a

Google Cloud Cortex
Demand Sensing

Deployment and User Guide

Table of Contents

1. Solution Overview

1.1. Solution Component

1.2. Deployment Overview

1.3. Deployment Steps

2. Deployment Prerequisites

2.1. Deploy the Data Foundation content

2.2. Identify Data Foundation projects and datasets

2.3, Prepare your cloud environment

2.3. Plan for regional availability

2.4. Create and populate external datasets [optionall
2.4.1. Promotion Calendar
2.4.2. Demand Plan

2.4.3. Time Dimension Requirements

3. Deploy Demand Sensing
3.1. Deploy Demand Sensing from Google Cloud Marketplace
3.1.5. Run Google Cloud Cortex Demand Sensing container
3.1.6. Complete Additional Configuration
3.1.7. Execute Demand Sensing Deployment
3.2. Validate Deployment

3.2.1. Validate Deployment Jobs and Solution Components
3.2.2. Validate Demand Forecast

3.3. Incorporating additional external datasets [optional

3.3.1. Data Requirements.
3.3.2. Data Acquisition.
33.3.C | Product Attributi
3.3.4. Demand Sensing source code.
3.3.5.5QL Changes.

Joining with historical sales.

. ith the O Pl
3.3.6. Python Code Changes.
3.3.7. Running deploy.sh.
4. Re-training the model and producing Demand Forecasts

Google Cloud Cortex Framework

4.1. How to Train the model
4.2. Validate ML Model

4.3. Produce ML Forecast

4.4. Logging, Monitoring and Servicing
4.41. Vertex Al L ing and Monitorin

4.4.2. Vertex Al Managed Datasets and BigQuery Datasets servicin

5. Configure Looker

6. Feedback and updates

1. Solution Overview

An accurate demand plan is essential for reducing business costs and maximizing profitability. Identifying near
term changes in demand is mission critical to better manage and match demand with supply.

Google Cloud Cortex Demand Sensing provides predefined solution content to help you get started quickly with
a cloud based demand sensing solution leveraging the best of our Data Cloud services like BigQuery, Vertex Al,
and Looker together with SAP ERP data and additional data sources like Search Trends, Weather, and more.

The solution leverages Cortex Data Foundation predefined BigQuery data models as a baseline and delivers
advanced use case specific analytics and machine learning models on top. Once deployed the solution helps kick
start new insights and highlights potential impacts to near term demand plans.

These insights can be consumed through predefined dashboards available on the Looker Marketplace as a follow
on installation. Alternatively, other preferred visualizations solutions can be used to consume the models and
sample data sets provided.

By bringing together SAP and Non SAP data sets, Cortex Demand Sensing helps unlock new insights from diverse
demand signals beyond historical sales and allows organizations to be more nimble, through more holistic
integration of demand drivers.

Get started today! See our deployment guideline below.

1.1. Solution Components

The following Google Cloud services are used by the solution:

BigQuery

I Buil
Cloud Source
Vertex Al

Google Cloud Storage

Google Cloud Cortex Framework

https://cloud.google.com/data-cloud
https://cloud.google.com/bigquery/?utm_source=google&utm_medium=cpc&utm_campaign=emea-gb-all-en-dr-skws-all-solutions-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_574804267345-ADGP_Hybrid+%7C+SKWS+-+EXA+%7C+Txt+~+Data+Analytics+~+BigQuery%23v4-KWID_43700053283638057-kwd-47616965283-userloc_9045888&utm_term=KW_bigquery-NET_g-PLAC_&gclid=CjwKCAjwve2TBhByEiwAaktM1G4RYCKgruFoqv_l8_GaX3HYjX6nnlF03he4py9RDTz_w118oWUNuxoCwFwQAvD_BwE&gclsrc=aw.ds
https://cloud.google.com/vertex-ai/?utm_source=google&utm_medium=cpc&utm_campaign=emea-gb-all-en-dr-skws-all-all-trial-e-gcp-1011340&utm_content=text-ad-none-any-DEV_c-CRE_574560924426-ADGP_Hybrid%20%7C%20SKWS%20-%20EXA%20%7C%20Txt%20~%20%20AI%20%26%20ML%20~%20Vertex%20AI-KWID_43700066529969066-aud-606988878374%3Akwd-553582750299-userloc_9045888&utm_term=KW_vertex%20ai-NET_g-PLAC_&gclid=CjwKCAjwve2TBhByEiwAaktM1GVOgHaVLs8Tb-1k0mxrVPX3TIA3TAl9PoRAOg4x13vI0yp5C-4aghoC6bcQAvD_BwE&gclsrc=aw.ds
https://cloud.google.com/looker
https://cloud.google.com/datasets
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://cloud.google.com/bigquery
https://cloud.google.com/build
https://cloud.google.com/source-repositories
https://cloud.google.com/vertex-ai
https://cloud.google.com/storage

e |AM -Service A n

We recommend you or the team implementing this solution are familiar with the technical details of these
platforms and tools to ensure a successful implementation.

1.2. Deployment Overview

This guide provides an overview of all prerequisites, setup steps and inputs required for a successful deployment
of Google Cloud Cortex Demand Sensing solution content.

This guide is useful for and should be completed by: Google Cloud Data and Machine Learning Technical
Practitioners (or similar profiles) and Software Developers/Architects (or similar profiles). Readers will benefit from
having previous understanding of general cloud-native development principles and containers.

By the end of this guide, you will:

1. Have deployed Cortex Demand Sensing solution components

2. Have fulfilled the prerequisites for data availability to train Demand Sensing forecasting models

3. Have a functional Vertex Al pipeline for Demand Sensing

4, Understand the recommended design patterns and how to effectively enhance your models from the

Data Foundation with external datasets
S. Be able to tweak the pipeline and redeploy or re-train with your own datasets

1.3. Deployment Steps

The deployment is automated through the Demand Sensing configurator and deployer you will execute from the
Demand Sensing container published in the Google Cloud Marketplace. At the end of the deployment, your
Google Cloud project will contain a set of sample data, BigQuery tables and a Vertex Al model. You will also have a
copy of the code to adjust and retrain the model according to your source data and business needs.

The key deployment steps are summarized below:

1. Deploy Cortex Data Foundation 5.0.1 or higher
a. Set SAP mandt set to 900 (SAP->mandt value in config/config.json)
b. Weather and Trends must be enabled in K9 Settings (src/k9/config/k9_settings.yaml)
k9s:

- date_dimension

holiday calendar
- trends
- weather

Note: Schema of k9_settings.yam in Data Foundation 5.0.1 was changed. Now you only need to list k9s to
deploy ((as shown above), regardless of their stage.

2. ldentify the projects and datasets used to deploy the Data Foundation (from config/config.json).

Google Cloud Cortex Framework

https://cloud.google.com/iam
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

3. Execute Demand Sensing configuration and deployment by running its container from the Google Cloud
Marketplace.

4. Validate the deployment and logs.

5. Explore the source code available in your Google Cloud Storage bucket.

6. Re-train the Vertex Al models if needed.

The following diagram illustrates the interaction between Cortex Data Foundation and Demand Sensing
components:

Source Project

RAW_LANDING
Q Dataset

BigQuery

Target Project

(my be the same as
|- 1Cloud Storage Source Project)

Data

) qm Q REPORTING

Dataset

K9 Processing
Dataset

BigQuery

¢ Forecast
Results

CDC_PROCESSED f i
Q “Dataset Data L ? Vertex Al

) for trainin
BigQuery I 5
T ~ Demand Plan

BigQuery

J

Promotions Calendar
Holiday Calendar

Trends
Weather
°< Analytics Hub Sales Orders

Materials

Customers Create Vertex &

BigQuery ¢ Data Artifacts

Cloud Build

Source codé
for

ustomizatiops

Marketplace

AL

Deployer Container pull

Cloud Source
Repositories

2. Deployment Prerequisites

2.1. Deploy the Data Foundation content

Deployment requires Cortex Data Foundation to be implemented as a prerequisite. Demand Sensing will require
the following minimum components from Cortex Data Foundation:
e Reporting Views (and their underlying tables):
o SalesOrders
o CustomersMD
o MaterialsMD

Google Cloud Cortex Framework

https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-data-foundation
https://github.com/GoogleCloudPlatform/cortex-reporting

e [External Sources loaded from the following DAGs
o Trends
o Weather
o Holiday Calendar

If using test data, deploy the Data Foundation in full using SAP Client 900 and SQL flavor ECC. The test data in
Mandant 900 for ECC was specifically created to feed the Vertex Al models.

All test data has been generated from an ECC source and used to tune the ML models to provide an end to end
sample of a working solution. There is currently no curated demo test data for S4, so model execution and quality
are not reliable if you are using the delivered test data for S4 model training.

If using your own data and not the delivered test data, configure Analytics Hub or a similar available source of your
choice as outlined in the documentation.

The following diagram illustrates the components required from the Data Foundation and the components added
to the CDC and reporting datasets as part of the Demand Sensing requirements.

Cortex Demand e

Data Sensing
Foundation Promotion_Calendar

Manually Populated Promotion_Calendar

Demand_Plan

Manually populated

CustomersMD
KNA1
ADRC

SalesOrders
VBAK
VBAP

TCURX

Demand_Plan

SalesOrders
[1D

~— Demand_Plan

-

MARA

MAKT
SalesOrders

o . Legend
Base tables, connected to
MaterialsMD C] CDC final sink
Weather Weather
AnalyticsHub: NOAA | PromotionCalendar Repurtizgsview specific to
. Demand Sensing, in
Posteode ————{__HoldayCalendar - REPORTING dataset
Specific to Demand
HolidayCalendar D Sensing, in
- - CDC_PROCESSED
PyPi: Holidays dataset
L Contains language field

Google Cloud Cortex Framework

https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets
https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets

2.2. Identify Data Foundation projects and datasets

Source Google Cloud Project: Project where the source data is located, from which the data models
consume.

Target Google Cloud Project: Project where the Data Foundation for SAP predefined data models was
deployed. This may or may not be different from the source project depending on your needs.

Source Raw BigQuery Dataset: BigQuery dataset where the source SAP data was replicated to or where
the test data was created.

CDC BigQuery Dataset: BigQuery dataset where the CDC processed data lands the latest available
records.

Target BigQuery reporting dataset: BigQuery dataset where the Data Foundation for SAP predefined data
models was deployed.

K9 Processing Dataset.

K9 Reporting Dataset.

2.3. Prepare your cloud environment

Make sure you can fulfill the following prerequisites before starting the deployment:

1.

Setup your Cloud Shell environment

Launch the Cloud Shell by clicking in the following icon: n located in the top right corner of the
console. Alternatively navigate to: https://shell.cloud.google.com/?show=terminal

Make sure you have permissions and roles:
a. Permissions to enable components/APIs in a Billing-enabled project.
b. Storage Object Admin.
c. Service Account Creator.
d. Cloud Build Editor.
e. BigQuery Data Editor and BigQuery Job User.

If you create Service Accounts and manage their permissions during this deployment, you also should

have a Service Account Admin and Project IAM Admin roles. If you need to create resources and assign

permissions in advance, please follow instructions in 3.1.6. Complete Additional Configuration section.

Google Cloud Cortex Framework

https://cloud.google.com/shell
https://shell.cloud.google.com/?show=terminal
https://console.cloud.google.com/billing?_ga=2.205167317.4517887.1655783527-1310832498.1655783527
https://cloud.google.com/storage/docs/access-control/iam-roles
https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
https://cloud.google.com/build/docs/iam-roles-permissions
https://cloud.google.com/bigquery/docs/access-control#bigquery
https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
https://cloud.google.com/resource-manager/docs/access-control-proj

2.4. Plan for regional availability

Vertex Al region is one of the parameters used for deploying and running Demand Sensing.

When using Vertex Al, make sure you run its jobs in the region where the Vertex Al Forecasting feature is available,

closest to where your source data is stored in BigQuery. If your BigQuery datasets are multi-regional, choose a
Vertex Al location closest to you in the same multi-region.

You will also create a Storage Bucket in the same region you choose to run Vertex Al jobs in.

2.5. Create and populate external datasets [optional]

Note: If you used test data with Data Foundation deployment, this section can be skipped. In such cases, make
sure you also use test data with Demand Sensing.

If you are not using test data for the initial deployment, you will need to create and populate the tables used
for training of the forecasting model. These tables are additional to the external datasets populated in the Data
Foundation and are outlined below with instructions on how to populate.

IMPORTANT: If you are not using test data with Cortex Data Foundation or Demand Sensing, you must populate
the raw and CDC datasets with data using the corresponding Data Foundation capabilities. Otherwise, the
Forecasting Model will not be trained at the time of Demand Sensing deployment.

If you don’t populate the Demand Plan dataset as described below, the model will not be able to produce
forecasts.

Alternatively, you can use test data for the initial deployment and replace it afterwards. The code will be available
to you in a Cloud Storage Bucket to recreate tables and re-train the Vertex Al pipelines.

Note: All data in the BigQuery reporting views, external datasets and forecasts are aggregated on the weekly
basis, with weeks starting on Monday and ending on Sunday. For example, the week of June 20th, 2022 goes
from Monday June 20th to Sunday June 26th. You can adjust this in the DAGs and view SQL in the data
foundation if required.

2.5.1. Promotion Calendar

If not using test data, you will need to create and populate the Promotion Calendar table. This table includes
information on planned promotions for a given product and customer, on a weekly basis.

The following is the structure of the table:

Google Cloud Cortex Framework

https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai/docs/general/locations#feature-availability
https://github.com/GoogleCloudPlatform/cortex-data-foundation#configure-external-datasets

Field Name Data Type Description

StartDateofWeek [DATE Monday'’s date of the target week

Customer ID corresponding to SAP's Master Data table KNA1, field
Customerld STRING KUNNR

Material ID corresponding to SAP's Material Master table MARA,
Catalogltemld STRING field MATNR

Is TRUE when there is a promotion running on the week of
StartDateOfTheWeek for material Catalogltemld with customer
IsPromo BOOLEAN Customerld.

optional field indicating the promotion discount in %%. It is currently
DiscountPercent FLOAT not used by the forecasting model.

The table is expected to exist in the CDC_PROCESSED dataset before the deployment of Demand Sensing. If
using test data, the deployment process will create and populate the table for you.

Here is a sample statement to create the table if not using test data.

CREATE TABLE IF NOT EXISTS "{{ project_id src }}.{{ dataset_cdc_processed
}}.Promotion_Calendar”
(

StartDateOfWeek DATE,

CustomerId STRING,

CatalogItemId STRING,

IsPromo BOOLEAN,

DiscountPercent FLOAT64

The promotion data must be aggregated on the weekly basis. In other words: If there is a promotion or discount
for a product and customer in a specific week, there should be a corresponding record in the Promotion_Calendar
table.

IMPORTANT: To train a high quality forecasting model, it is necessary to populate the Promotion Calendar both
with the historical and future promotions. Ideally, the promotions in the table should go as far as the earliest
order date. Future promotions are needed as far as the forecast horizon, up to 13 weeks from the full week with
last known sales (presumably the week before the current one).

Google Cloud Cortex Framework

2.5.2. Demand Plan

If not using test data, create and populate the Demand_Plan table in the CDC_PROCESSED dataset.

The following is the expected structure of the table:

Field Name Data Type Description
WeekStart DATE Monday’s date of the target week
Customer ID corresponding to SAP's Master Data table KNA1, field
Customerld STRING KUNNR
Material ID corresponding to SAP's Material Master table MARA,
Catalogltemid STRING field MATNR

Planned cumulative order quantity (as in VBAP-KWMENG field)
aggregated over the week, per customer (Customerld), per material
DemandPlan FLOAT (Catalogltemld)

Here is a sample statement to create the table if not using test data.

CREATE TABLE IF NOT EXISTS "{{ project_id src }}.{{ dataset_cdc_processed }}.Demand_Plan"

(
WeekStart DATE,

CustomerId STRING,
CatalogItemId STRING,
DemandPlan FLOAT64

The demand plan data must be aggregated on the weekly basis, per material, per customer. When there is no sale
planned on a certain week, make a row with O (zero) in the DemandPlan field.

IMPORTANT: Demand_Plan table should be populated as far as the forecast horizon, up to 13 weeks from the
full week with last known sales (presumably the week before the current one).

Any Demand Plan data made for periods before the last known sales data will be ignored by the forecasting
model.

Google Cloud Cortex Framework

10

2.5.3. Time Dimension Requirements

The fields named WeekStart or StartDateOfWeek denote the time period for that record in all external
datasets tables in BigQuery used as sources of predictive variables used in the ML model. It stands for the full
week starting on that date with Monday as the first date of the week. A value of 2022-01-17, for instance,
covers the time period from Jan 17th, 2022 through Jan 23rd, 2022, Monday to Sunday.

Values for this field must be valid parseable dates. Furthermore, the data must not have missing WeekStart values.
To clarify, if the minimum value is 2019-01-07 and the maximum value is 2022-03-21, every single week in that
period must be present in the datasets.

3. Deploy Demand Sensing
3.1. Deploy Demand Sensing from Google Cloud Marketplace

The instructions in this section outline how to deploy Cortex Demand Sensing from Google Cloud Marketplace.
You should only proceed if you have already deployed the Data Foundation content as it is a prerequisite.

3.1.5. Run Google Cloud Cortex Demand Sensing container

In the Cloud Shell, execute the following command:
gcloud auth configure-docker gcr.io && \

docker run -it --rm \
marketplace.gcr.io/cortex-public/cortex-demand-sensing:latest

This command will pull and run the Demand Sensing container from Google Cloud Marketplace.

The container starts from running the Demand Sensing deployment configurator.

Demand deployment configuration

The configurator will guide you through the deployment configuration by asking a few questions:

f. Source GCP Project: The source project where data replication and CDC processing datasets
are. Refer to the Data Foundation documentation for more information.

g. Target GCP Project: The target project where Reporting views are (may be the same as the
source depending on your deployment of the Data Foundation). Refer to the Data Foundation
documentation for more information.

h. Raw Landing Dataset: BigQuery dataset where SAP data is replicated.

Google Cloud Cortex Framework

1

https://shell.cloud.google.com/?show=terminal
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure
https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

i. CDC Processed Dataset: BigQuery dataset where the CDC processed data is. We also call it
“CDC_PROCESSED” in this Guide. The additional external tables (see Section 2.5. Create and
populate external datasets) are expected to be found here if not using test data.

j- Reporting Dataset: The dataset for reporting used in the Data Foundation.
k. K9 Processing Dataset: Data Foundation K9 Processing Dataset.
I. K9 Reporting Dataset: Data Foundation K9 Reporting Dataset.

m. Data Foundation BigQuery Location: BigQuery location (multi-region) used with Data
Foundation. If it was not specified, the Data Foundation used US. Default value is taken from the
Raw Landing Dataset location.

n. Vertex Al Region: Region where the Vertex Al pipelines will run. Must be a single region (e.g.
us-central1), same as you used for Vertex Al bucket. Be sure to keep within the same multi-region
location chosen for BigQuery.

0. Vertex Al service account: Service Account to run Vertex Al jobs. If it doesn’t exist, you can
create one after configuring Demand Sensing deployment, but before executing the deployment.
Default value is “cortex-ds-vertexai-sa” in the source project.

p. Storage Bucket for Vertex Al: GCS bucket for Vertex Al to store intermediate assets during
model training and scoring. If it doesn’t exist, you can create one after configuring Demand
Sensing deployment, but before executing the deployment. This bucket must be created in the
region specified as “Vertex Al Region” parameter above. Default value is a combination of the
source project id, “-cortex-ds-vertexai-" string and Vertex Al region.

qg. Forecast Horizon (weeks): How far in the future you want to make predictions, up to 13 weeks.
Leave the default (13) if using Test Data. See section 4. Re-training the model and producing
Demand Forecasts for more details on this parameter.

r. Context Window (weeks): How far back the model looks during training (and for forecasts).
Leave the default (52) if using Test Data. See section 4. Re-training the model and producing
Demand Forecasts for more details on this parameter.

s. Model Training Budget (hours): How many whole hours Vertex Al AutoML will spend actually

t. Deploy Test Data: Answer yes if you used test data with Demand Sensing and would like to use
Test Data with Demand Sensing.

If you didn’t run Data Foundation with flags testData: true and would like to use Demand Sensing
Test Data, please make another deployment of Data Foundation into new datasets. Simply running
Data Foundation over the same datasets will not provision test data because it’s using “--noreplace

Google Cloud Cortex Framework

12

flag” with “bq load” commands. Refer to the Data Foundation documentation for more
information.

u. Mandant/Client: Use 900 for test data (previous parameter is yes). Otherwise, use the right client
for your source SAP system.

3.1.6. Complete Additional Configuration

Demand Sensing deployment configurator will inform you about next steps required to execute Demand Sensing
deployment, and will offer a command snippet you may use to perform necessary configuration steps:

Most of the names in the examples below are going to be different for you. Vertex Al Service Account and Vertex
Al Bucket names below are shown with their default values generated from the source project id
“your-source-project”.

To deploy Google Cloud Cortex Demand Sensing, please complete additional configuration steps:

Enable Vertex AI in the source project.

Create storage bucket for Vertex AI in

region.

Create service account for Vertex AI.
Grant service account

role on storage bucket.

Grant service account the following
roles in the source project:

Grant service account the following
roles in the target project:

Grant source project's Cloud Build account (
role for
service account.
Grant source project's Cloud Build account (
and roles on the source project.
Run command to continue deploying Cortex Demand Sensing.

Would you like to get a command snippet to perform the operations above? NEH

Complete additional configuration steps as instructed by the configurator.
Once the configurator finishes, you will stay in a Bash session running inside the Demand Sensing container.

To complete additional configuration, you can use command snippets provided by the configurator (if answered
yes) or use your own way, with the command line or Google Cloud Console.

Google Cloud Cortex Framework

13

https://github.com/GoogleCloudPlatform/cortex-data-foundation#establish-project-and-dataset-structure

gcloud config set project your-source-project

gcloud services enable aiplatform.googleapis.com sourcerepo.googleapis.com --project="your-source-project"

gsutil 1ls -b gs://your-source-project-cortex-ds-vertexai-us-centrall 2> /dev/null || \
gsutil mb -1 us-centrall gs://your-source-project-cortex-ds-vertexai-us-centrall

gcloud iam service-accounts describe cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com 2> /dev/null || \
gcloud iam service-accounts create cortex-ds-vertexai-sa \

--description="Vertex AI Demand Sensing" \

--display-name="Vertex AI Demand Sensing" \

--project="your-source-project"

gsutil iam ch \
serviceAccount:cortex-ds-vertexai-sal@your-source-project.iam.gserviceaccount.com:objectAdmin \
gs://your-source-project-cortex-ds-vertexai-us-centrall

for role in 'roles/aiplatform.user' 'roles/bigquery.dataEditor' 'roles/bigquery.jobUser';
do
gcloud projects add-iam-policy-binding your-source-project \
—--member="serviceAccount:cortex-ds-vertexai-salyour-source-project.iam.gserviceaccount.com" \
--role="$role"

for role in 'roles/bigquery.dataEditor' 'roles/bigquery.jobUser';
do
gcloud projects add-iam-policy-binding your-target-project \
--member="serviceAccount:cortex-ds-vertexai-sal@your-source-project.iam.gserviceaccount.com" \
--role="S$role"

gcloud iam service-accounts add-iam-policy-binding \
cortex-ds-vertexai-sa@your-source-project.iam.gserviceaccount.com \
--member="serviceAccount:12345678@cloudbuild.gserviceaccount.com" \
--role="roles/iam.serviceAccountUser"

role in 'roles/aiplatform.admin' 'roles/storage.admin';

gcloud projects add-iam-policy-binding your-source-project \
—--member="serviceAccount:12345678@cloudbuild.gserviceaccount.com" \
--role="$role"

IMPORTANT: After finishing Demand Sensing deployment configuration, your Cloud Shell will stay in the
context of running Demand Sensing container. Do not close it. You can execute all necessary CLI
commands from there.

Google Cloud Cortex Framework

If your Cloud Shell session gets suspended, you will need to run docker run -it --rm
marketplace.gcr.io/cortex-public/cortex-demand-sensing:latest command in Cloud Shell again and use the
same configuration parameters.

3.1.7. Execute Demand Sensing Deployment

Once you created Vertex Al BigQuery Dataset, GCS bucket for Vertex Al, Vertex Al Service account, and
configured IAM roles for Cloud Build Service Account and Vertex Al Service Account, you can execute Demand
Sensing deployment using ./ds-deploy command.

Make sure you run ./ds-deploy in the same Cloud Shell session you used with steps 1and 2 above. You will see
lusr/srclapp as your current directory.

If everything was configured correctly, ds-deploy script will start Demand Sensing deployment and Vertex Al
Pipeline execution.

Note: ds-deploy script checks whether Vertex Al bucket, Vertex Al BQ dataset and Vertex Al service account
exist.

It also makes sure Vertex Al service account and Cloud Build service account have necessary |AM roles on the
projects and resources.

./ds-deploy --no-iam-check

3.2. Validate Deployment

The deployment process starts with validating deployment configuration.

root@cbb72d09dbfd: /usr/src/app#
g8 Google deployment ¥
Updated property

our

cortex-ds- ¢ o .gservi co o exists.

.com he e 5 % 5 in project

ount cortex-ds-vertexai-sa@your-source-project.ia rvic s stor .0obj min on bucket

your-sourc ject tex-ds-vertexai- ntrall

Google Cloud Cortex Framework

3.2.1. Validate Deployment Jobs and Solution Components

1. The deployment process continues with a series of Cloud Build jobs. The last job will start a Vertex Al
pipeline for training a Forecasting model and producing its first forecast.

If the job successfully triggers the build process, you can find the Build logs in Cloud Build.

Errors will be easier to troubleshoot from there. You will find a parent build process that has two steps :

Steps

@ Build Summary
2 Steps

o

0:g

\ ~target-project

Duration

00:10:11

00:00:00

BUILD LOG EXECUTION DETAILS BUILD ARTIFACTS
[] wraplines [] Show newestentriesfist T L

1 storting build “e3ess1sf-sccz 240

= FETCHIOURCE

19

RLREEER

EHEUREERRENER

Fetching storage obiect: gs:. loudbuild/source/ 1655872275, 307415 -¢8b3a 20508
Copying gsi//: _cloudouild/source/ 1655872276, 827415 - eb3zad5afas42beabTadcadbroes:
/ [8 files][2.2 B/ 5.5 KiB]

/ [1 files][5.5 kig/ £5.5 xis]

operation completed over 1 objects/ss.s kie.

BUILD

starting step s2

step #e: Already have image (with digest): ger.io/cloud-builders/gcloud

Finished Step #2

starting step #1

Step #1: Already have image (with digest): ger.io/cloud-builders/geloud

Step #1: INFO: "context-window’ missing, using default value

Step #1: INFO: “model-training-hours® missing, using default value.

7 step #1: Running with the following parameters:
Step #1: source-project: s
Step #1: target-project: s
step #1: storage-bucket: = | . -tortex-gs-vertexal
step #1: cde-processed-dataset: live_cdc
Step #1: rau-landing-dataset: live_raw

Step #1: target-reporting-gatasst: liverepcl
Step #1: target-models-dataset: Lliverl

Step #1: vertex-ai-dataset: liveml
Step #1: vertex-ai-region: us-centrall

step #1: locatien: us

Step #1: mandt: 300

Step #1: forecast-horizon: 13

step #1: context window: 52

Step #1: forecast compute budget: 1

Step #1: views_dir: sql

step #1: WOt cresting liverepol since it alresdy exists

step #1: Creating dataset ¢ 2:1ivenl with location: us

Step #1: BigQuery error in mk operation: Dataset ‘< :liveml' already exists.
step #1: Creating dataset ¢ _2:liveml with location: us

These steps will sequentially complete the following tasks:

1. Trigger the creation of the test harness if requested,
2. Create the tables and views for training if they do not exist
3. Spawn another build process for the Vertex

Google Cloud Cortex Framework

https://console.cloud.google.com/cloud-build/builds

1217
1218
1219
1228
1221
1222
1223
1224
1225
1226
1227
1228
1229
1238
1231
1232
1233
1234
1235
1238
1237
1238
1232
1248
1241

2922-96-22 15138147 ,467 INFO | root | Metadatastore default nct found.
2922-96-22 15:3@:57,880 | INFO | root | Rescurce cortex-demand-sensing-pipeline not found.
2922-96-22 15:3@:57,881 INFO | root | Creating Resource cortex-demand-sensing-pipeline

I | I
| | I
| | I
2922-86-22 15:38:58,272 | INFO | root | Resource cortex-demand-sensing-pipeline-cortex-demand-sensing-pipeline-2822-86-27t15-38-47-237605 not foun
I | I
| | I
| | I

2922-96-22 15:38:58,274 | INFO | reoot | Creating Resource cortex-demand-sensing-pipeline-cortex-demand-sensing-pipeline-2@22-86-22115-30-47-237685
2922-96-22 15:38:58,879 INFO | root | Rescurce cortex-demand-sensing-pipeline-cortex-demand-sensing-pipeline-2822-05-22t15-38-47-237605-metrics
2922-96-22 15:38:58,880 | INFO | root | Creating Resource cortex-demand-sensing-pipeline-cortex-demand-sensing-pipeline-2822-96-22t15-30-47-237685

Creating Pipelineloh

2822-86-22 15:31:82,338 | INFO | google.cloud.ziplatform.pipeline_jobs | Creating Pipelinelob

PipelineJob created. Resource name: projects/4 5/locations/us-centrall/pipelinelobs/demand-sensing-pipeline-ze228622153108

2922-85-22 15:31:88,857 | INFO | google.cloud.ziplatform.pipeline_jobs | Pipelinelob crested. Resgurce name: projects, 3/ locations/fus-cen
Te use this pipelineleb in another sessicn:

2822-86-22 15:31:82,868 | INFO | google.cloud.ziplatform.pipeline_jobs | To use this Pipelinelob in ancther session:

pipeline_job = aiplatform.Pipelinelcb.get(projects/: 75/ locations/us-centrall/pipelinelobs/demand-sensing-pipeline-208228622153100 ")
2922-95-22 15:31:88,858 | INFO | google.cloud.ziplatform.pipeline_jobs | pipeline_job = aiplatform.Pipelinelob.get('projects/ &/locations
2922-86-22 15:31:88,858 | INFO | google.cloud.aiplatform.pipeline_jobs | View Pipeline Job:

https://console.cloud.google. com/vertex-ai/locations /us-centrall/pipelines,/runs/demand-sensing-pipeline-2822@6221531a8project=

wiew Pipeline Job:

https://console.cloud.google. com/vertex-ai/lecations/us-centrall/pipelines/runs/demand -sensing-pipeline-2822862315318@ project=

PUSH
DONE |

pur} CREATE_TIME DURATION SQURCE
48745c75-dffe-4d52-84dd-3fldasdaasfa 2822-86-22T15:38:18+22:88 415 gs://si 1817.273758-2339893bes494ds
wvertex AL Machine Learning Pipeline is still rumning, please refer to its logs and vertex AI conscle for status.

At the end of the second step, if successful, you will also find a link to the Vertex Al pipeline:

https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pip
eline-PIPELINE_ID?project=PROJECT_ID

Line “Vertex Al Machine Learning Pipeline is still running, please refer to its logs and Vertex Al
console for status.” indicates that the Vertex Al forecasting pipeline has been submitted.

The training and scoring pipeline will continue to run for about an hour on test data. You will find more
instructions about monitoring these pipelines in section 4.4.1. Vertex Al Logging and Monitoring.

Note: At this point, you can leave the Demand Sensing container in Cloud Shell using exit command.

3.2.2. Validate Demand Forecast

When the Vertex Al pipeline is finished, it is expected to fill the Demand_Forecast table in the CDC_PROCESSED
dataset you specified in the source GCP project.

The following table shows the expected structure of the DemandForecast table in the CDC_PROCESSED dataset.

Google Cloud Cortex Framework

17

https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pipeline-PIPELINE_ID?project=PROJECT_ID
https://console.cloud.google.com/vertex-ai/locations/REGION/pipelines/runs/demand-sensing-pipeline-PIPELINE_ID?project=PROJECT_ID
https://console.cloud.google.com/vertex-ai/pipelines

| Field name Type
(0 WeekStart DATE
(J customerld STRING
(J catalogitemid STRING
[J DateOfForecast DATE
[0 MLForecastQuantity FLOAT
(0 MLForecastQuantityLowerBound FLOAT
(J MLForecastQuantityUpperBound FLOAT

DemandForecast view in the reporting dataset (target project) will have the same data.

To understand the forecasting results, please follow section 4.3. Produce ML Forecast. Please note that the
forecast is always made using the best Demand Sensing model, not the last one.

3.3. Incorporating additional external datasets [optional]

Every business has its own specific set of processes and respective data that can be significant for demand
planning and forecasting.

You can integrate additional datasets into Demand Sensing through code modifications. You will need to join the
new data into the structures consumed by Vertex Al for it to be incorporated into the machine learning model.

Note: Please get familiar with Demand Sensing source code by running it manually as described in 4. Re-training

the model and producing Demand Forecasts

3.3.1. Data Requirements.

Below are the requirements for any external data to make it useable by the Demand Sensing predefined
forecasting model:

1. Every data point (row) must be attributable to at least one of the following:
a. Customer (from SAP table KNAT)
b. Material or Product (from SAP table MARA)

2. For historical purposes you need to have data all the way back to the date of the first sales order in SAP.
You can get this from the field AUDAT from table VBAK or the existing SalesOrder view in the Data
Foundation.

3. [If future values can be forecasted, populate them all the way to the last week of your Demand Plan.

Google Cloud Cortex Framework

18

4. If data changes over time, it has to be aggregated on the weekly basis. For data with finer granularity, such
something that changes daily, depending on what exactly the data represents, use one of the following
strategies:

a. Addition (summarize over all week days). Useful for events that directly drive sales. More of them
over the week can be attributed to higher sales numbers (traffic, clicks, subsequent retail sales).

b. Weekly average. Useful for slow indicators with extreme values having lesser or indirect impact on
sales, peak events don’t matter as much. Precipitation is an example.

c. Maxor min. Even a single event in a week has a significant impact: heat wave, sales promotion,
holidays.

d. Combination of a and c or b and c, similar to what Demand Sensing uses for temperature.

We use Point-of-Sale (PoS) data as an example of incorporating a new dataset.

3.3.2. Data Acquisition.

Acquire data on the same cadence as you update your Demand Plan. The easiest way to do this is by creating a
Cloud Composer DAG as in Cortex Data Foundation.

Point-of-Sale datasets can be acquired from Retailer Direct Data or syndicated data from Nielsen, IRI, or other
sources. These are optional datasets that can be added to the model if you think they may be relevant.

3.3.3. Customer and Product Attribution.

As part of the the data acquisition step, make sure your data is attributed to Customer/Location and/or Materials
so it can be joined by Customerld (KNA1.KUNNR), Customer location (country and postal code, KNA1.LAND1 and
KNA1.PSTLZ/ADRC.POST CODE1) and/or Materialld (MARA.MATNR).

PoS transactions cannot always be attributed to a particular customer. Sometimes they are mapped to a DMA
Location (Designated Market Area) or a group of customers. In such cases, there must be a way to attribute
weekly sales per product per customer the same way, so the PoS data can be successfully joined with the sales
data.

With Point-of-Sale data in this guide, for simplicity, we assume that every transaction can be mapped to a
customer and a product/material.

3.3.4. Demand Sensing source code.

Download Demand Sensing source code. A copy in your Cloud Storage bucket is created by the deployment, after
the process is successful.

Google Cloud Cortex Framework

19

https://github.com/GoogleCloudPlatform/cortex-dag-generator/tree/main/src/template_dag

It's located at gs://VERTEX_AI_PIPELINE_BUCKET/cortex_demand_sensing_1_0, where
VERTEX_AI_PIPELINE_BUCKET is the bucket name you used as Vertex Al pipeline bucket when deployed Demand
Sensing.

mkdir -p cortex demand sensing & cd &\

gcloud storage cp -r gs://VERTEX AI PIPELINE BUCKET/cortex_demand sensing 1 0

3.3.5.SQL Changes.

Create a table in CDC_PROCESSED dataset and fill it with data. If you choose to aggregate it, do so on a weekly
basis. As you probably noticed in the source code, we refer to CDC_PROCESSED dataset as

"{{ project_id tgt }}.{{ dataset cdc_ processed }} .

Here is how it should look for Point-of-Sale data. Assume it’s called PoS.

Column Type Description
TransactionDate DATE Retail sale date
Customerid STRING KNAT.KUNNR
Catalogltemld STRING MARA.MATNR
RetailUnitsSold FLOAT Number of retail units sold.

General guidance on sales numbers is to stick with the number of items sold rather than money.

Joining with historical sales.
Next step is to add this data into the AugmentedWeeklySales view. Modify sql/AugmentedWeeklySales.sql file

1. Inthe last SELECT statement, add selecting PoS.RetailUnitsSold aggregating it over a week:

SUM(PoS.RetailUnitsSold) OVER (PARTITION BY DATE_ TRUNC (PoS.TransactionDate,
WEEK (MONDAY))) AS RetailUnitsSold

2. Add one more JOIN to the same statement:
LEFT JOIN
"{{ project_id tgt }}.{{ dataset cdc processed }}.PoS’ AS PoS
ON
WMSPCPL.WeekStart = DATE TRUNC (PoS.TransactionDate, WEEK (MONDAY))

AND WMSPCPL.CustomerId = PoS.CustomerId

Google Cloud Cortex Framework

20

AND WMSPCPL.CatalogItemId = PoS.CatalogIltemId
This is how that piece sql/AugmentedWeeklySales.sql of would look like:

—— Average interest from Google Trends a week before
AVG(IFNULL(Trends.InterestOverTime, 0))
OVER(PARTITION BY Trends.HierarchyId, Trends.CountryCode, DATE TRUNC(Trends.WeekStart, WEEK(MONDAY))) AS Avgl

nterest,

59 —— Point-of-Sale data
SUM(PoS.RetailUnitsSold) OVER (PARTITION BY DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))) AS RetailUnitsSold

FROM
WMSPCPL
LEFT JOIN
“{{ project_id_tgt }}.{{ dataset_cdc_processed }}.PoS® AS PoS
ON
WMSPCPL.WeekStart = DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))
AND WMSPCPL.CustomerId = PoS.CustomerId
AND WMSPCPL.CatalogItemId = PoS.CatalogItemId
LEFT JOIN
“{{ project_id_tgt }}.{{ dataset_reporting_tgt }}.Weather® AS Weather
ON
—— Target week forecasts

Joining with the Demand Plan.

If future data is forecasted and can be leveraged, it needs to be in AugmentedDemandPlan view as well.

This is not the case for Point-of-Sale data because future retail transactions are unknown, but we
demonstrate respective changes in sql/AugmentedDemandPlan.sq|l file for the purpose of learning.

The approach is very similar to the modifications of the view AugmentedWeeklySales. Modifications to
sql/AugmentedDemandPlan.sql file are:

1. Inthe last SELECT statement, add selecting PoS.RetailUnitsSold aggregating it over a week:

SUM (PoS.RetailUnitsSold) OVER (PARTITION BY DATE TRUNC (PoS.TransactionDate,
WEEK (MONDAY))) AS RetailUnitsSold

2. Add one more JOIN to the same statement:
LEFT JOIN
“{{ project_id tgt }}.{{ dataset cdc_processed }}.PoS’ AS PoS
ON
CWA.WeekStart = DATE TRUNC (PoS.TransactionDate, WEEK (MONDAY))
AND CWA.CustomerId = PoS.CustomerId
AND CWA.CatalogItemId = PoS.CatalogItemId

This is how that piece sql/AugmentedDemandPlan.sql of would look:

Google Cloud Cortex Framework

21

AVG(IFNULL (Weather.MinTemp, 10)) OVER (PARTITION BY CWA.Location, CWA.WeekStart) as MinTemp,
55 -— Point-of-Sale dataI
SUM(PoS.RetailUnitsSold) OVER (PARTITION BY DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))) AS RetailUnitsSold
FROM
CWA
LEFT JOIN
*{{ project_id_tgt }}.{{ dataset_cdc_processed }}.PoS' AS PoS
ON
CWA.WeekStart = DATE_TRUNC(PoS.TransactionDate, WEEK(MONDAY))
AND CWA.CustomerId = PoS.CustomerId
AND CWA.CatalogItemId = PoS.CatalogItemId
LEFT JOIN
*{{ proiect id tat }}.{{ dataset renortina tat }}.Weather' AS Weather

3.3.6. Python Code Changes.

This part depends on whether you have future data in a forecasted or planned form.

For instance, you can have a Weather forecast, planned promotions or known holidays, but Point-of-Sale data
always comes after the fact.

If future data is known, and you have it up to the last week of the Demand Plan, you don’t need to make any
changes in the source code in regards to the dataset. As described above, Vertex Al will expect the same column
to be in AugmentedWeeklySales and AugmentedDemandPlan views.

If future data is unknown, just like with Point-of-Sales dataset, we need to tell Vertex Al Forecasting about it:

1. Open src/pipeline_utils_ops.py file, locate make_table_spec function.

2. Inmake_table_spec function, change primary_table dictionary, so that
unavailable_at_forecast_columns list has columns from AugmentedWeeklySales related to your
dataset joined into that view. For Point-of-Sale example, this is what primary_table with RetailUnitsSold
field added would look like:

primary_table = {
"bigquery uri": f"{training_dataset_bq_url}.{training_table}",
"table type": "FORECASTING PRIMARY",
"forecasting primary_table_metadata": {
"time_column": "WeekStart",
"target_column": "SalesQuantity",
"time_series_identifier_columns": ["CatalogItemId", "CustomerId"],
"unavailable_at_forecast_columns": [
"SalesQuantity",
"AvgInterest",
"RetailUnitsSold"

Google Cloud Cortex Framework

22

1,
"time_granularity”: {"unit": "WEEK", "quantity": 1},

}s
}

Every time you change model the dataset structure, with new set of columns or different columns known at
training/prediction, the scoring pipeline needs to make sure it always picks the right model - one with the same set
of columns it was trained on. To differentiate between model variants, use different model labels in
src/pipeline_constants.py file. For your new version, change model_label_value in PipelineConstants class:

model label value: str = "1 1 PoS" # new label for model with PoS

3.3.7. Running deploy.sh.

Run deploy.sh script

./deploy.sh \
--source-project SOURCE PROJECT \
--target-project TARGET PROJECT \
--storage-bucket VERTEX AI PIPELINE BUCKET \
--cdc-processed-dataset CDC_PROCESSED DATASET NAME \
--k9-processing-dataset K9 PROCESSING DATASET NAME \
--vertex-ai-sa VERTEX_AI_SERVICE_ACCOUNT \
--raw-landing-dataset RAW_LANDING DATASET \
--target-reporting-dataset REPORTING DATASET \
--target-models-dataset MODELS DATASET \
--location GCP_LOCATION \
--vertex-ai-region VERTEX AI REGION \
--mandt MANDT \
--forecast-horizon FORECAST HORIZON \
--context-window CONTEXT HORIZON \

Google Cloud Cortex Framework

23

--model-training-hours MODEL TRAINING HOURS \

Make sure you use the same parameter values as for the initial deployment. Notice the trailing dot (.) in the
command line.

4. Re-training the model and producing Demand
Forecasts

To perform forecast model training and scoring after deploying Demand Sensing package from the Marketplace,
download Demand Sensing code from your Storage Bucket used for Vertex Al (VERTEX_AI_PIPELINE_BUCKET
parameter above).

mkdir -p cortex_demand sensing & cd &\

gcloud storage cp -r gs://VERTEX AI PIPELINE BUCKET/cortex demand sensing 1 0

Cortex Demand Sensing uses Vertex Al Forecasting - a specialized AutoML offering based on Deep Learning
models. Demand Sensing trains the forecasting model on the following historical data:

1. Weekly sales per product per customer location.

2. Weather per customer location, from NOAA_GFSOP25 dataset.

3. Google Trends average interest per product category per customer’s location region. Product category is
taken from a higher level of product hierarchy (T179 and T179T).

4. Holiday Calendar.

5. Promotion Calendar with weekly promotions per product per customer.

In simple terms, when training the model, it’s building a set of dependencies between weekly sales and the rest of
the data. In addition to regular seasonal changes, the model will get a sense of how sales of a certain product
depend on weather, Google Trends, different holidays, and promotions. The model is not only getting same week
correlations, but also catching lagging indicators, such as dependencies between current Google Trends and
future sales.

When building a forecast by scoring the model, the following data is used:

1. Weather forecast. It uses 16-days forecast from NOAA GFSOP25 dataset, plus historical weekly climate
averages up to 13 weeks ahead.

2. Holiday Calendar.

3. Promotion Calendar.

Google Trends’ average interest is unknown for the future, therefore it's only used as a lagging indicator for
products and locations that demonstrated such dependency.

When training the model, there are 3 key variables to adjust:

Google Cloud Cortex Framework

24

https://cloud.google.com/vertex-ai/docs/tabular-data/forecasting/overview

Forecast horizon (13 weeks by default) - how far in the future you want to make predictions, up to 13
weeks. While a longer horizon gives a great opportunity to make a forecast in advance, it reduces the
overall quality of the model. Depending on your supply chain, manufacturing and delivery timing, you may
want to reduce the horizon.
Context window (52 weeks by default) sets how far back the model looks during training (and for
forecasts). In other words, for each training datapoint, the context window determines how far back the
model looks for predictive patterns. Increasing the context window has the following effects:
a. Increases the required training time
b. With alarger context window, the model uses more data points in training, causing the training
time to increase
c. Increases the required amount of history for prediction data. Your prediction data should provide
at least as many historical data points as the value of the context window.

With enough historical data, you can set the context window up to 5 times the size of the forecast horizon.

If you expect to have a lot of prediction data that does not extend into the past (cold starts), begin by
setting the context window to 0. Otherwise, a context window between the size of the forecast horizon
and 10 times the size of the forecast horizon should work well.

Training time budget (1 hour by default) - how much Vertex Al AutoML will spend actually training the
model. 1hour is the minimum time. If the model quality is not great (r*2 metric below 0.85), you may want
to reduce the context window in half, and increase the training time up to 6 hours. If the evaluation metrics
show substantial improvement, train the model again, increasing the context window to 5 times the size of
the forecast horizon. Consider making a proportional increase to the training budget (if you trained for 6
hours, increase the training budget to 30 hours).

AugmentedWeeklySales view in the Reporting dataset is used as training data for the forecasting model. It
contains weekly sales per product and customer location augmented with Weather, Promotion and Trends.

WeekStart Catalogitemld ~ Customerld ~ Location City SalesQuantity ~ IsPromo IsHoliday ~ AvgMaxTemp AvgMinTemp MaxTemp MinTemp Avglnterest
2017-01-02 €0000025 1000054 US|02108 USIMA|Boston 535 1 0 -0.33570818219863796 -4.3071350097656023 6.4500061035156477 -13.549993896484352 0.0
2017-01-02 €0000034 1000054 US|02108 USIMA|Boston 307 1 0 -0.33570818219863796 -4.3071350097656023 6.4500061035156477 -13.549993896484352 0.0
2017-01-02 C0000038 1000054 US|02108 USIMA|Boston 699 1 0 -0.33570818219863796 -4.3071350097656023 6.4500061035156477 -13.549993896484352 0.0
2017-01-02 C0000053 1000054 US|02108 USIMA|Boston 423 1 0 -0.33570818219863796 -4.3071350097656023 6.4500061035156477 -13.549993896484352 0.0
2017-01-02 C0000074 1000054 US|02108 USIMA|Boston 299 1 0 -0.33570818219863796 -4.3071350097656023 6.4500061035156477 -13.549993896484352 0.0
2017-01-02 C0000025 1000055 US|30308 US|GA|Atlanta 616 1 0 7.7500069754464507 1.8642996651785041 16.050012207031273 -10.849981689453102 0.0
2017-01-02 €0000034 1000055 US|30308 USIGAAtlanta 314 1 0 7.7500069754464507 1.8642996651785941 16.050012207031273 -10.849981689453102 0.0
2017-01-02 €0000038 1000055 US|30308 USIGAAtlanta 710 1 0 7.7500069754464507 1.8642996651785041 16.050012207031273 -10.849981689453102 0.0
2017-01-02 C0000053 1000055 US|30308 USIGAIAtlanta 441 1] 7.7500069754464507 1.8642996651785041 16.050012207031273 -10.849981689453102 0.0
2017-01-02 C0000074 1000055 US|30308 USIGAIAtlanta 305 1 0 7.7500069754464507 1.8642996651785041 16.050012207031273 -10.849981689453102 0.0
2017-01-09 C0000025 1000054 US|02108 USIMA|Boston 473 1] 2.0357169015067189 -4.5499938964843523 ~ 13.050012207031273 -15.649999999999977 0.0
2017-01-09 €0000034 1000054 US|02108 USIMA|Boston 262 1] 2.0357169015067189 -4.5499938964843523 13.050012207031273 -15.649999999999977 0.0
2017-01-09 €0000038 1000054 US|02108 USIMAJBoston 582 1 0 2.0357169015067189 -4.5499938964843523 13.050012207031273 -15.649999999999977 0.0
2017-01-09 C0000053 1000054 US02108 USIMA|Boston 349 1] 2.0357169015067189 -4.5499938964843523 ~ 13.050012207031273 -15.649999999999977 0.0
2017-01-09 C0000074 1000054 US02108 USIMA|Boston 272 1] 2.0357169015067189 -4.5499938964843523 13.050012207031273 -15.649999999999977 0.0
2017-01-09 C0000025 1000055 US30308 USIGAJAtlanta 591 1 0 14.67857840401788 9.521439034598238 19.950006103515648 -4.3499816894531023 0.0
2017-01-09 C0000034 1000055 US|30308 US|GA|Atlanta 324 1 0 14.67857840401788 9.521439034598238 19.950006103515648 -4.3499816894531023 0.0
2017-01-09 €0000038 1000055 US|30308 US|GA|Atlanta 669 1 0 14.67857840401788 9.521439034598238 19.950006103515648 -4.3499816894531023 0.0
2017-01-09 0000053 1000055 US|30308 US|GA|Atlanta 384 1 0 14.67857840401788 9.521439034598238 19.950006103515648 -4.3499816894531023 0.0
2017-01-09 C0000074 1000055 USI30308 USIGAJAtlanta 259 1 0 14.67857840401788 9.521439034598238 19.950006103515648 -4.3499816894531023 0.0
2017-01-16 C0000025 1000054 US02108 USIMAJBoston 299 0 0 3.9500061035156473 0.75000697544645134 9.8500000000000227 -4.3499816894531023 0.0

For more information, please read the official documentation.

Google Cloud Cortex Framework

25

https://cloud.google.com/vertex-ai/docs/datasets/bp-tabular#context-window

4.1. How to Train the model

There is a copy of Demand Sensing code in your Cloud Storage bucket (Storage Bucket for Vertex Al). The
README.md contains the documentation on using Demand Sensing source code directly for training and scoring
the forecasting model in Vertex Al.

We recommend re-training your forecasting model every few weeks, once you get more historical sales data,
updated holiday calendars, refined weather forecasts, etc.

We recommend launching the pipelines from Google Cloud Shell in your source GCP project.
1. Download Demand Sensing code from Cloud Storage

mkdir -p cortex demand sensing & cd &\

gcloud storage cp -r gs://PIPELINE BUCKET/cortex demand sensing 1 0
PIPELINE_BUCKET - Google Cloud Storage Bucket to use with Vertex Al (Storage Bucket for Vertex Al).

2. Run python3 -m pip install --upgrade -r requirements.txt

3. Run src/submit_pipeline.py script as python3 src/submit_pipeline.py with the parameters described
below.

python3 src/submit pipeline.py [-h] [--debug] \
--model-command {train,score,train score} \
--region REGION \
--bigquery-location LOCATION \
--pipeline-bucket PIPELINE BUCKET \
--k9-processing-dataset K9 PROCESSING DATASET NAME
--vertex-ai-sa VERTEX AI SA \
--source-project SOURCE_PROJECT --target-project TARGET PROJECT \
--target-reporting-dataset TARGET REPORTING DATASET \
--cdc-processed-dataset CDC_PROCESSED DATASET \
--forecast-horizon-weeks FORECAST HORIZON WEEKS \
[--context-window-weeks CONTEXT WINDOW WEEKS] \
[--training-node-hours TRAINING NODE HOURS] \

[--score-on-recent-model]

Google Cloud Cortex Framework

26

https://cloud.google.com/shell

Parameters:

-h, —-help - displays command line help.
--debug - Debug Logging mode if specified.
--model-command - Forecasting Model command, train, score Or train score. For training, use

trainor train score train which performs both training and scoring.

—--region - Vertex Al GCP region.

--bigquery-location - BigQuery Location, one you used with Data Foundation,
--pipeline-bucket - Google Cloud Storage Bucket to use with Vertex Al when needed.
--k9-processing-dataset - Data Foundation K9 Processing Dataset.

--vertex-ai-sa - Service Account for Vertex Al to use. Make sure you use the principal of the account, not
its name.

—-—source-project - Source Data GCP project (CDC Processed dataset should be there).
-—-target-project - Target GCP project (Target Reporting dataset should be there).
--target-reporting-dataset - Target Reporting dataset name.

--cdc-processed-dataset - CDC Processed dataset name.

--forecast-horizon-weeks - Vertex Al Forecasting Horizon.

--context-window-weeks - Vertex Al Forecasting Context Window in weeks. Optional, defaults to 52.
--training-node-hours - Vertex Al Forecasting Training budget in hours. Optional, defaults to 1.

--score-on-recent-model -if present, makes the pipeline use the most recent model, not the best one.

4.2. Validate ML Model

When running the training pipeline, once automl-forecasting-training-job step is done, it produces a model
which you can find on Vertex Al Models page of your source project. Look for the most recent one named “Cortex
Demand Sensing_..." with “best_r_squared” label. By clicking on the model name, then on its version number (1),
you will navigate to the evaluation page with model metrics.

& Cortex Demand Sensing_2022-08-09T04.35.41.719902 > Version1 ~ [zl VIEW DATASET

EVALUATE BATCH PREDICT VERSION DETAILS
Target column MAE @ MAPE @ RMSE @ RMSLE @ "2 @
SalesQuantity 28.19 6.989 39.519 0.087 0.939

numeric

Target Quantile
0.10000000149011612

Target Quantile
0.5

Target Quantile
0.8999999761581421

Google Cloud Cortex Framework

Observed Quantile @ Scaled Pinball Loss @

0.16117216117216118

Observed Quantile @
0.6146520146520147

Observed Quantile @
0.9029304029304029

5.57

Scaled Pinball Loss @
14.095

Scaled Pinball Loss @
7

27

https://console.cloud.google.com/vertex-ai/models

After the training, Vertex Al forecasts also populates an evaluations table in K9 Processing dataset in source
project’s BigQuery. Look for a table starting with “demand_sensing_evaluations_" followed by a timestamp. Table
with the most recent timestamp is the one you are looking for.

B demand_sensing_evaluations_2022_06_03T22_39_49_36...
B demand_sensing_evaluations_2022_06_05T05_12_51_99...
E demand_sensing_evaluations_2022_06_05T07_02_39_94...

B demand_sensing_evaluations_2022_06_05T08_46_12_92...

The Forecasting pipeline performs validation for the training data. If any errors are discovered, you will find them in

”

tables starting with “errors_validation_" + timestamp..

errors_SalesQuantity.message contains verbal explanations of errors.

4.3. Produce ML Forecast

Every week, or whenever your future data changes (Promotion Calendar, Weather), you can run scripring of the
forecasting model, and produce a new Demand Forecast.

Do so by running src/submit_pipeline.py script as described in the training section above, except with
--model-command equal to score (or train_scrore if you want to retrain the model first).

e The forecasting model must be trained before running the scoring.

e The forecast is always made using the best Demand Sensing model, not the last one, unless using

--score-on-recent-model option.

The model performance and criteria for the best model are evaluated based on r-squared metric (R?,
Coefficient of determination). If you'd like to change this criteria, modify evaluate_model Kubeflow
component in src/models.py file.

Demand Plan defines what dates, products and customers the forecast will be made for. So, the Demand_Plan
table in CDC_PROCESSED dataset must be carefully maintained for producing accurate forecasts.

AugmentedDemandPlan view in the Reporting dataset is used as the actual Demand Plan data for scoring the
model. Similarly to AugmentedWeeklySales, it contains demand plan data augmented with Promotions, Holidays
and Weather forecasts.

Google Cloud Cortex Framework

28

https://en.wikipedia.org/wiki/Coefficient_of_determination

Row WeeksStart Customerld Catalogltemid DemandPlan Location Country City IsPromo IsHoliday AvgMaxTemp AvgMinTemp MaxTemp MinTemp
18 2022-03-28 1000054 C0000034 350.0 Us|02108 us USIMA|Boston 0 0 8.8339782714843977 1.5680175781250223 14.956475830078148 -6.0829528808593523
19 2022-03-28 1000054 C0000074 303.0 uUs|02108 us USIMA|Boston 0 0 8.8339782714843977 1.5680175781250223 14.956475830078148 -6.0829528808593523
20 2022-03-28 1000054 C€0000038 896.0 us|02108 us USIMA|Boston 0 0 8.8339782714843977 1.5680175781250223 14.956475830078148 -6.0829528808593523
21 2022-04-04 1000054 €0000038 761.0 US|02108 US USIMA|Boston 0 0 11.923830740792432 6.2438685825893083 14.885522460937523 3.0663391113281477
22 2022-04-04 1000054 C0000053 408.0 usjo2108 us USIMA|Boston 0 0 11.923830740792432 6.2438685825893083 14.885522460937523 3.0663391113281477
23 2022-04-04 1000054 C0000025 558.0 Us|02108 us USIMA|Boston 0 0 11.923830740792432 6.2438685825893083 14.885522460937523 3.0663391113281477
24 2022-04-04 1000054 C0000034 328.0 Us|02108 us USIMA|Boston 0 0 11.923830740792432 6.2438685825893083 14.885522460937523 3.0663391113281477
25 2022-04-04 1000054 0000074 330.0 us|02108 us USIMA|Boston 0 0 11.923830740792432 6.2438685825893083 14.885522460937523 3.0663391113281477
26 2022-04-11 1000054 €0000034 329.0 US|02108 US USIMA|Boston 0 0 15.880234200613861 8.38860037667413 18.775109863281273 5.2499938964843977
27 2022-04-11 1000054 C0000053 426.0 us|o2108 us USIMA|Boston 0 0 15.880234200613861 8.38860037667413 18.775109863281273 5.2499938964843977
28 2022-04-11 1000054 C0000038 770.0 Us|02108 us US|MA|Boston 0 0 15.880234200613861 8.38860037667413 18.775109863281273 5.2499938964843977
29 2022-04-11 1000054 C0000025 510.0 us|02108 us USIMA|Boston 0 0 15.880234200613861 8.38860037667413 18.775109863281273 5.2499938964843977
30 2022-04-11 1000054 0000074 320.0 us|02108 us USIMA|Boston 0 0 15.880234200613861 8.38860037667413 18.775109863281273 5.2499938964843977
31 2022-04-18 1000054 C0000074 310.0 Us|02108 us US|MA|Boston 0 0 12.638238525390648 8.57034127371654 16.480493164062523 4.8803344726562727
32 2022-04-18 1000054 C0000034 358.0 us|o2108 us USIMA|Boston 0 0 12.638238525390648 8.57034127371654 16.480433164062523 4.8803344726562727
33 2022-04-18 1000054 0000025 481.0 us|02108 us USIMA|Boston 0 0 12.638238525390648 8.57034127371654 16.480493164062523 4.8803344726562727
34 2022-04-18 1000054 0000053 421.0 uUs|02108 us USIMA|Boston 0 0 12.638238525390648 8.57034127371654 16.480493164062523 4.8803344726562727
35 2022-04-18 1000054 0000038 803.0 us|02108 us USIMA|Boston 0 0 12.638238525390648 8.57034127371654 16.480493164062523 4.8803344726562727
36 2022-04-25 1000054 0000038 801.0 us|o2108 us USIMA|Boston 0 0 11.929171316964307 6.7305106026785948 17.369378662109398 4.6853271484375227
37 2022-04-25 1000054 C0000025 452.0 Us|02108 us US|MA|Boston 0 0 11.929171316964307 6.7305106026785948 17.369378662109398 4.6853271484375227
38 2022-04-25 1000054 C0000053 406.0 us|02108 us USIMA|Boston 0 0 11.929171316964307 6.7305106026785948 17.369378662109398 4.6853271484375227

When the scoring part of the pipeline is completed, it's expected to fill the Demand_Forecast table in the
CDC_PROCESSED dataset (one you specified in deploy.cdcProcessedDataset parameter) in the source GCP
project.

DemandForecast view in the reporting dataset (target project) will have the same data.

D Field name Type
[startDateOfWeek DATE
[0 catalogitemid STRING
[0 customerid STRING
[0 ForecastDate DATE
D ForecastQuantity FLOAT
[ForecastQuantityLowerBound FLOAT
|:| ForecastQuantityUpperBound FLOAT

DemandForecast follows the same approach of weekly aggregation of expected sales (ForecastQuantity), per
product (Catalogltemid) per Customer (Customerld). The table also contains statistical range with lower
(ForecastQuantityLowerBound, under-forecasting) and higher (ForecastQuantityUpperBound,
over-forecasting) bounds, using respective quantiles 0.1and 0.9.

Important notes:

1. Demand_Forecast table is truncated every time a successful forecast has been made.

Google Cloud Cortex Framework

29

https://en.wikipedia.org/wiki/Quantile

2. The forecast is always made using the best model, no matter which model was trained last. The quality of
the model is evaluated by r*2 (r-squared) metric. This is done by the “get-best-model” step of the
pipeline.

If there were errors during the forecasting process, Vertex Al will create corresponding records in K9 Processing
dataset in source project’s BigQuery. Look for a table starting with “errors_" followed by a timestamp. Table with
the most recent timestamp is the one you are looking for.

B demand_sensing_evaluations_2022_06_03T22_39_49_36...
E demand_sensing_evaluations_2022_06_05T05_12_51_99...
E demand_sensing_evaluations_2022_06_05T07_02_39_94...
E demand_sensing_evaluations_2022_06_05T08_46_12_92...
B errors_2022_06_04T23_10_44_915Z_809
B errors_2022_06_04T23_30_47_323Z_570

B errors_2022_06_05T00_01_49_126Z_825

errors_SalesQuantity.message contains verbal explanations of errors.

errors....message
The time series has no values to predict. The time series has been

excluded from predictions.

The Forecasting pipeline performs validation for the scoring data as well. If any errors are discovered, you will find
them in tables starting with “errors_validation_” + timestamp (similarly to one at the training stage).

errors_SalesQuantity.message contains verbal explanations of errors.

errors_SalesQuantity vertex__timeseries__id
There are rows with non-empty target values after this row. The C0000034__1000054

time series has been excluded from predictions.

Google Cloud Cortex Framework

30

4.4. Logging, Monitoring and Servicing

4.4.1. Vertex Al Logging and Monitoring

While running a training or forecasting pipeline, navigate to Vertex Al Pipeline page in your source project.

The most recent pipeline run with the name starting with “demand-sensing-pipeline-" is expected to be running or

completed. By clicking on the run’s name you can explore the running pipeline and monitor logs of every pipeline

step.

When started by the Marketplace deployment or by running Cloud Build with cloudbuild.ml.yaml from the source
code, the pipeline will perform both model training and scoring (forecasting).

You can navigate between different pipeline steps, monitor step logs, produced assets and results.

‘i\ condition-scoring-only-4

Logs

MAIN JOB

@© Runtime Graph @ 38/38 steps completed

< demand-sensing-pipeline-20220620210530

D Expand Artifacts

A

[2022-86-20721:52:03.636929858Z Exported examples available at:

) 2022-06-20721:52:27.275561877Z Tearing down training program.

B CLONE @sTOP W DELETE

100% & @ A

{

.0 time-series-dataset-create 0
’ gerio/..line-components:1.0.9

|

|

o

@ make-random-bq-uri
N python:3.9

7

& automl-forecasting-traini... e
L gerio/..line-components:1.0.9

@ evaluate-model
L python:3.9

Severity
Logs showing 100 logentries | pefault - = Filter Filterlogs

[2022-06-20721:52:03. 6370472937 INFO:google.cloud.aiplatform.training_jobs:Exported examples available at:

) 2622-06-20721:52:04.373235699Z <google. cloud.aiplatform. models.Model object at @x7f5663716418>

[2022-86-20721:52:03.637336586Z bq://source-project.DS_VERTEX_AI.demand_sensing_evaluations_2622_06_20T21_07_13_728744
) 2022-06-20721:52:03.637488872Z resource_name: %s projects/34534534534/locations/us-centrall/trainingPipelines/5035262152789721088

) 2022-06-20721:52:03.637957856Z bq://source-project.DS_VERTEX_AL.demand_sensing_evaluations_2022_06_20T21_07_13_728744

[2022-86-20721:52:04.373300572Z resource name: projects/34534534534/locations/us-centrall/models/8449865606714359808

C/) f!\ condition-training-only-3 Y @
~

4.4.2. Vertex Al Managed Datasets and BigQuery Datasets servicing

While running training and scoring pipelines, Vertex Al produces a number of intermediate tables. They all reside in
BigQuery, in the K9 Processing dataset.

Google Cloud Cortex Framework

31

https://console.cloud.google.com/vertex-ai/pipelines

Over time, the number of tables grows, and you may want to plan a periodic clean up.

Every training pipeline run produces a “demand_sensing_evaluations_...” table and a “preprocess_..."” table. The
evaluations table can be safely deleted unless you would like to explore the results of the model evaluation.

The “preprocess_..." table is used as the data source for a Vertex Al Managed Dataset that Vertex Al needs for
training the forecasting model. Do not delete this table while using the Demand Sensing model with a respective
Vertex Al managed dataset. To discover what table is actually used by the model:

1. Go to Vertex Al Models page of your source project.

2. Look for a model named “Cortex Demand Sensing_...” with the “best_r_squared” label. By clicking on
the model name, then on its version number (1), you will navigate to the evaluation page with model
metrics.

3. Click on “View Dataset”

[:z] VIEW DATASET

4. The dataset page has the “Dataset location(s)” attribute which is a BigQuery table you need to keep.

Dataset location(s) bq://source-proj.._20T21_08_51_963Z 2 Ig

Every scoring run also produces a “preprocess_..." table. It can be safely deleted after the scoring run.

You may want to automate the process of cleaning up the tables, making sure ones utilized by models in use are
preserved. In general, any Demand Sensing model that doesn’t have a “best_r_squared” label, can be deleted
along with the corresponding Vertex Al managed dataset and BigQuery “preprocess_...” table.

If you use different criteria for keeping models, assigning another label is a good option. In such cases, replace
best_r_squared label name with one you use.

The following code snippet illustrates the same process in Python using Vertex Al ML Metadata lineage:

from google.cloud import aiplatform
from google.cloud import aiplatform_vi
from google.cloud import bigquery

project = "<<SOURCE PROJECT>>" # Source project
location = "<<GCP LOCATION>>" # Vertex AI location, e.g. us-centrall

BigQuery client for deleting tables

Google Cloud Cortex Framework

32

https://cloud.google.com/vertex-ai/docs/training/using-managed-datasets
https://console.cloud.google.com/vertex-ai/models
https://console.cloud.google.com/vertex-ai/datasets
https://cloud.google.com/vertex-ai/docs/ml-metadata/introduction

bg_client = bigquery.Client(project=project, location=location)

aiplatform.init(project=project, location=location)
client_options = aiplatform.initializer.global_config.get_client_options()

Vertex AI Metadata Service client
metadata_client = aiplatform.gapic.MetadataServiceClient(
client_options=client_options

Using default Metadata Store
store = f"projects/{project}/locations/{location}/metadataStores/default”

Getting Demand Sensing models using a label value
(see src/pipeline_constants.py)
models = aiplatform.Model.list(filter=f'labels.demand-sensing-model="1_0"")

for model in models:

If it's a good model, skip it
(good models have "best_r_squared" label, see src/pipeline_constants.py)
If using another criteria for a good model, replace best_r_squared name here
if "best_r_squared" in model.labels:
continue

model_uri = (
f"https://{client_options.api_endpoint}/v1/{model.resource_name}"

artifact_request = aiplatform_vi.ListArtifactsRequest(

parent=store,

filter=f'uri="{model_uri}" AND schema_title="google.VertexModel""',
)

artifacts = list(metadata_client.list_artifacts(artifact_request))
artifact = artifacts[0]

lineage = metadata_client.query_artifact_lineage_subgraph(
artifact=artifact.name

)

lineage_artifacts = list(lineage.artifacts)

Google Cloud Cortex Framework

33

dataset_artifact = list(
filter(
lambda artifact: artifact.schema_title == "google.VertexDataset",
lineage_artifacts,
)
y[el

dataset = aiplatform.TimeSeriesDataset(
dataset_name=dataset_artifact.metadata["resourceName"]

)
bg_source = dataset.to_dict()["metadata"]["inputConfig"]["bigquerySource"][

(1] CR T

urli

print(

f"Deleting Vertex AI Model: {model.resource_name}, Vertex AI ML Dataset:

f" {dataset.resource_name}, BigQuery Table: {bq_source}"

delete Vertex AI model
model.delete()

delete Vertex AI managed dataset
dataset.delete()

bq_table_ref = bigquery.Table.from_string(
bg_source.replace("bq://", "")
).reference

delete BigQuery table
bg_client.delete_table(bq_table_ref)

5. Configure Looker

Once the content is deployed, instructions for deploying the pre-built Looker block can be found here. The
source for the Demand Sensing block is located in this repository. Optionally, you may also customize the block
by forking the GitHub repositories into your own Looker project. Instructions can be found here.

Google Cloud Cortex Framework

34

https://cloud.google.com/looker/docs/marketplace#installing_a_tool_from_a_git_url
https://github.com/looker-open-source/block-cortex-demand-sensing
https://cloud.google.com/looker/docs/blocks

6. Feedback and updates

Once the templates are deployed they can be customized as necessary. BigQuery views will be dependent on
customer-specific change data capture mechanisms.

We have designed all BigQuery model views and VertexAl models to provide flexibility of choice when it comes to
choosing the set of tools that fit best (integration or visualization tools). This means that modifications can diverge
from Google’s original templates to better fit existing customer investments.

We are interested in capturing feedback on additional data models and features that would be relevant to your
business. Please reach out to your account team or contact us for assistance. Bugs may also be raised in the Data
Foundation repository here.

Google Cloud Cortex Framework

35

https://cloud.google.com/contact/
https://github.com/GoogleCloudPlatform/cortex-data-foundation/issues

