Horizon.
● --context-window-weeks - Vertex AI Forecasting Context Window in weeks. Optional, defaults to 52.
● --training-node-hours - Vertex AI Forecasting Training budget in hours. Optional, defaults to 1.
● --score-on-recent-model - if present, makes the pipeline use the most recent model, not the best one.

4.2. Validate ML Model
When running the training pipeline, once automl-forecasting-training-job step is done, it produces a model
which you can �nd on Vertex AI Models page of your source project. Look for the most recent one named “Cortex
Demand Sensing_…” with “best_r_squared” label. By clicking on the model name, then on its version number (1),
you will navigate to the evaluation page with model metrics.

Google Cloud Cortex Framework

27

https://console.cloud.google.com/vertex-ai/models

A�er the training, Vertex AI forecasts also populates an evaluations table in K9 Processing dataset in source
project’s BigQuery. Look for a table starting with “demand_sensing_evaluations_” followed by a timestamp. Table
with the most recent timestamp is the one you are looking for.

The Forecasting pipeline performs validation for the training data. If any errors are discovered, you will �nd them in
tables starting with “errors_validation_” + timestamp..

errors_SalesQuantity.message contains verbal explanations of errors.

4.3. Produce ML Forecast
Every week, or whenever your future data changes (Promotion Calendar, Weather), you can run scripring of the
forecasting model, and produce a new Demand Forecast.

Do so by running src/submit_pipeline.py script as described in the training section above, except with
--model-command equal to score (or train_scrore if you want to retrain the model �rst).

● The forecasting model must be trained before running the scoring.

● The forecast is always made using the best Demand Sensing model, not the last one, unless using
--score-on-recent-model option.

The model performance and criteria for the best model are evaluated based on r-squared metric (R2,
Coe�cient of determination). If you’d like to change this criteria, modify evaluate_model Kube�ow
component in src/models.py �le.

Demand Plan de�nes what dates, products and customers the forecast will be made for. So, the Demand_Plan
table in CDC_PROCESSED dataset must be carefully maintained for producing accurate forecasts.

AugmentedDemandPlan view in the Reporting dataset is used as the actual Demand Plan data for scoring the
model. Similarly to AugmentedWeeklySales, it contains demand plan data augmented with Promotions, Holidays
and Weather forecasts.

Google Cloud Cortex Framework

28

https://en.wikipedia.org/wiki/Coefficient_of_determination

When the scoring part of the pipeline is completed, it’s expected to �ll the Demand_Forecast table in the
CDC_PROCESSED dataset (one you speci�ed in deploy.cdcProcessedDataset parameter) in the source GCP
project.

DemandForecast view in the reporting dataset (target project) will have the same data.

DemandForecast follows the same approach of weekly aggregation of expected sales (ForecastQuantity), per
product (CatalogItemId) per Customer (CustomerId). The table also contains statistical range with lower
(ForecastQuantityLowerBound, under-forecasting) and higher (ForecastQuantityUpperBound,
over-forecasting) bounds, using respective quantiles 0.1 and 0.9.

Important notes:

1. Demand_Forecast table is truncated every time a successful forecast has been made.

Google Cloud Cortex Framework

29

https://en.wikipedia.org/wiki/Quantile

2. The forecast is always made using the best model, no ma�er which model was trained last. The quality of
the model is evaluated by r^2 (r-squared) metric. This is done by the “get-best-model” step of the
pipeline.

If there were errors during the forecasting process, Vertex AI will create corresponding records in K9 Processing
dataset in source project’s BigQuery. Look for a table starting with “errors_” followed by a timestamp. Table with
the most recent timestamp is the one you are looking for.

errors_SalesQuantity.message contains verbal explanations of errors.

The Forecasting pipeline performs validation for the scoring data as well. If any errors are discovered, you will �nd
them in tables starting with “errors_validation_” + timestamp (similarly to one at the training stage).

errors_SalesQuantity.message contains verbal explanations of errors.

Google Cloud Cortex Framework

30

4.4. Logging, Monitoring and Servicing
4.4.1. Vertex AI Logging and Monitoring

While running a training or forecasting pipeline, navigate to Vertex AI Pipeline page in your source project.

The most recent pipeline run with the name starting with “demand-sensing-pipeline-” is expected to be running or
completed. By clicking on the run’s name you can explore the running pipeline and monitor logs of every pipeline
step.

When started by the Marketplace deployment or by running Cloud Build with cloudbuild.ml.yaml from the source
code, the pipeline will perform both model training and scoring (forecasting).

You can navigate between di�erent pipeline steps, monitor step logs, produced assets and results.

4.4.2. Vertex AI Managed Datasets and BigQuery Datasets servicing

While running training and scoring pipelines, Vertex AI produces a number of intermediate tables. They all reside in
BigQuery, in the K9 Processing dataset.

Google Cloud Cortex Framework

31

https://console.cloud.google.com/vertex-ai/pipelines

Over time, the number of tables grows, and you may want to plan a periodic clean up.

Every training pipeline run produces a “demand_sensing_evaluations_…” table and a “preprocess_…” table. The
evaluations table can be safely deleted unless you would like to explore the results of the model evaluation.

The “preprocess_…” table is used as the data source for a Vertex AI Managed Dataset that Vertex AI needs for
training the forecasting model. Do not delete this table while using the Demand Sensing model with a respective
Vertex AI managed dataset. To discover what table is actually used by the model:

1. Go to Vertex AI Models page of your source project.

2. Look for a model named “Cortex Demand Sensing_…” with the “best_r_squared” label. By clicking on
the model name, then on its version number (1), you will navigate to the evaluation page with model
metrics.

3. Click on “View Dataset”

4. The dataset page has the “Dataset location(s)” a�ribute which is a BigQuery table you need to keep.

Every scoring run also produces a “preprocess_…” table. It can be safely deleted a�er the scoring run.

You may want to automate the process of cleaning up the tables, making sure ones utilized by models in use are
preserved. In general, any Demand Sensing model that doesn’t have a “best_r_squared” label, can be deleted
along with the corresponding Vertex AI managed dataset and BigQuery “preprocess_…” table.

If you use di�erent criteria for keeping models, assigning another label is a good option. In such cases, replace
best_r_squared label name with one you use.

The following code snippet illustrates the same process in Python using Vertex AI ML Metadata lineage:

from google.cloud import aiplatform

from google.cloud import aiplatform_v1

from google.cloud import bigquery

project = "<<SOURCE PROJECT>>" # Source project

location = "<<GCP LOCATION>>" # Vertex AI location, e.g. us-central1

BigQuery client for deleting tables

Google Cloud Cortex Framework

32

https://cloud.google.com/vertex-ai/docs/training/using-managed-datasets
https://console.cloud.google.com/vertex-ai/models
https://console.cloud.google.com/vertex-ai/datasets
https://cloud.google.com/vertex-ai/docs/ml-metadata/introduction

bq_client = bigquery.Client(project=project, location=location)

aiplatform.init(project=project, location=location)

client_options = aiplatform.initializer.global_config.get_client_options()

Vertex AI Metadata Service client

metadata_client = aiplatform.gapic.MetadataServiceClient(

client_options=client_options

)

Using default Metadata Store

store = f"projects/{project}/locations/{location}/metadataStores/default"

Getting Demand Sensing models using a label value

(see src/pipeline_constants.py)

models = aiplatform.Model.list(filter=f'labels.demand-sensing-model="1_0"')

for model in models:

If it's a good model, skip it

(good models have "best_r_squared" label, see src/pipeline_constants.py)

If using another criteria for a good model, replace best_r_squared name here

if "best_r_squared" in model.labels:

continue

model_uri = (

f"https://{client_options.api_endpoint}/v1/{model.resource_name}"

)

artifact_request = aiplatform_v1.ListArtifactsRequest(

parent=store,

filter=f'uri="{model_uri}" AND schema_title="google.VertexModel"',

)

artifacts = list(metadata_client.list_artifacts(artifact_request))

artifact = artifacts[0]

lineage = metadata_client.query_artifact_lineage_subgraph(

artifact=artifact.name

)

lineage_artifacts = list(lineage.artifacts)

Google Cloud Cortex Framework

33

dataset_artifact = list(

filter(

lambda artifact: artifact.schema_title == "google.VertexDataset",

lineage_artifacts,

)

)[0]

dataset = aiplatform.TimeSeriesDataset(

dataset_name=dataset_artifact.metadata["resourceName"]

)

bq_source = dataset.to_dict()["metadata"]["inputConfig"]["bigquerySource"][

"uri"

]

print(

f"Deleting Vertex AI Model: {model.resource_name}, Vertex AI ML Dataset:"

f" {dataset.resource_name}, BigQuery Table: {bq_source}"

)

delete Vertex AI model

model.delete()

delete Vertex AI managed dataset

dataset.delete()

bq_table_ref = bigquery.Table.from_string(

bq_source.replace("bq://", "")

).reference

delete BigQuery table

bq_client.delete_table(bq_table_ref)

5. Con�gure Looker
Once the content is deployed, instructions for deploying the pre-built Looker block can be found here. The
source for the Demand Sensing block is located in this repository. Optionally, you may also customize the block
by forking the GitHub repositories into your own Looker project. Instructions can be found here.

Google Cloud Cortex Framework

34

https://cloud.google.com/looker/docs/marketplace#installing_a_tool_from_a_git_url
https://github.com/looker-open-source/block-cortex-demand-sensing
https://cloud.google.com/looker/docs/blocks

6. Feedback and updates
Once the templates are deployed they can be customized as necessary. BigQuery views will be dependent on
customer-speci�c change data capture mechanisms.

We have designed all BigQuery model views and VertexAI models to provide �exibility of choice when it comes to
choosing the set of tools that �t best (integration or visualization tools). This means that modi�cations can diverge
from Google’s original templates to be�er �t existing customer investments.

We are interested in capturing feedback on additional data models and features that would be relevant to your
business. Please reach out to your account team or contact us for assistance. Bugs may also be raised in the Data
Foundation repository here.

Google Cloud Cortex Framework

35

https://cloud.google.com/contact/
https://github.com/GoogleCloudPlatform/cortex-data-foundation/issues

