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Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental
validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini
2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably
novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided
research objectives and guidance. The system’s design incorporates a generate, debate, and evolve approach
to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute.
Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework
for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation.
Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While
general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel
target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug
repurposing, the system proposes candidates with promising validation findings, including candidates for
acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For
novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by
anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist
recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer
mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the
potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.

1 Introduction

Human ingenuity and creativity propel the advancement of fundamental research in science and medicine.
However, researchers, particularly in biomedicine, are faced with a breadth and depth conundrum. The
complexity of biomedical topics require increasingly deep and specific subject matter expertise, while leaps
in insight may still arise from broad knowledge bridging across disciplines. With the rapid rise in scientific
publications and the availability of numerous technologies for specialized high-throughput assays, mastery of
both discipline-specific depth and trans-disciplinary insight can be challenging.

Despite these challenges, many modern breakthroughs have emerged from trans-disciplinary endeavours.
Emmanuelle Charpentier and Jennifer Doudna won the 2020 Nobel Prize in Chemistry for their work on
CRISPR [1], which combined techniques and strategies ranging from microbiology to genetics to molecular
biology. These benefits of synergy have also been seen beyond experimental biomedicine in numerous other
areas of science. Notably, Geoffrey Hinton and John Hopfield combined ideas from physics and neuroscience [2,
3] to develop artificial intelligence (AI) systems, which were awarded the 2024 Nobel Prize in Physics.

There has been rapid technological progress in AI towards generally intelligent and collaborative systems,
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Figure 1 | The AI co-scientist system design and experimental validation summary. (a) Here, we illustrate the
different components of the the AI co-scientist multi-agent system, and its interaction paradigm with scientists. Given a research
goal in natural language, the co-scientist generates novel research hypotheses and proposals. The system employs specialized
agents — Generation, Reflection, Ranking, Evolution, Proximity (which evaluates relatedness), Meta-review (which provides high
level analysis) — to continuously generate, debate, and evolve research hypotheses within a tournament framework. Feedback
from the tournament enables iterative improvement, creating a self-improving loop towards novel and high-quality outputs. The
co-scientist leverages tools, including web search and specialized AI models to improve the grounding and quality of generated
research hypotheses. Scientists can converse with the co-scientist in natural language to specify research goals, incorporate
constraints, provide feedback and suggest new directions for explorations via the designated user interface. (b) We perform
end-to-end validation of the co-scientist generated hypotheses in three important topics of biomedicine with varied complexity—
suggesting novel drug repurposing candidates for acute myeloid leukemia (AML) (upper panel), discovering novel epigenetic
targets for liver fibrosis treatment (middle panel), and recapitulating the discovery of novel mechanism of gene transfer evolution
in bacteria key to anti-microbial resistance (lower panel). The co-scientist’s hypotheses for these three settings are externally,
independently validated by in vitro laboratory experiments and detailed in separate preprints co-timed with this work. In the
figure, blue denotes expert scientist inputs while red denotes the co-scientist agents or outputs.
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which might empower scientists in creatively traversing and expertly reasoning across disciplinary domains.
Such systems are capable of advanced reasoning [4–6], multimodal understanding [6], and agentic behaviors [7]
such as the ability to use tools to solve complex tasks over long time horizons. Further, the trends with
distillation [8] and inference time compute costs [6, 9] indicate that such intelligent and general AI systems
are rapidly becoming more affordable and available. Motivated by the aforementioned unmet needs in the
modern discovery process in science and medicine and building on the advancements in frontier AI [10], we
develop and introduce an AI co-scientist system.

The co-scientist is designed to act as a helpful assistant and collaborator to scientists and to help accelerate
the scientific discovery process. The system is a compound, multi-agent AI system [11] building on Gemini
2.0 and designed to mirror the reasoning process underpinning the scientific method [12]. Given a research
goal specified in natural language, the system can search and reason over relevant literature to summarize
and synthesize prior work and build on it to propose novel, original research hypotheses and experimental
protocols for downstream validations (Figure 1a). The co-scientist provides grounding for its recommendations
by citing relevant literature and explaining the reasoning behind its proposals.

This work does not aim to completely automate the scientific process with AI. Instead, the co-scientist is
purpose-built for a “scientist-in-the-loop” collaborative paradigm, to help domain experts augment their
hypothesis generation process and guide the exploration that follows. Scientists can specify their research
goals in simple natural language, including informing the system of desirable attributes for the hypotheses or
research proposals it should create and the constraints that the synthesized outputs should satisfy. They can
also collaborate and provide feedback in a variety of ways, including directly supplying their own ideas and
hypotheses, refining those generated by the system, or using natural language chat to guide the system and
ensure alignment with their expertise.

The co-scientist works through a significant scaling of the test-time compute paradigm [13–15] to iteratively
reason, evolve, and improve the outputs as it gathers more knowledge and understanding. Underpinning
the system are thinking and reasoning steps—notably a self-play based scientific debate step for generating
novel research hypotheses; tournaments that compare and rank hypotheses via the process of finding win and
loss patterns, and a hypothesis evolution process to improve their quality. Finally, the agentic nature of the
system enables it to recursively self-critique its output and use tools such as web-search to provide itself with
feedback to iteratively refine its hypotheses and research proposals.

While the co-scientist system is general-purpose and applicable across multiple scientific disciplines, in this
study we focus our development and validation of the system to biomedicine. We validate the co-scientist’s
capability in three impactful areas of biomedicine with varied complexity: (1) drug repurposing, (2) novel
treatment targets discovery, and (3) new mechanistic explanations for antimicrobial resistance (Figure 1b).

Drug development is an increasingly time-consuming and expensive process [16] in which new therapeutics
require restarting many aspects of the discovery and development process for each indication or disease
(roughly 70% of drug approvals are for new drugs). In contrast, drug repurposing—–identifying novel
therapeutic indications for drugs beyond their original intended use–—has emerged as a compelling strategy
to address these challenges [17]. Successful examples of repurposing include Humira (adalimumab) and
Keytruda (pembrolizumab), both of which have become among the most successful drugs in history. [17].
The process typically involves analyzing molecular signatures, signaling pathways, drug interactions, clinical
trial results, adverse event reports, and other literature-based information [18], along with off-label use data
and, in some cases, patient experiences. However, drug repurposing is limited by several factors: (1) the
need for extensive expertise across biomedical, molecular biology, and biochemical systems, (2) the inherent
complexity of mammalian biological systems, and (3) the time-intensive nature of traditional computational
biology analyses required. We leverage the co-scientist to generate predictions for large-scale drug repurposing,
validating the generated predictions using a combination of computational biology, expert clinician feedback,
and in vitro wet-lab validation approaches. Notably, our system has proposed novel repurposing candidates
for acute myeloid leukamia (AML) that inhibit tumor viability at clinically relevant concentrations in vitro
across multiple AML cell lines.

Unlike drug repurposing, which is a combinatorial search problem through a large but constrained set of
drugs and diseases, identifying novel treatment targets for diseases presents a more significant challenge,
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traditionally requiring extensive literature review, deep biological understanding, sophisticated hypothesis
generation and complex experimental validation strategies. The uncertainty of identifying novel treatment
targets is significantly greater than in drug repurposing, as it involves not only repurposing existing compounds
but also uncovering entirely new components and mechanisms within biological systems. This target discovery
process can be inefficient, potentially leading to suboptimal hypothesis selection and prioritization for in
vitro and in vivo experimentation. Given the high costs and time associated with experimental validation, a
more effective approach is needed. We probe the capabilities of the co-scientist to propose, rank, and provide
experimental protocols for novel research hypotheses pertaining to target discovery. To demonstrate this
capability, we focus on liver fibrosis, a prevalent and serious disease, showcasing the co-scientist’s potential
to discover novel treatment targets amenable to experimental validation. In particular, the co-scientist has
suggested novel epigenetic targets demonstrating significant anti-fibrotic activity in human hepatic organoids.

As a third validation of the capabilities of our system, we focus on generation of hypotheses to explain
mechanisms related to gene transfer evolution in bacteria pertaining to antimicrobial resistance (AMR) -
mechanisms developed by microbes to circumvent drug applications used to fight infections. This is arguably
an even more complex challenge than drug repurposing and target discovery and involves understanding of
not only the molecular mechanisms of gene transfer (conjugation, transduction, and transformation) but also
the ecological and evolutionary pressures that drive the spread of AMR genes: a system-level problem with
many interacting variables. This is also an important healthcare challenge with increasing rates of infections
and deaths worldwide [19]. In this validation, researchers instructed the AI co-scientist to explore a topic that
had already been subject to novel discovery by their independent research group. Notably, at the time of
instructing the AI co-scientist system, the researchers’ novel experimental insights had not yet been published
or revealed in the public domain. The system was instructed to hypothesize how capsid-forming phage-
inducible chromosomal islands (cf-PICIs) exist across multiple bacterial species. The system independently
proposed that cf-PICIs interact with diverse phage tails to expand their host range. This in silico discovery
mirrored the novel and experimentally validated results that expert researchers had already performed, as
detailed in the co-timed report [20, 21].

Overall, our key contributions are summarized as follows:

• Introducing an AI co-scientist. We develop and introduce an AI co-scientist that goes beyond literature
summarization and "deep research" tools to assist scientists in uncovering new knowledge, novel hypothesis
generation and experimental planning.

• Significant scaling of test-time compute paradigm for scientific reasoning. The co-scientist
is built on a Gemini 2.0 multi-agent architecture, utilizing an asynchronous task execution framework.
This framework allows the system to flexibly allocate computational resources to scientific reasoning,
mirroring key aspects of the scientific method. Specifically, the system uses self-play strategies, including a
scientific debate and a tournament-based evolution process, to iteratively refine hypotheses and research
proposals creating a self-improving loop. Using automated evaluations across 15 complex expert curated
open scientific goals, we demonstrate the benefits of scaling the test-time compute paradigm with the AI
co-scientist outperforming other state-of-the-art (SOTA) agentic and reasoning models in generating high
quality hypotheses for complex problems.

• Expert-in-the-loop scientific workflow. Our system is designed for collaboration with scientists. The
system can flexibly incorporate conversational feedback in natural language from scientists and co-develop,
evolve and refine outputs.

• End-to-end validation of the co-scientist in important topics in biomedicine. We present end-
to-end validation of novel AI-generated hypotheses through new empirical findings in three distinct and
increasingly complex areas of biomedicine: drug repurposing, novel target discovery, and antimicrobial
resistance. The AI co-scientist predicts novel repurposing drugs for AML, identifies novel epigenetic
treatment targets grounded in preclinical evidence for liver fibrosis, and proposes novel mechanisms for
gene transfer in bacterial evolution and antimicrobial resistance. These discoveries from the AI co-scientist
have been validated in wet-lab settings and are detailed in separate, co-timed technical reports.
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2 Related Works

2.1 Reasoning models and test-time compute scaling

The modern revolution in foundation AI models [22] and large language models (LLMs) has been largely
driven by advances in pre-training techniques [23, 24], leading to breakthroughs in models like the GPT and
Gemini family [25, 26]. These models, trained on increasingly massive internet-scale and multimodal datasets,
have demonstrated impressive abilities in language understanding and generation leading to breakthrough
performance in a variety of benchmarks [27, 28]. However, a key area of ongoing development is enhancing their
reasoning capabilities. This has led to the emergence of “reasoning models” which go beyond simply predicting
the next word and instead attempt to mimic human thought processes [29]. One promising direction in this
pursuit is the test-time compute paradigm. This approach moves beyond solely relying on the knowledge
acquired during pre-training and allocates additional computational resources during inference to enable
System-2 style thinking—slower deliberate reasoning to reduce uncertainty and progress optimally towards
the goal [30]. This concept emerged with early successes such as AlphaGo [15], which used Monte Carlo Tree
Search (MCTS) to explore game states and strategically select moves, and Libratus [14], which employed
similar techniques to achieve superhuman performance in poker. This paradigm has now found applications
in LLMs, where increased compute at test-time allows for more thorough exploration of possible responses,
leading to improved reasoning and accuracy [11, 13, 29, 31–34]. Recent advancements, like the Deepseek-R1
model [4], further demonstrate the potential of test-time compute by leveraging reinforcement learning to
refine the model’s “chain-of-thought” and enhance complex reasoning abilities over longer horizons. In this
work, we propose a significant scaling of the test-time compute paradigm using inductive biases derived from
the scientific method to design a multi-agent framework for scientific reasoning and hypothesis generation
without any additional learning techniques.

2.2 AI-driven scientific discovery

AI-driven scientific discovery represents a paradigm shift in how research is conducted across various scientific
domains. Recent advancements, particularly the development of large deep learning and generative models,
have cemented AI’s role in scientific discovery. This is best exemplified by AlphaFold 2’s remarkable progress
in the grand challenge of protein structure prediction, which has revolutionized structural biology and opened
new avenues for drug discovery and materials science [35]. Other notable examples include the development
of novel antibiotics, protein binder design, and material discovery with AI [36–38].

Building on these successes with specialized, bespoke AI models, there has been recent work exploring the even
more ambitious goal of fully integrating AI, especially modern LLM-based systems, into the complete research
workflow, from initial hypothesis generation all the way to manuscript writing. This end-to-end integration
represents a significant shift, presenting both unprecedented opportunities and significant challenges as the
field moves beyond specialized AI tools toward realizing the potential of AI as an active collaborator, or even,
as some envision, a nascent “AI scientist” [39].

As an example of this shift, Liang et al. [40] directly assessed the utility of LLMs for providing feedback on
research manuscripts. Through both a retrospective analysis of existing peer reviews and a prospective user
study, they demonstrated the significant concordance between LLM-generated feedback and that of human
reviewers. Their study, using GPT-4 [41], found that a majority of researchers perceived LLM-generated
feedback as helpful, and in some instances, even more beneficial than feedback from human colleagues.
However, while valuable, their work focuses solely on the feedback stage of the scientific process, leaving open
the question of how LLMs might be integrated into the full research cycle, from hypothesis formation to
experimental validation and manuscript writing.

Another effort embodying this shift is PaperQA2 [42], an AI agent for scientific literature search and
summarization. The authors claimed to surpass PhD and postdoc researchers on multiple literature research
tasks, as measured both by performance on objective benchmarks and human evaluations. While the system is
a useful for synthesizing information, it does not engage in scientific reasoning for novel hypothesis generation.

HypoGeniC, a system proposed by Zhou et al. [43], tackles hypothesis generation by iteratively refining
hypotheses using LLMs and a multi-armed bandit-inspired approach. The process begins with a small set of
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examples, from which initial hypotheses are generated. These hypotheses are then iteratively updated through
exploration and exploitation, guided by a reward function based on training accuracy. This refined set of
hypotheses is subsequently used to construct an interpretable classifier. However, the method’s reliance on
retrospective data for evaluation means the degree to which the system can generate truly novel hypotheses
remains an open question. Furthermore, the system lacks end-to-end validation beyond subjective human
evaluations.

Ifargan et al. [44] present “data-to-paper”, a platform that systematically guides multiple LLM and rule-
based agents to generate research papers, with automated feedback mechanisms and information tracing for
verification. However, the evaluations are limited to recapitulating existing peer-reviewed publications and its
unclear if the system can generate truly novel, yet grounded hypothesis and research proposals.

Virtual Lab [45] is another closely related work. Here, the authors propose a team of LLM agents with a
“principal investigator” LLM guiding a team of specialized LLM agents to solve a scientific problem. The LLM
team receives high level human supervision. The authors demonstrate the utility of their work by leveraging
Virtual Lab to design nanobody binders to recent variants of SARS-CoV-2 with experimental validation.
While similar in spirit, there are significant design differences to our approach and the generality of the system
remains unclear.

Finally, Lu et al. [39] propose “The AI Scientist”, a fully automated system designed to conduct research using
multiple collaborating LLM agents. These agents handle all stages of the research process, from defining
research problems and conducting literature reviews to designing and executing experiments, and even writing
up the results. The design shares similarities with our work—the key differences being our focus on the scaling
of the test-time compute paradigm to generate high quality hypotheses and research proposals. Secondly, their
proposed system has limited automated evaluations; in contrast, our work has a combination of automated,
human expert and end-to-end wet lab validations. Finally, our goal is to not to automate scientific discovery,
rather to build a helpful AI collaborator for scientists.

2.3 AI for biomedicine

More broadly, large AI models are increasingly demonstrating their potential in biomedical science. Both
general purpose (GPT-4, Gemini) and specialized LLMs (Med-PaLM, Med-Gemini, Galactica, Tx-LLM)
have shown strong performance on biomedical reasoning and question-answering benchmarks [25, 26, 46–49].
Beyond benchmarks, Med-PaLM 2, was successfully applied to identify causative murine genetic factors
for traits such as diabetes, cataracts, and hearing loss [50]—an early example of hypothesis generation and
LLM-assisted discovery. We have also seen the exciting development of specialized foundation and large
language models trained on DNA, RNA and protein sequences with a variety of applications [51–54]. Although
AI in biology and medicine often necessitates specialization, the rapid progress of frontier AI models has
blurred the distinction. As these models grow in scale, data diversity, and complexity, they continue to achieve
breakthroughs in areas once thought to require domain-specific AI. Our co-scientist system, with its modular
multi-agent architecture, is flexibly designed to build on top of these advancements in general-purpose frontier
AI models and leverage specialized AI models as tools to enhance the capabilities.

Drug repurposing is an important area of validation experiments in this work. The traditional approach to
this task requires both computational and experimental approaches and a comprehensive understanding of
disease-drug interactions [17, 55]. While methods like knowledge graphs with graph convolutional networks
have shown promise [56, 57], their applicability is limited by the initial knowledge graph’s scope. TxGNN [58],
an example of a specialized biomedical foundation model with a graph based approach, addresses “zero-shot”
repurposing for novel diseases but remains dependent on the underlying knowledge graph’s quality and lacks
sufficient scalability and explainability. Furthermore, no end-to-end validations of the model predictions were
reported in the study. In contrast, our work, leveraging state-of-the-art LLMs in the co-scientist setup, is
more scalable. We report a combination of expert evaluations and wet-lab experiments to validate the system
predictions.
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3 Introducing the AI co-scientist

This section describes the technical details, agents, and framework comprising the co-scientist system. The
co-scientist employs a multi-agent architecture built upon Gemini 2.0, integrated within an asynchronous task
execution framework. This framework allows for flexible scaling of test-time compute resources, facilitating
advanced scientific reasoning.

Given a research goal specified by an expert scientist in natural language, the co-scientist generates hypotheses
and research proposals that adhere to the following default criteria:

• Alignment with the provided research goal. The generated outputs must precisely align with the
research goals, preferences and constraints defined by the scientist.

• Plausibility. The system outputs should be free of readily apparent flaws. Any potential contradictions
with prior literature or established knowledge must be explicitly stated and justified.

• Novelty. A key objective of the co-scientist system is to generate novel hypotheses, conjectures, and
research plans grounded in prior literature, rather than simply synthesizing existing information (a
capability already addressed by existing “deep research” tools [59]).

• Testability. The system outputs should be amenable to empirical validation within the constraints
specified by the scientist.

• Safety. The system outputs will be controlled to prevent enabling unsafe, unethical, or harmful research.

Aside from these default criteria, the co-scientist can be configured with additional criteria, preferences, and
constraints as needed. For instance, it can be configured to generate outputs in formats preferred by the
researcher to improve interpretability and readability.

Throughout this section, we employ a recurring example: generating hypotheses for exploring the biological
mechanisms of Amyotrophic Lateral Sclerosis (ALS) to illustrate the various components of the co-scientist
system. While this example has been reviewed by domain experts, it remains illustrative and may contain
errors. Importantly, this example does not aim to suggest potential therapeutic avenues for ALS and should
be interpreted with utmost caution. All the examples are listed in the Appendix Section A.1.

3.1 The AI co-scientist system overview

At a high level, the co-scientist system comprises four key components:

• Natural language interface. Scientists interact with and supervise the system primarily through
natural language. This allows them to not only define the initial research goal but also refine it at any
time, provide feedback on generated hypotheses (including their own solutions), and generally guide the
system’s progress.

• Asynchronous task framework. The co-scientist employs a multi-agent system where specialized
agents operate as worker processes within an asynchronous, continuous, and configurable task execution
framework. A dedicated Supervisor agent manages the worker task queue, assigns specialized agents to
these processes, and allocates resources. This design enables the system to flexibly and effectively utilize
computational resources and iteratively improve its scientific reasoning capabilities.

• Specialized agents. Following inductive biases and scientific priors derived from the scientific method,
the process of scientific reasoning and hypothesis generation is broken down into sub-tasks. Individual,
specialized agents, each equipped with customized instruction prompts, are designed to execute these
sub-tasks. These agents operate as workers coordinated by the Supervisor agent.

• Context memory. In order to enable iterative computation and scientific reasoning over long time
horizons, the co-scientist uses a persistent context memory to store and retrieve states of the agents and
the system during the course of the computation.

The Gemini 2.0 model is the foundational LLM underpinning all agents in the co-scientist system. The specific
co-scientist design was arrived at with iterative developments and is reflective of the current capabilities of
the underlying LLMs.
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3.2 From research goal to research plan configuration

The research goal, specified by the scientist, serves as the entry point to the co-scientist system. Leveraging the
multimodal and long context capabilities of Gemini 2.0 models, the co-scientist efficiently processes research
goals of varying complexity, from simple statements to extensive documents spanning tens of thousands of
natural language tokens or other relevant data (e.g., including hundreds of prior publication PDFs). The
research goal may also incorporate specific constraints, attributes, and preferences related to the scientist’s
particular laboratory setting or field of work.

The co-scientist system then parses the goal to derive a research plan configuration for generating research
proposals. This configuration captures the desired proposal preferences, attributes, and constraints. For
example, it specifies whether the co-scientist should exclusively propose novel hypotheses. It also specifies
the criteria for evaluating hypothesis quality, such as novelty and experimental feasibility. These criteria are
then used by the system during its auto-evaluation and improvement phases. The attributes, preferences, and
evaluation criteria can all be customized to a given research goal. To illustrate this process, we present an
example research goal and its corresponding parsed research plan configuration in Appendix Figure A.1, where
the goal is to develop a novel hypothesis related to phosphorylation of the Nuclear Pore Complex (NPC) as a
causative mechanism for ALS [60].

Based on the research plan configuration, the Supervisor agent initiates the creation of a task queue and begins
orchestrating the specialized agents. The system operates continuously and asynchronously. Periodically,
the Supervisor agent calculates a comprehensive set of summary statistics, reflecting the system’s state and
progress toward the specified research goal. These statistics inform decisions regarding resource allocation
and the determination of whether a terminal state for the overall computation has been reached. The state is
periodically written to the associated context memory of the system and leveraged as feedback in subsequent
rounds of computation. It also enables easy restarts in-case of any failure in the system components.

3.3 The specialized agents underpinning the AI co-scientist

At the core of the co-scientist system are a coalition of specialized agents, each orchestrated by the Supervisor
agent. These agents are designed to emulate the scientific reasoning process, enabling them to generate novel
hypotheses and research plans. They are also equipped to interact with external tools, such as web search
engines and specialized AI models, through application programming interfaces (APIs). These specialized
agents are enumerated below:

• Generation agent. The agent initiates the research process by generating the initial focus areas,
iteratively extending them and generating a set of initial hypotheses and proposals that address the
research goal. This involves exploring relevant literature using web search, synthesizing existing findings
into novel directions, and engaging in simulated scientific debates for iterative improvement.

• Reflection agent. This agent simulates the role of a scientific peer reviewer, critically examining the
correctness, quality, and novelty of the generated hypotheses and research proposals. Furthermore, it
evaluates the potential of each hypothesis to provide an improved explanation for existing research
observations (identified via literature search and review), particularly those that may be under explained.

• Ranking agent. An important abstraction in the co-scientist system is the notion of a tournament
where different research proposals are evaluated and ranked enabling iterative improvements. The
Ranking agent employs and orchestrates an Elo-based tournament [61] to assess and prioritize the
generated hypotheses at any given time. This involves pairwise comparisons, facilitated by simulated
scientific debates, which allow for a nuanced evaluation of the relative merits of each proposal.

• Proximity agent. This agent asynchronously computes a proximity graph for generated hypotheses,
enabling clustering of similar ideas, de-duplication, and efficient exploration of the hypothesis landscape.

• Evolution agent. The co-scientist’s iterative improvement capability relies heavily on this agent, which
continuously refines the top-ranked hypotheses emerging from the tournament. Its refinement strategies
include synthesizing existing ideas, using analogies, leveraging literature for supporting details, exploring
unconventional reasoning, and simplifying concepts for clarity.

• Meta-review agent. This agent also enables the co-scientist’s continuous improvement by synthesizing
insights from all reviews, identifying recurring patterns in tournament debates, and using these findings
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to optimize other agents’ performance in subsequent iterations. This also enhances the quality and
relevance of generated hypotheses and reviews in subsequent iterations. The agent also synthesizes
top-ranked hypotheses and reviews into a comprehensive research overview for review by the scientist.

Scientist

AI co-scientist

Generation agent

Reflection agent

Proximity  agent

Meta-review agent

Research overview 
with 

detailed hypotheses
Research goal

AI

Worker
Worker
Worker
Worker

Evolution agent

Configuration

AI co-scientist specialized agents

Ranking agent

Supervisor agent

Assign agents to workers

Additional 
feedback

Context 
Memory

Figure 2 | The AI co-scientist multi-agent architecture design. The co-scientist accepts a natural language research
goal from the user and parses this into a research plan configuration. This plan is then dispatched to the Supervisor agent which
evaluates this plan to assigns weights and resources to each specialized agent and subsequently queues them as worker processes
in a task queue according to these weights. The worker processes execute the queue of agent actions, and the system ultimately
aggregates all information to formulate a research overview with detailed hypotheses and proposals for the scientist. The red
boxes in the “The AI co-scientist specialized agents” section denote individual agents each with their own unique logic and role.
The blue boxes indicate the scientist-in-the-loop inputs and feedback. The dark gray arrows represent the information flow
through the co-scientist system, while the red arrows represent the information feedback loop between the specialized agents.

The Supervisor agent’s seamless orchestration of these specialized agents enables the development of valid,
novel, and testable hypotheses and research plans tailored to the input research goal.

In summary, the Generation agent curates an initial list of research hypotheses satisfying a research goal.
These are then reviewed by the Reflection agent and evaluated in a tournament by the Ranking agent. The
Evolution, Proximity, and Meta-review agents operate on the tournament state to help improve the quality of
the system outputs.

The Supervisor agent periodically computes and writes to the context memory, a comprehensive suite of
statistics, including the number of hypotheses generated and requiring review, and the progress of the
tournament. These statistics also include analyses of the effectiveness of different hypothesis generation
methodologies (e.g., generating new ideas via the Generation agent vs. improving existing ideas via the
Evolution agent). Based on these statistics, the Supervisor agent then orchestrates subsequent system
operations, i.e., generating new hypotheses, reviews, tournaments, and improvements to existing hypotheses,
by strategically weighting and sampling the specialized agents for execution via the worker processes.

Importantly, the Meta-review agent enables feedback propagation and learning without back-propagation
techniques (e.g., fine-tuning or reinforcement learning) [62]. The Meta-review agent generates feedback
applicable to all agents, which is simply appended to their prompts in the next iteration—a capability
facilitated by the long-context search and reasoning capabilities of the underlying Gemini 2.0 models. Through
this feedback loop, the co-scientist continuously learns and improves in subsequent iterations with more
compute scaling.

Finally, while our work leverages Gemini 2.0, the co-scientist framework is model-agnostic and portable to
other similar models or combinations thereof. Future LLM improvements will likely enhance the co-scientist’s
capabilities. The multi-agent architecture of the co-scientist is depicted and summarized in Figure 2.

We now describe the mechanisms of action of the specialized agents in more detail.
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3.3.1 Generation agent

The co-scientist Generation agent employs a diverse array of techniques and tools to generate novel hypotheses,
such as the following:

• Literature exploration via web search. The agent iteratively searches the web, retrieves and reads
relevant research articles, and grounds its reasoning by summarizing prior work. It then builds on this
summary to generate novel hypotheses and research plans. An example prompt is given in Appendix
Figure A.24.

• Simulated scientific debates. Here, the Generation agent simulates scientific debates among experts
by employing self-critique and self-play techniques. These debates typically involve multiple turns of
conversations leading to a refined hypothesis generated at the end. An example prompt is given in
Appendix Figure A.25.

• Iterative assumptions identification. The agent iteratively identifies testable intermediate assump-
tions, which, if proven true, can lead to novel scientific discovery. These plausible assumptions and their
sub-assumptions are identified through conditional reasoning hops and subsequently aggregated into
complete hypotheses.

• Research expansion. To identify previously unexplored areas of the hypothesis space, the Generation
agent reviews existing hypotheses and the research overview and feedback provided by the Meta-review
agent in the previous iteration. This is used to inform additional exploration directions in the research
hypothesis space.

An example hypothesis and research proposal output from the Generation agent is presented in Appendix
Figure A.2 for the aforementioned research goal regarding explaining a basic mechanism related to ALS. The
Generation agent also summarizes and categorizes each generated hypothesis, allowing scientists to quickly
grasp the core ideas.

3.3.2 Reflection agent

Reviews are integral to the co-scientist’s effectiveness in generating novel proposals. The Reflection agent
searches relevant prior work (via web search or a dedicated scientist-provided repository), assesses existing
experimental evidence for or against a given hypothesis, and rigorously verifies the novelty, correctness, and
quality of generated outputs. Effective reviews filter inaccurate and, when stipulated, non-novel hypotheses.
Moreover, they also provide feedback to all other agents, driving continuous improvement. The Reflection
agent employs the following types of review:

• Initial review. Building on the co-scientist’s default evaluation criteria, the Reflection agent performs
an initial review assessing the correctness, quality, novelty, and a preliminary assessment of safety (ethics)
of the generated hypotheses. For a more in-depth discussion on safety considerations see Section 6. This
initial review, which doesn’t use external tools like web search, aims to quickly discard flawed, non-novel,
or otherwise unsuitable hypotheses.

• Full review. If a hypothesis passes the initial review, the Reflection agent performs a full review,
leveraging external tools and web searches to identify relevant articles for improved reasoning and
grounding. This review evaluates the hypothesis’s correctness, quality, and novelty similar to the initial
review but with full literature search. For correctness and quality, the agent scrutinizes underlying
assumptions and reasoning. For novelty, it summarizes known aspects of the hypothesis and then
judges their novelty based on existing literature. An example full novelty review is shown in Appendix
Figure A.3, and an example of review critiques is in Appendix Figure A.4. A complete full review
example is shown in Appendix Figure A.5.

• Deep verification review. The Reflection agent also conducts a deep verification review, decomposing
the hypothesis into constituent assumptions. Each assumption is further broken down into fundamental
sub-assumptions, decontextualized, and independently evaluated for correctness to identify invalidating
elements for subsequent filtering. Concurrently, the reasons for potential hypothesis invalidation due
to incorrect assumptions are summarized. This deep verification helps the co-scientist detect subtle
errors within complex hypotheses, such as flaws in reasoning or inaccurate experimental protocols. An
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identified error doesn’t necessarily invalidate the core hypothesis; the Reflection agent assesses whether
the incorrect assumption is fundamental to the hypothesis and incorporates this reasoning into the
review. Non-fundamental errors can be addressed during subsequent refinement stages. An example deep
verification review is provided in Appendix Figure A.6 for the previously introduced ALS hypothesis.
We also show another example of a deep verification review via probing questions in the context of drug
repurposing for AML in Appendix Figure A.7.

• Observation review. In addition, the Reflection agent also explores whether a given hypothesis can
account for long-tail observations from prior experimental results. This review aims to determine if
the hypothesis can provide insights on existing experimental findings and observed phenomena within
relevant articles. For each observation, the agent assesses if the hypothesis is a superior explanation
over existing ones, assuming its validity. Positive observations are summarized and appended to the
hypothesis. Note that this review often completes without any important findings (as in the case of
the ALS hypothesis example). An example prompt to generate observations is provided in Appendix
Figure A.26. An illustrative example of an observation review is provided in Appendix Figure A.8 in
the context of an alternate hypothesis for explaining a mechanism of anti-microbial resistance.

• Simulation review. The Reflection agent also reviews hypotheses by simulating them in a step-wise
fashion (e.g., simulating the mechanism of action or the proposed experiment in the proposal). This
simulation allows the agent to identify and summarize potential failure scenarios. This review method is
built on the assumption that frontier LLMs may have developed an internal world model that enables
them to simulate and accurately predict various scientific phenomena.

• Recurrent/tournament review. The Reflection agent adapts its full reviews based on the co-
scientist’s growing knowledge. By analyzing reviewed hypotheses and results of the tournament
conducted by the Ranking agent, the Reflection agent identifies recurring issues and improvement
opportunities, refining its reviews accordingly.

Additionally, the co-scientist can incorporate reviews from expert scientists to guide ranking and system
improvements (further discussed in Section 3.4). We aim to have the Reflection agent’s comprehensive set of
reviews cover the common methods scientists employ when critiquing and refining research hypotheses and
proposals.

3.3.3 Ranking agent

The AI co-scientist explores numerous hypotheses and research proposals towards a research goal, necessitating
a ranking mechanism to prioritize computational resources toward the most promising candidates. This task
is performed by the Ranking agent. The agent uses an Elo-based tournament [61] to automatically evaluate
and rank all hypotheses, providing supporting rationale. This ranking serves to communicate to scientists
an ordered list of research hypotheses and proposals aligned with the research goal. Despite its assumptions
and limitations [63], Elo remains a good proxy for relative ranking, and it has previously been applied to
rank extracted patterns and ideas in games [64]. In the future, extensions may be considered [65]. We set the
initial Elo rating of 1200 for the newly added hypothesis.

Because the tournament is computationally intensive, the Ranking agent employs several optimization
strategies. Top-ranked hypotheses are compared pairwise in tournament matches through multi-turn scientific
debates [66]. This mitigates ordering bias and focuses on novelty, correctness, and testability. Lower-ranked
hypotheses undergo single-turn comparisons in a pairwise fashion in their tournament match. The agent
concludes each comparison with a decision regarding which hypothesis is better. Appendix Figure A.27 and
Appendix Figure A.28 show example prompts. Appendix Figure A.9 shows an example of the Ranking agent
conducting a scientific debate match in a tournament to compare two hypotheses.

The Ranking agent prioritizes tournament matches as follows: (1) hypotheses are more likely to be compared
with similar ones (based on the Proximity agent’s graph, described in the next section); (2) newer and
top-ranking hypotheses are prioritized for participation in tournament matches. Successful hypotheses quickly
achieve favorable rankings and this informs the tournament state for subsequent iterations.
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3.3.4 Proximity agent

The Proximity agent calculates the similarity between research hypotheses and proposals, and builds a
proximity graph, taking into account the specific research goal. Although it doesn’t directly participate in
hypothesis generation, the Proximity agent assists the Ranking agent in organizing tournament matches and
showcasing a diverse range of ideas related to the research goal. This allows scientists to quickly explore areas
of interest and easily identify related concepts.

3.3.5 Evolution agent

The Evolution agent continuously refines and improves existing hypotheses and proposals using several
approaches including:

• Enhancement through grounding. Here the agent attempts to improve hypotheses by identifying
weaknesses, generating search queries, retrieving and reading articles, suggesting improvements and
elaborating on details to fill reasoning gaps.

• Coherence, practicality and feasibility improvements. The agent aims to address issues and
creates more coherent hypotheses, potentially rectifying underlying problems with invalid initial as-
sumptions. The agent also refines the hypotheses to make them more practical and feasible. Appendix
Figure A.29 provides an example of the feasibility improvement prompt.

• Inspiration from existing hypotheses. The agent additionally creates new hypotheses inspired by
single or multiple top-ranked hypotheses.

• Combination. The agent also attempts to directly combine the best aspects of several top-ranking
hypotheses to create new hypotheses.

• Simplification. The agent simplifies hypotheses for easier verification and testing.
• Out-of-box thinking. The agent also explores out-of-the-box ideas by moving away from a subset of

hypotheses and generating divergent ones. Appendix Figure A.30 provides an example prompt for this.

The Evolution agent generates new hypotheses; it doesn’t modify or replace existing ones. This strategy
protects the quality of top-ranked hypotheses from flawed improvements, as each new hypothesis must also
compete in the tournament. The evolution of research hypotheses and proposals also allows the co-scientist to
iteratively combine different improvement techniques and gradually improve the quality of the results.

3.3.6 Meta-review agent

The Meta-review agent plays a crucial role in the co-scientist’s feedback loop, enabling self-improvement in
scientific reasoning. This agent operates on the tournament state and summarizes common patterns identified
in reviews and scientific debates in the tournament matches into a meta-review critique.

By synthesizing insights from all reviews, the meta-review provides valuable feedback to the Reflection agent,
leading to more thorough and reliable future reviews. This helps prevent oversight of critical details. Consider
the illustrative example of a identifying a repurposing drug candidate for ALS as a research goal: while only
90% of individual reviews might correctly identify a blood-brain barrier permeability issue in a proposed
candidate, the meta-review ensures that all future reviews by the Reflection Agent definitively address this
crucial factor. Hypothesis and research proposal generation is also enhanced by the meta-review’s identification
of recurring issues. While the Generation agent uses this feedback selectively to avoid over fitting to these
review critiques, it helps prevent the recurrence of common issues.

Appendix Figure A.31 provides an example prompt for the meta-review. In Appendix Figure A.10-A.11, we
showcase an example of the summarized meta-review critique generated for the reviews of the previously
introduced ALS mechanism hypotheses.

Research overview generation. The Meta-review agent periodically synthesizes top-ranked hypotheses into
a research overview, providing a roadmap for future research. This overview outlines potential research areas
and directions relevant to the research goal, justifying their importance and suggesting specific experiments
within each. Each area includes illustrative example topics. The research overview also serves as an additional
input to the Generation agent in subsequent iterations.
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The research overview serves to effectively map the boundary of current knowledge relevant to the research
goal in the co-scientist system and helps highlight future areas of exploration. In Appendix Figure A.12-A.13,
we show an example of a research overview for the ALS mechanism research goal.

The Meta-review agent can further format these overviews using constrained decoding techniques [67] to
adhere to common research publication and grant formats (e.g., National Institute of Health (NIH) Specific
Aims Page format). We demonstrate the effectiveness of this in subsequent sections.

Research contacts identification. The Meta-review agent uses prior literature review to suggest qualified
domain experts for research hypotheses and proposal review, including the reasoning behind each suggestion.
These potential contacts are summarized in the research overview, providing researchers with additional
perspectives and potential avenues for collaborations. An example research contact (with the researcher name
redacted) is shown in Appendix Figure A.14.

3.4 Expert-in-the-loop interactions with the co-scientist

The AI co-scientist empowers scientists to actively guide the system through an expert-in-the-loop design
(Figure 2). Scientists can interact with the system in several ways:

• Refine the initial research goal in light of the generated hypotheses and research overview.
• Provide manual reviews of generated hypotheses (see Section 3.3.2 for other system generated review

types), which the co-scientist uses to evaluate and improve the hypotheses and proposals.
• Contribute their own hypotheses and proposals for inclusion in the tournament, where they are ranked

alongside and can be combined with system-generated hypotheses and proposals.
• Direct the co-scientist to follow up on specific research directions (for example restricted to a smaller
collection of prior publications). When this research is referenced in the research goal, the co-scientist
can prioritize generation methods that can access and synthesize it.

3.5 Tool use in AI co-scientist

The co-scientist leverages various tools during the generation, review, and improvement of hypotheses and
research proposals. Web search and retrieval are primary tools, important for grounded, up-to-date hypotheses.

For research goals that explore a constrained space of possibilities (e.g., all known cell receptors of a specific
type or all FDA-approved drugs), the co-scientist agents utilize domain-specific tools, such as open databases,
to constrain searches and generate hypotheses. The co-scientist can also index and search a private repository
of publications specified by the scientist.

Finally, the system can utilize and incorporate feedback from specialized AI models like AlphaFold. We
demonstrate this qualitatively with a protein design example in the Appendix Section A.5.

4 Evaluation and Results

We now discuss the methods for evaluating the AI co-scientist system and the corresponding results. The
initial evaluations aim to benchmark and verify the choice of the strategies and metrics underpinning the
co-scientist. We then proceed to perform a small-scale evaluation with domain experts to assess the quality of
the system.

Furthermore, to assess the practical utility of the system’s novel predictions, we also perform end-to-end
wet-lab validations (laboratory experiments) of the co-scientist-generated hypotheses and research proposals
in three key biomedical applications: drug repurposing, discovering novel treatment targets, and elucidating
the mechanisms underlying antimicrobial resistance. The varying complexity and nature of these applications
enable a more comprehensive assessment of the system. Notably, all three validations involved expert-in-the-
loop guidance and prioritization of experiments. These applications are summarized in Table 1.
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Application Drug repurposing Novel treatment target discovery Explain mechanism of
gene transfer evolution

Challenge Combinatorial search Identifying novel targets Understanding complex systems

Complexity Medium High Very high

Scale Moderate, data-limited Moderate, experiment-limited Large, data and computation-limited

Unknown elements Constrained Large Vast and dynamic

Table 1 | Three real-world applications in biomedicine for end-to-end validation of the AI co-scientist.

4.1 The Elo rating is concordant with high quality AI co-scientist results

The Elo auto-evaluation rating is a key metric that guides the self-improvement feedback loops within the
co-scientist system. Therefore, it’s necessary to measure and ensure higher Elo ratings correlate with higher
quality results. To assess this, we analyzed the concordance between the Elo rating and the system’s accuracy
on the GPQA benchmark dataset. Ideally, higher Elo ratings should correlate with a higher probability of
correct answers.

The GPQA dataset is a challenging, multiple-choice question answering benchmark developed by experts in
biology, physics, and chemistry [68]. To ensure that the co-scientist Elo rating serves as an objective metric
reflecting the validity and correctness of results from the system, we utilized questions within the GPQA
diamond set, a subset of the GPQA dataset known for its high difficulty, framing each question as a research
goal into our AI system to elicit responses. For each question, we first compared each co-scientist response
against the ground truth answer to evaluate its correctness. Then, we categorized all generated responses
across all considered questions based on their Elo rating into discrete buckets: Elo rating of 1001-1050,
1051-1100, 1101-1150, etc. in 50 point increments, until the highest rating achieved. Finally, we calculated
the average accuracy for each Elo rating bucket, as the percentage of correct responses within each bucket.

We employed the underlying Gemini 2.0 models in the AI co-scientist to create a reference baseline. The
reference is necessary because responses within a particular Elo rating bucket are not uniformly distributed
across the GPQA questions - some of which are inherently more challenging than others. This non-uniformity
could introduce bias into the analysis and potentially lead to erroneous conclusions. We therefore used the
reference to generate 32 responses for each GPQA question. The fraction of correct responses from Gemini 2.0
was used as a reference accuracy on that particular question. To determine reference accuracy for a specific
Elo bucket, we averaged the reference accuracy of the GPQA questions that had co-scientist responses within
that bucket. We also computed the co-scientist accuracy on the GPQA diamond set by using the result with
the highest Elo rating for each question and comparing it against the ground truth.

Figure 3 | Concordance of the auto-evaluation Elo metric with AI co-scientist performance on GPQA. The blue
line in the figure shows the average accuracy of co-scientist responses, grouped by their Elo rating. The red line indicates the
average accuracy of the corresponding reference Gemini 2.0 responses to the same set of GPQA questions, grouped by Elo rating.
Note that Elo metric is auto-evaluated and not based on the ground truth.
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Our analysis using questions from the GPQA diamond set reveals a concordance between the Elo rating
and averaged accuracy of generated co-scientist results, as depicted in Figure 3. By selecting the top-rated
co-scientist result for each question, the co-scientist achieves a top-1 accuracy of 78.4%.

4.2 Scaling test-time compute improves scientific reasoning of the AI co-scientist

To evaluate the effects of test-time compute scaling and the co-scientist’s progress during iterative scientific
reasoning and hypothesis generation, we measured the Elo ratings of the co-scientist generated hypothesis
and proposals over the course of the tournament. This analysis was done across 203 distinct research goals
curated across broad scientific topics (predominantly in biomedicine, but also included other topics such as
mathematics and physics) and entered into the co-scientist system until February 3, 2025.
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Figure 4 | Impact of scaling test-time compute on AI co-scientist as measured by Elo auto-evaluation. The
co-scientist’s research hypotheses and proposals were partitioned into ten temporal buckets of equal size, with the last bucket
corresponding to the most recently generated results from the system. For each bucket, we determined the maximum individual
Elo rating (the “best Elo”) and the average Elo rating of the top 10 hypotheses across 203 unique research goals. The resulting
upward performance trends, across both metrics, suggest improvements in the co-scientist result quality with scaling of test-time
compute. Note that the Elo metric is auto-evaluated and not based on independent ground truth.

The co-scientist’s research hypotheses and proposals were partitioned into ten temporal buckets of equal size.
Each bucket corresponded to a sequential 10% of the total generation time with the first bucket containing
the earliest 10% of generated co-scientist results, while the tenth bucket comprised the most recent 10%. For
each bucket, we determined the average Elo rating of the top 10 hypotheses and the maximum individual Elo
rating (the “best Elo”). These average and best Elo ratings were averaged across 203 research goals and their
corresponding tournaments. The resulting performance trends as seen in Figure 4, across both metrics, serves
as a measure of the co-scientist’s quality improvement over time. The most recent results demonstrated a
significant quality enhancement compared to the initial outputs. Notably, although the Elo rating is not the
direct optimization target, its progressive increase emerges from the system’s self-improvement feedback loops.

To further contextualize this observation, we focused our analysis on a subset of 15 research goals, curated as
challenging problems by seven biomedical experts in their respective fields of expertise. These experts held
doctoral degrees in biological or life science disciplines and were actively working as postdoctoral researchers or
faculty members at academic biomedical research institutes. These research goals were consistently structured
and formatted, encompassing a research title, a clear set of goals, preferences specifying biological or disease
areas of interest, desirable solution attributes, and constraints on experimental techniques.

In addition to the research goals, the experts provided their “best guess” hypotheses or solutions. We then
included outputs from other state-of-the-art LLMs and reasoning models—–Gemini 2.0 Pro Experimental,
Gemini 2.0 Flash Thinking Experimental 12-19, OpenAI o1, OpenAI o3-mini-high, and DeepSeek R1—in
a tournament along with the expert “best guess” and co-scientist for each curated goal. Performance was
assessed using the co-scientist Elo rating metric.

The trends previously observed with test-time compute scaling in Figure 4 were consistent within this
subset. Furthermore, as shown in Figure 5, the co-scientist surpassed the other frontier LLMs and reasoning
models in Elo rating with increased computational resources for iterative improvement. Notably, newer
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Figure 5 | Comparison of the AI co-scientist with other baselines as measured by Elo auto-evaluation on a
subset of 15 challenging expert-curated research goals. The AI co-scientist’s research hypotheses and proposals were
partitioned into ten equal-sized temporal buckets, with the last bucket representing the most recent system-generated results. For
each bucket, we calculated the maximum individual Elo rating (“best Elo”) and the average Elo rating of the top 10 hypotheses
across 15 challenging research goals, curated by biomedical experts. These metrics were then compared to the performance of
several baselines: Gemini 2.0 Pro Experimental, Gemini 2.0 Flash Thinking Experimental 12-19, OpenAI o1, OpenAI o3-mini-high,
DeepSeek R1, and the “best guess” hypotheses provided by the expert curators. These baseline performances are represented by
colored dashed lines. On this expert-curated subset of research goals, we consistently observed upward performance trends with
increased test-time compute. Furthermore, the co-scientist significantly outperformed both the human experts and the other
state-of-the-art LLM baselines, as measured by the Elo metric. It’s important to note that the Elo metric is auto-evaluated and
not based on independent ground truth. This auto-evaluation metric may favour results with attributes that do not necessarily
align with scientists’ preferences, quality, or accuracy.

reasoning models, such as OpenAI o3-mini-high and DeepSeek R1, demonstrated competitive performance
while requiring significantly less compute and reasoning time. Finally, we observed no evidence of performance
saturation as measured by Elo, suggesting that further scaling of test-time compute in this paradigm could
yield continued improvements in result quality of the co-scientist system. Its worth noting again that the
co-scientist architecture is model agnostic and is likely to benefit from further advancements in frontier and
reasoning LLMs.

Figure 6 | AI-augmented expertise with the co-scientist through Elo-based auto-evaluation. Through its self-
improvement process, the co-scientist refines and enhances expert “best guess” solutions over time, as measured by the Elo
rating on a subset of 15 curated research goals. It is important to note that the Elo metric is auto-evaluated and not based on
independent ground truth.

Building upon the co-scientist system’s ability to combine, refine and improve research hypotheses and
proposals iteratively, we investigated its potential to improve upon expert “best guess” solutions. Consistent
with our previous observations, the co-scientist demonstrated the capacity to enhance expert’s “best guess”
solutions over time, as evidenced by the Elo metric in Figure 6. Notably, the improvement trends initially
mirrored those of the co-scientist’s autonomously generated solutions but subsequently surpassed them. While
this is a preliminary finding requiring further validation, it suggests a promising avenue for capable AI systems,
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such as the co-scientist, to augment and accelerate the work of expert scientists.

4.3 Experts consider the AI co-scientist results to be potentially novel and impactful

To obtain expert feedback and assess preferences, we conducted a small-scale expert evaluation on 11 of the
15 previously curated research goals. We asked the experts who curated the research goals to assess outputs
from the AI co-scientist, Gemini 2.0 Flash Thinking Experimental 12-19, Gemini 2.0 Pro Experimental, and
OpenAI o1 models. Specifically, they provided a preference ranking (1 being most preferred and 4 being least
preferred) and rated the novelty and impact of the proposed solutions on a 5-point scale, ranging from 1
(worst) to 5 (best) following this rubric:

• Novelty: Higher-ranked outputs should propose hypotheses that, to the best of the expert’s knowledge,
have not been previously published in any form. Hypotheses similar to existing proposals, even with
minor modifications, should rank lower, and exact replicas of previously proposed and performed
experiments should receive the lowest ranking.

• Impact: Higher-ranked outputs should address significant open questions in the field and have the
potential to substantially advance scientific understanding or lead to practical applications.

Across 11 expert-evaluated research goals, outputs generated by the AI co-scientist were most preferred and
rated higher in novelty and impact axes compared to the other baseline models. Specifically, the co-scientist
received an average preference rank of 2.36, and novelty and impact ratings of 3.64 and 3.09 (out of 5)
as shown in Figure 7. These evaluations reflect subjective expert assessments, not objective ground truth.
Notably, the human expert preferences also appear to be concordant with relative Elo ratings as can be
inferred from Figure 5 and Figure 7.

We also conducted the same preference ranking evaluation between co-scientist and other LLM and reasoning
model baselines using the OpenAI o3-mini-2025-01-31, o1-preview-2024-09-12, Gemini 2.0 Pro Experimental
and Gemini 2.0 Flash Thinking Experimental 01-21 as judges. The co-scientist outputs were the most preferred
by both the o3-mini, o1 and Gemini 2.0 Pro Experimental models as shown in (Figure 8). Due to the small
scale of these evaluations, further large-scale studies are necessary for any reliable conclusions. We present a
more comprehensive clinical expert evaluation focused on co-scientist proposals for drug repurposing formatted
in the NIH Specific Aims Page format in Section 4.5.1.

Figure 7 | Expert evaluation of AI co-scientist and other LLM baselines. Left: Average expert ratings on novelty and
impact of the model responses across 11 expert curated research goals. Higher numbers indicate better ratings (1-5). Right:
Average expert preference ranking of the results across 11 expert curated research goals generated by AI co-scientist, Gemini
2.0 Flash Thinking Experimental 12-19, Gemini 2.0 Pro Experimental, and OpenAI o1, respectively. Lower numbers indicate
better rankings (1-4). The human expert preferences also appear to be concordant with relative Elo ratings as can be inferred
from Figure 5. At the same time, its worth noting that these preferences and ratings reflect subjective expert assessments, not
objective ground truth.
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Figure 8 | LLM preference ranking auto-evaluation of AI co-scientist and other baselines. Averaged preference
ranking of results across 11 expert curated research goals generated by AI co-scientist, Gemini 2.0 Flash Thinking Experimental
12-19, Gemini 2.0 Pro Experimental, and OpenAI o1, using four different LLM evaluators: OpenAI o3-mini-2025-01-31 (upper
left), OpenAI o1-preview-2024-09-12 (upper right), Gemini 2.0 Pro Experimental (lower left), and Gemini 2.0 Flash Thinking
Experimental 01-21 (lower right). Lower numbers indicate better rankings.

4.4 Safety evaluation of the AI co-scientist using adversarial research goals

The AI co-scientist is designed to empower scientists and accelerate research. However, it’s crucial to ensure
the system is designed with robust safety principles, given the potential for misuse. This includes addressing
dangerous research goals, dual-use objectives, scenarios where safe goals lead to unsafe hypotheses, misleading
claims, and inherent biases. While this topic requires extensive investigation beyond the scope of this work,
we employed adversarial testing strategies to conduct a preliminary safety analysis of the system. Specifically,
we curated a set of 1200 adversarial examples, ranging in complexity, across 40 biomedical and scientific topics
using frontier LLMs. We then evaluated whether the AI co-scientist could robustly reject these research goals.
In this preliminary analysis, the system successfully passed all checks. Given the sensitive nature of these
adversarial research goals, we will not be publicly releasing the dataset, but it can be made available upon
request. Collectively, the benchmark, automated, and expert evaluations presented in this section provide
compelling evidence of the system’s strong capabilities.

4.5 Drug repurposing with the AI co-scientist

As previously noted, a rigorous assessment of a system’s ability to generate novel hypotheses and predictions
for complex research problems necessitates end-to-end validation through wet-lab experiments. However, due
to the challenging, time-consuming, and resource-intensive nature of such endeavors, large-scale experimental
validation is infeasible. Instead, we strategically selected diverse yet critical biomedical topics to serve
as a strong benchmark for the end-to-end system evaluation. Detailed descriptions of these topics follow.
Importantly, all three experimental validations were conducted in collaboration with expert scientists, who
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provided guidance to the co-scientist and prioritized wet-lab experiments.

We begin the discussion of the end-to-end validation of the AI co-scientist with a drug repurposing application.
As introduced earlier, drug repurposing is the process of identifying novel therapeutic indications for existing,
approved drugs beyond their original use. This approach can accelerate the discovery of treatments for
complex and rare diseases, as repurposed drugs have established safety profiles and are readily available. From
a technical standpoint, this is a combinatorial search problem involving a large but finite set of drug-disease
pairs as noted in Table 1.

Given the co-scientist’s ability to synthesize and integrate information across a vast body of scientific and
clinical literature, we hypothesized that drug repurposing would be an ideal test of the system’s capabilities.
The system is general-purpose, capable of providing highly detailed and explainable predictions across all
known drug-disease pairs. Here, we focused on the computational biology and wet-lab validation of our
co-scientist system in the area of drug repurposing for cancer treatment.

We initially investigated drug-cancer pairs with existing preclinical evidence to validate the plausibility of the
hypotheses and predictions generated by the co-scientist (Section 4.5.1), before expanding to completely novel
drug repurposing hypotheses (Section 4.5.2). The validation of the co-scientist’s predictions was performed
using a multi-faceted approach, incorporating computational biology analyses, oncologist expert feedback,
and in vitro wet-lab experiments using cancer cell lines.

4.5.1 The AI co-scientist suggests plausible drug repurposing candidates as rated by experts

We constrained the AI co-scientist to explore potential repurposing hypotheses from a curated list of 2300
approved drugs across 33 cancer types (Appendix Section A.2.1). To achieve this, we modified the prompts
used in the Generation and Ranking agent stages to ensure hypotheses generation in this constrained search
space; however, the core co-scientist logic remained unchanged. When formulating the research goal for the
co-scientist, we explicitly emphasized the following preferences related to drug repurposing:

• Elucidate the known mechanisms of action and impacted biological pathways of the drug.
• Identify potential diseases or cancer types that could be treatment targets for the drug.
• Explain the potential mechanisms by which the drug could exert therapeutic effects.
• Propose alternative mechanisms of action through which the drug might function in the proposed

therapeutic context.
• Identify the diseases / cancers for which the drug is currently approved.
• List the most promising disease / cancer type candidates for repurposing.
• Discuss prior research and challenges associated with repurposing the drug.

For each drug-cancer pair, we also extracted the Cancer Dependency Map (DepMap) probability of dependency
(“DepMap score”) [69] (Appendix Section A.2.2). The DepMap score represents the probability of essentiality
for a gene in a given cancer cell lines. We ranked all drug-cancer pairs using a combined metric of the
co-scientist review score (ranging from 1 to 5) and the DepMap score (ranging from 0.0 to 1.0). To prioritize
the most relevant hypotheses for expert review, we selected only pairs where the co-scientist review score
≥ 4 and the DepMap score ≥ 0.99. Expert oncologists then reviewed the top-ranked drug-cancer pairs,
provided feedback, and selected promising repurposing candidates for in vitro wet-lab validation (Appendix
Section A.2.3).

Clinical expert evaluation of drug repurposing proposals in NIH Specific Aims Page format.
To rigorously evaluate whether the co-scientist-generated hypotheses for drug repurposing fulfill the needs
of physicians and scientists, we restructured the co-scientist hypotheses into the NIH-style grant proposal
Specific Aims Page (examples in Appendix Figure A.18-A.23), and asked a team of six expert hematologists
& oncologists to evaluate the specific aims.

The NIH Specific Aims Page format follows a standard structure, including disease description, unmet need,
proposed solutions, and specific aims. This format was selected because it provides a standardized framework
that is widely recognized in the research community, allowing for systematic presentation of complex scientific
topics in a manner that facilitates rigorous peer review and enables efficient assessment of scientific merit.
The specific aims, which outline the overarching goal, hypothesis, and rationale, requires extensive scientific

|19



expertise, comprehensive literature analysis, and robust domain knowledge. We generated cancer drug
repurposing hypotheses derived from the co-scientist in the format of NIH Specific Aims Page with additional
constrained decoding and self-critique stages to ensure format consistency. An expert oncologist methodically
evaluated and excluded hypotheses that were deemed clinically implausible or had limited potential for
successful translation, as well as those falling outside the expertise of the assembled specialist evaluators. This
initial screening process employed multiple evidence-based criteria including: (1) pharmacological mechanism
incompatibility with tumor biology; (2) unfavorable pharmacokinetic profiles for oncological applications;
(3) prohibitive toxicity profiles documented in prior clinical use; (4) confounding effects where apparent
survival benefits were attributable to improved management of treatment-related morbidity rather than
direct anti-neoplastic activity; and (5) insufficient preclinical evidence supporting antitumor efficacy at
clinically achievable concentrations. For example, bisphosphonate agents like pamidronate, while associated
with improved outcomes in observational studies of patients with bone metastases, were excluded after
critical evaluation revealed their benefits stemmed primarily from reduction of skeletal-related events (such as
pathological fractures, spinal cord compression, and bone pain requiring radiation) rather than from disease
modifying activity of the drug-candidate.

Six board-certified hematologists & oncologists from a single institution - including four domain-specific
oncologists specializing in gastrointestinal (GI), breast, gynecologic (GYN) and genitourinary (GU) cancers
and two general hematologist & oncologists, with an average of eight years of clinical experience - evaluated 78
unique drug repurposing hypotheses presented in the NIH Specific Aims Page format (for specific indication
distribution and counts, see Appendix Section A.3.1).

The expert raters evaluated the generated Specific Aims based on a modified NIH grant proposal evaluation
rubric, consisting of 15 axes focusing on (1) importance of research (significance and innovation) and (2)
approach (rigor and feasibility). The raters indicated their agreement level using a five-point scale: “Strongly
Agree”, “Agree”, “Neutral”, “Disagree”, and “Strongly Disagree”. For each axis, we included several questions
covering different aspects of the NIH evaluation criteria. The evaluation rubric is further detailed in the
Appendix Section A.3.2.

0 20 40 60 80 100
Percentage of answers

Unmet clinical needs
Bridges therapeutic gap

Scientifically rigorous rationale
Integrates prior studies

Avoids over-extrapolation
Clear hypotheses and methods

Clearly stated aims
Path to clinical application

Well-defined endpoints
Meaningful pre-clinical experiments

Translational component
Avoids inaccuracies

Evidence-based assumptions
Originality and terminology

Clear writing and organization

Strongly Agree Agree Neutral Disagree Strongly Disagree

Figure 9 | Clinical expert evaluation for the co-scientist generated drug repurposing hypotheses in the NIH
Specific Aims Page format. Six expert hematologists & oncologists reviewed 78 drug repurposing research proposals, which
the co-scientist had formatted as NIH Specific Aims Pages. The evaluation followed an adapted NIH grant proposal evaluation
rubric, detailed in Appendix Section A.3.2. Overall, the oncologists judged the Specific Aims proposals from the AI co-scientist
to be of high quality across all axes of the rubric.

We observed that expert raters consistently assigned high ratings (“Strongly Agree” or “Agree”) to the Specific
Aims proposed by the co-scientist across various evaluation criteria (Figure 9). Three examples of generated
Specific Aims and their respective expert review ratings are detailed in Appendix Figure A.18-A.23.
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The generated Specific Aims were assessed by hematologists & oncologists from a single-center, which might
bias the interpretation of the evaluation results, as it may introduce institutional perspectives shaped by
local practice patterns, clinical experiences, and research frameworks unique to that setting. While some
Specific Aims may be supported by preclinical data, it is important to note that none of the proposed drug
candidates have undergone randomized phase III clinical trials necessary to establish efficacy and secure
regulatory approval for repurposing to a new indication.

4.5.2 The AI co-scientist identifies novel drug repurposing candidates for acute myeloid leukemia

Building upon the positive feedback from clinical experts, we conducted in vitro wet-lab validation experiments
for drug repurposing hypotheses generated by the co-scientist for acute myeloid leukemia (AML). AML is an
aggressive and relatively rare blood cancer characterized by the rapid proliferation of abnormal white blood
cells (myeloblasts) in the bone marrow, which displaces healthy blood cells. We focused on this indication due
to its aggressive nature and the limited availability of effective therapeutic interventions [70].

Drug repurposing candidate selection process for acute myeloid leukemia. The candidate selection
for wet-lab experiments was performed with meticulous expert oversight. Thirty top-ranked drug candidates
hypotheses were shared with expert oncologists. The experts evaluated the hypotheses, selecting drug
candidates based on their potential to modulate key molecular signaling pathways associated with disease
progression and resistance. The primary selection criterion favored compounds with multi-pathway activity,
specifically those influencing dysregulated inflammatory signaling, metabolic reprogramming, and aberrant cell
proliferation. Emerging research indicates that these shared biological processes play a critical role in relapse
and treatment resistance [71]. Candidates were also chosen based on preclinical mechanistic insights and their
relevance to AML biology, including their hypothesized effects on leukemic cell survival, microenvironment
interactions, and resistance mechanisms.

Based on potential mechanisms of action, five drug repurposing candidates—Binimetinib, Pacritinib, Cerivas-
tatin, Pravastatin, and Dimethyl fumarate (DMF)—were selected for further wet-lab validation in AML.

Briefly, Binimetinib is an inhibitor of MEK1/2 in the RAS/RAF/MEK/ERK pathway, which exhibits significant
cross-talk with NFκB (nuclear factor-kappa B) signaling. MEK inhibition can attenuate constitutive NFκB
activation through disruption of the IKK complex, potentially affecting both proliferative and pro-survival
signals in leukemic cells. The RAS/RAF/MEK/ERK cascade also regulates critical transcription factors
including STAT3 and c-Myc, which are frequently dysregulated in AML and responsible for disease relapse.
Pacritinib, a dual JAK2/FLT3 inhibitor directly activates STAT3/5 (activators of transcription 3/5) and
interfaces with NFκB through multiple mechanisms, including regulation of inflammatory cytokine production
and PI3K/AKT pathway activation. FLT3 inhibition provides additional regulation of leukemic cell survival
by preventing the development of escape pathways to targeted therapies. DMF can inhibit proliferation,
reduce inflammatory responses, and induce apoptosis in AML by suppressing NF-κB and activating nuclear
factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Finally, the statins (Cerivastatin and Pravastatin)
were selected for their potential to induce metabolic and inflammatory reprogramming that directly influences
vesicular transport in rapidly proliferating cells.

Laboratory in vitro validation of expert-selected drugs. Of the five drugs tested, Binimetinib, Pacri-
tinib, and Cerivastatin demonstrated inhibition of cell viability (Figure 10). Notably, Binimetinib, which is
already approved for the treatment of metastatic melanoma, exhibited an IC50 as low as 7 nM in AML cell
lines (Figure 10 and Appendix Figure A.16). This result shows that the drugs proposed by the co-scientist
hold promise as clinically viable drug repurposing candidates. Moreover, this opens the possibility that the
co-scientist may be able to expand its hypotheses to novel drug repurposing candidates.

The AI co-scientist selection of novel drug repurposing candidates for acute myeloid leukemia.
We aimed to demonstrate the co-scientist’s capacity to autonomously discover novel drug repurposing
candidates without oversight. Towards this, the system was directed to generate a ranked list of repurposing
candidates for AML, including drugs that were not previously repurposed for the target indication and without
any prior preclinical evidence. Specifically, we tasked the co-scientist with generating potential novel drug
repurposing hypotheses for AML without explicitly relying on additional external inputs, such as the DepMap

|21



Figure 10 | Dose response curve of the expert selected repurposing drugs with existing evidence. Binimetinib,
Pacritinib, and Cervistatin inhibit MOLM-13 cell viability. X-axis is the drug concentration (nM), and Y-axis is normalized cell
viability. Lower cell viability indicates that the selected drug has a stronger inhibition on AML cells.

scores or human expert feedback. We then determined if these novel candidates suggested by co-scientist
could be validated in the laboratory, and may therefore have the potential to be repurposed for AML.

For in vitro laboratory validation of novel repurposing drugs, the domain experts selected the top candidates
from the ranked list for which no prior preclinical or clinical data existed with respect to their use to treat
AML - Nanvuranlat, KIRA6, and Leflunomide. Of the three drugs tested, treatment with the IRE1α inhibitor
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Figure 11 | Dose response curve of novel drug repurposing candidate for AML. KIRA6 activity inhibiting KG-1,
MOLM-13, and HL-60 cell viability all in nM range of drug concentration. X-axis is the drug concentration (nM), and Y-axis is
normalized cell viability. Lower cell viability indicates that the selected drug has a stronger inhibition on AML cells.

KIRA6 showed inhibition of cell viability in three different AML cell lines, KG-1, MOLM-13, and HL-60 cells
(Figure 11). IC50s of KIRA6 were all in nM range, but significantly more effective in KG-1 cells, which had an
IC50 of 13 nM, compared to MOLM-13 and HL60 cells, which had IC50s of 517 nM and 817 nM, respectively.
Thus, co-scientist was able to suggest a novel candidate for drug repurposing for AML, beyond those that may
have been selected through other existing approaches and expert sources. This suggests that the co-scientist
system may therefore be capable of generating new, promising hypotheses for researchers to investigate, that
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may in the future bring new treatments to patients for complex and challenging diseases such as AML.

Translating these insights from co-scientist’s drug repurposing hypotheses into clinical practice will be highly
challenging, as the complexity of a disease model, patient heterogeneity, and disease variability cannot be fully
captured in such limited in vitro experiments. Even if a hypothesis generated by co-scientist is well-reviewed
by oncologists and supported by preclinical rationale and strong in vitro experiments, this does not guarantee
in vivo efficacy or clinical success. Factors such as drug bioavailability, pharmacokinetics, off-target effects,
and patient selection criteria can all impact onward clinical trial outcomes. Moreover, in case of complex
cancers diseases, the tumor microenvironment and systemic interactions may introduce unforeseen resistance
mechanisms, further complicating translation from hypothesis to clinical benefit.

4.6 The AI co-scientist uncovers novel therapeutic targets for liver fibrosis

Liver fibrosis is a severe disease that can progress to liver failure and hepatocellular carcinoma, which has
few treatment options due to the limitations of available animal and in vitro models. However, a recently
developed method for producing human hepatic organoids coupled with a live cell imaging system for liver
fibrosis provides a new avenue for identification of new treatments for liver fibrosis [72–74]. The AI co-scientist
was asked to produce experimentally testable hypotheses concerning the role of epigenetic alterations in liver
fibrosis (“A Novel Hypothesis Regarding Myofibroblast Generation in Liver Fibrosis”); and to identify drugs
targeting epigenetic modifiers that could be used for treatment of liver fibrosis.

Figure 12 | The co-scientist discovers the novel treatment targets for liver fibrosis. Four drugs (Suggested 1-4) based
on three epigenetic targets suggested by the co-scientist decrease the fold change of the fibroblast activity. The experiments
were conducted in the human hepatic organoid system, the fibroblast activity was measured by the percentage fold change of
fluorescence labelled on the myofibroblast. ‘Untreated’ indicates the normal control, the fibrosis inducer is the fibrogenic agent
TGF-β, the fibrosis inhibitor indicates the fibrogenic stimulated myofibroblast treated with the fibrogenic agent inhibitor (i.e.,
TGF-β inhibitor), and four suggested drugs indicate the fibrogenic stimulated myofibroblast treated with each of the four drugs
based on three AI co-scientist suggested epigenetic targets. The red line in each box is the median fold change of the group. The
p-value indicates the statistical significance between the fibrosis inducer group and the given group. These results will be further
detailed in an upcoming report.

The experts selected three (from fifteen) top-ranked co-scientist generated research hypotheses with a
comprehensive research proposal (i.e., experimental design, evaluation methodology, and anticipated results)
for exploring the role of epigenetic modifications in liver fibrosis. The co-scientist identified three novel
epigenetic modifiers with supporting preclinical evidence that could be targeted by existing agents and provide
new treatments for liver fibrosis. Drugs targeting two of the three epigenetic modifiers exhibited significant
anti-fibrotic activity in hepatic organoids without causing cellular toxicity (Figure 12). Since one of them is
an FDA-approved drug for another indication, this creates an opportunity to re-purpose a drug for treatment
of liver fibrosis. These results will be detailed in an upcoming technical report.
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4.7 The AI co-scientist recapitulates a breakthrough in antimicrobial resistance

Understanding the mechanisms of antibiotic resistance is crucial for researchers to develop effective treatments
against infectious diseases. We focused on capsid-forming phage-inducible chromosomal islands (cf-PICIs),
which play a pivotal role in antibiotic resistance. These mobile genetic elements, unlike typical phages and
other PICIs, possess a remarkable ability to transfer between diverse bacterial species, carrying with them
virulence and antibiotic resistance genes. We sought to understand the evolutionary rationale behind the
existence of cf-PICIs across multiple bacterial species in order to develop solutions to combat antimicrobial
resistance.

The primary objective was to leverage the AI co-scientist to generate a research proposal aimed at elucidating
the molecular mechanisms of bacterial evolution underlying the broad host range of cf-PICIs and developing
strategies to curb the spread of antibiotic resistance. We specifically focused on the observation that identical
cf-PICIs, such as PICIEc1 and PICIKp1, are found in clinically relevant bacterial species, including WHO
priority pathogens like Escherichia coli and Klebsiella pneumoniae.

In a co-timed study [75] currently undergoing the peer-review process at an established journal in the field,
genomic and experimental studies revealed a novel mechanism explaining how identical cf-PICIs can be
found in different bacterial species. Knowing the answer to that question (but without it yet being available
in the public domain), we investigated whether the co-scientist could independently discover the same, or
similar, research hypotheses. We provided the co-scientist with a single-page document containing general
information, including a brief background on phage satellites and two relevant research articles. The first
paper described the original discovery of cf-PICIs [76], and the second paper introduced a computational
technique for identifying phage satellites in bacterial genomes [77]. We then challenged co-scientist to address
the question of why cf-PICIs, but not other types of PICIs or satellites, are readily found across diverse
bacterial species, and what mechanism underlies this phenomenon.

Propose cf-PICIs

The AI co-scientist generates 
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numerous bacterial species

Identical research question 
posed to the AI co-scientist
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Figure 13 | Timeline of the conventional experimental validation and the AI co-scientist-assisted hypothesis
development for capsid-forming phage-inducible chromosomal islands (cf-PICIs), key to antibiotic resistance
(AMR). Blue box: Scientist inputs. Red box: The AI co-scientist system. Red text: wet lab experimental setting. Blue text:
research hypothesis generation.

The co-scientist independently and accurately proposed a groundbreaking hypothesis—that cf-PICIs elements
interact with diverse phage tails to expand their host range—as its top-ranked suggestion [21]. This finding
was experimentally validated in the independent research study, which was unknown to the co-scientist during
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hypothesis generation [20]. Its worth noting that while the co-scientist generated this hypothesis in just two
days, it was building on decades of research and had access to all prior open access literature on this topic.

(Figure 13). Specifically, the co-scientist suggested the following research topics for the given research goal
regarding cf-PICIs:

• Capsid-tail interactions. Investigate the interactions between cf-PICI capsids and a broad range of
helper phage tails. This topic aligns precisely with the unpublished manuscript’s primary finding: that
cf-PICIs interact with tails from different phages to expand their host range, a process mediated by
cf-PICI-encoded adaptor and connector proteins.

• Integration mechanisms. Examine the mechanisms by which cf-PICIs integrate into the genomes of
diverse bacterial species.

• Entry mechanisms. Explore alternative cf-PICI entry mechanisms beyond traditional phage receptor
recognition.

• Helper phage and environmental factors. Investigate the role of helper phages and broader
ecological factors in cf-PICI transfer.

• Alternative transfer and stabilization mechanisms. Explore other potential transfer mechanisms,
such as conjugation, extracellular vesicles, and unique stabilization strategies, that might contribute to
cf-PICI’s broad host range.

The convergence of the conventional and AI co-scientist approaches on the same novel finding underscores the
potential of the co-scientist to augment, complement and accelerate scientific endeavors (Figure 13). Further
results and comprehensive details are available in the companion report [21].

5 Limitations

We are encouraged by the early promise of the AI co-scientist evaluations, which highlight its potential to
augment scientific research. However, the system has several limitations. Responsible innovation necessitates
thoughtful consideration of these alongside the potential impacts to researchers and scientific research.

Limitations with literature search, reviews and reasoning. The reviews undertaken by the AI co-
scientist system may miss critical prior works due to reliance on open-access literature. In the presented work,
the AI co-scientist does not access the entire published literature due to compliance with license or access
restrictions where applicable. The system may also omit consideration of prior work on occasions where it has
incorrectly reasoned that the work is not relevant.

Lack of access to negative results data. The AI co-scientist system’s use of only open published literature
means it likely has limited access to negative experimental results or records of failed experiments. It is known
that such data may be more rarely published than positive results, yet experienced scientists working in the
field may nonetheless possess and utilize this knowledge to prioritize research [78]. Strategies to overcome this
phenomenon might further improve the performance of the co-scientist as a tool for scientific discovery.

Improved multimodal reasoning and tool-use capabilities. Some of the most interesting data in
scientific publications is not written in text but may be encoded visually in figures and charts. However, even
state-of-the-art frontier models may not comprehensively utilize such data with optimal reasoning [79] and the
AI co-scientist system is unlikely to be an exception. Stronger benchmarks and evaluations are necessary to
improve these capabilities. We have also not evaluated the ability of our system to reason over and integrate
information from domain-specific biomedical multimodal datasets (such as large multi-omics datasets) and
knowledge graphs. More work is needed to integrate the AI co-scientist system with specialized scientific tools,
AI models and databases, and evaluate the ability to utilize them effectively.

Need for better metrics and broader evaluations. While the current AI co-scientist evaluation includes
AI auto-ratings, expert reviews and targeted in vitro validations, the evaluation of system performance remains
preliminary. A comprehensive, systematic evaluation across diverse biomedical and scientific disciplines is
necessary to determine the generalizability of co-scientist. Furthermore, the system requires continued
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improvement to produce outputs that meet the rigor and detail of high-quality publications. Furthermore, the
Elo rating implemented to help the system self-improve for hypothesis generation is a limited auto-evaluation
metric. Continued investigation into alternative, more objective, less intrinsically-favored, evaluation metrics
that better represent perspectives and preferences from expert scientists could strengthen future work.

Inherited limitations of frontier LLMs. LLM limitations include imperfect factuality and hallucinations,
which may be propagated in the co-scientist system. The system’s reliance on existing LLMs and web-search,
while providing immediate access to broad knowledge, may propagate errors of factuality, biases or limitations
present in those resources.

6 Safety and Ethical Implications

While AI systems such as the co-scientist offers the potential to accelerate scientific discovery, it also poses
significant safety and ethical challenges, distinct from its impact on the scientific method itself. Safety risks
center on the dual-use and the possibility that scientific breakthroughs could be exploited for harmful purposes.
Ethical risks, conversely, involve research that contradicts established ethical norms and conventions within
specific scientific disciplines. We review these distinct risk categories, emphasizing that further research is
crucial to fully understand and mitigate them.

Evolving ethics frameworks, policy and regulations for advanced AI use in scientific endeavors.
Research ethics is a central aspect of scientific endeavor and a prominent research field in its own right [80–85].
A key focus is directing research towards positive societal impact, although questions remain about potentially
dual-use knowledge [86–90].

Core ethics principles are being complemented by emerging regulation, and formal processes involving
organizational ethics reviews that are meant to provide an assessment of adherence to the code of conduct, as
well as an assessment of present and future risks involved with research proposals [91–94].

The acceleration of science through AI, especially with advanced agentic AI systems, requires advances in
science and AI ethics policy and regulation [95, 96]. This adaptation is crucial to address the changing research
landscape and the unique risks associated with AI agents of varying capabilities and autonomy.

Advancements in AI systems, like the co-scientist, require moving beyond the limited ethical considerations
designed for earlier, specialized AI models with restricted application and action spaces [97]. Some preliminary
frameworks have developed to understand the impact of LLM agents in science, specifically mapping risks
across user intent, domain, and broader impact [98].

Dual-use risks and technical safeguards. Beyond the scientific domain, broad frameworks are being
developed for evaluating the emergence of potentially dangerous capabilities in AI agents [99–101]. These
frameworks assess capabilities related to persuasion, deception, cybersecurity, self-proliferation, and self-
reasoning. As AI agents advance, safety evaluations in science must integrate these broader assessments. A
long-term risk is that agentic systems could develop intrinsic goals influencing research directions. Human
susceptibility to AI manipulation, already observed in other contexts [102], underscores the need for robust
frameworks ensuring instruction-following and value alignment.

More immediately on a shorter time-scale, technical safeguards are needed to address unethical research
queries, malicious user intent, and the potential for extracting dangerous or dual-use knowledge from scientific
AI systems. Because verification is computationally ‘easier’ than generation, significant research focuses
on using advanced LLMs as ‘critics’ or ‘judges’ to evaluate both user queries and AI outputs acting as a
scalable oversight mechanism. These critics operate based on predefined criteria, provided through direct
instructions, examples (few-shot or many-shot prompting), or fine-tuning [103–108]. They can also leverage
external tools for grounding [109] and have shown promise in multimodal scenarios [110]. However, limitations
remain; human expert involvement is crucial, as LLMs may not align with human judgment in specialized
domains [111].

Adversarial robustness of scientific AI systems. Recognizing and mitigating adversarial attacks is a
crucial, ongoing research area in the development of foundation models and advanced AI assistants [75, 112–
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118]. While manual red teaming has identified vulnerabilities, automated approaches now allow for optimizing
prompt suffixes to bypass safety measures, using techniques like greedy, gradient-based, or evolutionary
methods [119, 120]. Attacks can also exploit few-shot demonstrations, in-context learning [121, 122], and
multimodal inputs [123]. Furthermore, LLMs can be used to generate and refine attacks against other
LLMs [124], and attacks can be iterative, spanning multiple steps [125]. Defenses are being developed to
counter both human and automated attacks, which is increasingly important in an agentic AI future [126].

Advances in post-training of base models will likely improve overall adversarial robustness. However, domain-
specific recognition of malicious use may still require dedicated development and integration into scientific AI
assistants. In AI systems employing iterative reasoning (e.g., request interpretation, hypothesis generation,
internal thoughts, evaluation, user queries), each component must be tested independently. This comprehensive
testing should account for all potential failure modes, including the handling of unsafe queries, the safety of
hypotheses (intermediate and final), and the accuracy of internal checks and filters.

Need for a comprehensive safety approach. Scientific AI assistants, like the co-scientist, require inte-
grated, configurable guidelines within their safeguards. Developers should anticipate the complexity of this
challenge and prioritize flexible safeguarding to rapidly incorporate community feedback. These semantic
safeguards may need to be augmented by traditional software safety measures, including trusted testers,
gradual feature rollouts, access controls, request logging, and flagging uncertain outputs for manual review.

Ensuring the safety of these systems, in line with existing AI safety guidelines [127, 128], necessitates a
multi-pronged approach. This includes:

• Comprehensive threat modeling to identify potential vulnerabilities.
• Defense mechanisms for each identified threat.
• Extensive red-teaming and security testing.
• Rapid response procedures for quick resolution of issues including vulnerability patches.
• Continuous monitoring and performance tracking.

These considerations highlight the need for responsible development, governance and careful deployment of
technologies designed for advancing science, appropriate safeguards and ethical guidelines and close compliance
with applicable regulations. They also further underscore the need for broad community engagement and an
inclusive development of best practices and recommendations around safe and ethical use for AI in science.

Current safeguards in the AI co-scientist. To mitigate these risks, the AI co-scientist currently employs
the following safety mechanisms:

• Reliance on public frontier LLMs. The system utilizes established public Gemini 2.0 models, which
already incorporate extensive safety evaluation and safeguards.

• Initial research goal safety review. Upon input, each research goal undergoes automated safety
evaluation. Goals deemed potentially unsafe are rejected.

• Research hypothesis safety review. Generated hypotheses are reviewed for safety, even when the
overarching research goal is deemed safe. Potentially unsafe hypotheses are excluded from the tournament,
not developed any further, and are not presented to the user.

• Continuous monitoring of research directions. A meta-review agent provides an overview of research
directions, enabling the AI co-scientist to continuously monitor for potential safety concerns and alert
users if a research direction is detected as being potentially unsafe.

• Explainability and transparency. All system components, including the safety review, provide not
only the final recommendation but also a detailed reasoning trace that can be used to justify and audit
system decisions.

• Comprehensive logging. All system activities are logged and stored for future analysis and auditing.
• Safety evaluations and red teaming. A preliminary red teaming effort has been undertaken to ensure

that the current implementation of unsafe research goal detection is robust and accurate. This evaluation
includes an assessment of the system behavior when presented with 1,200 adversarial research goals across
40 distinct topic areas as discussed in Section 4.4.

• Trusted tester program. We are enthused by the early promise of the AI co-scientist system and
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believe it is important to more rigorously understand its strengths and limitations in many more areas
of science and biomedicine; alongside making the system available to many more researchers who it is
intended to support and assist. To facilitate this responsibly and with rigour, we will be enabling access to
the system for scientists through a Trusted Tester Program to gather real-world feedback on the utility
and robustness of the system.

Crucially, the AI co-scientist is designed to operate with continuous human expert oversight, ensuring that
final decisions are always made by scientists exercising their expert judgment.

7 Future Work

Immediate improvements. The AI co-scientist is in its early development, with many opportunities for
improvement. Immediate improvement opportunities include enhanced literature reviews, cross-checks with
external tools, improved factuality checking, and increased citation recall to minimize missed relevant research.
Coherence checks would also improve the system by reducing the burden of reviewing flawed hypotheses.

Expanded evaluations. Developing more objective evaluation metrics, potentially incorporating automated
literature-based validation and simulated experiments, is a key area. Methods to mitigate biases or error
patterns inherited from the base LLMs are also important, alongside analysis of the complementarity and
optimal combination of different agent components.

A critical need is a larger-scale evaluation involving more subject matter experts with diverse, high-resolution
research goals. Stress-testing the system at every level of resolution (from disease mechanisms to protein
design, and expanding to other scientific disciplines) will reveal further areas for improvement. Finally, since
laboratory resources are limited, improved evaluation frameworks could assist with hypothesis selection.

Capabilities advancements. Several opportunities remain to expand co-scientist’s capabilities. Reinforce-
ment learning could enhance hypothesis ranking, proposal generation, and evolutionary refinement.

Currently, the system assesses text from open-access publications but not images, data sets, or major public
databases. Integrating these publicly available resources would significantly enhance the co-scientist’s ability
to generate and justify proposed hypotheses.

Future work will focus on handling more complex experimental designs, such as multi-step experiments and
those involving conditional logic. Integrating co-scientist with laboratory automation systems could potentially
create a closed-loop for validation and a grounded basis for iterative improvement. Exploring more structured
user interfaces for providing feedback and insights from targeted user research studies, beyond free text, could
improve the efficiency of human-AI collaboration in this paradigm.

8 Discussion

Our study represents an initial foray into accelerating novel scientific discovery with agentic AI systems and
here, we discuss some of the broader implications. The co-scientist iteratively refines its generated hypotheses
through a “generate, debate, evolve” approach with specialized agents under the hood. This design creates a
self-improving cycle for research hypothesis generation, as measured by automated evaluation metrics, and
showcases the potential benefits of test-time compute scaling for scientific reasoning.

Multiple experimental validations of novel co-scientist hypotheses. More importantly, this work
demonstrates the validation of co-scientist hypotheses via experimental findings in multiple laboratories. In
drug repurposing, co-scientist identifies novel candidates for AML that demonstrated in vitro efficacy at
clinically relevant concentrations, including the identification of new repurposing opportunities beyond current
preclinical knowledge. For liver fibrosis, the co-scientist proposes new epigenetic treatment targets, with
subsequent in vitro experiments validating the anti-fibrotic activity of several suggested compounds, including
an FDA-approved drug. In the realm of antimicrobial resistance, the co-scientist independently recapitulates a
novel, unpublished finding regarding the mechanism of cf-PICI transfer between bacterial species. Early results
over several queries of varying scientific complexity suggests the co-scientist has a potential to contribute to
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discovery within various biomedical domains.

Test-time compute scaling with scientific reasoning priors and inductive biases. In the experiments
reported here, the co-scientist did not require specialized pre-training, post-training, or a reinforcement learning
framework. It leverages the capabilities of existing base LLMs, potentially benefiting from updates to those
models without requiring retraining of the co-scientist system itself, which presents advantages of compute
efficiency and generalizability. The system’s architecture incorporates self-play, internal consistency checks,
and tournament-based ranking, which support iterative hypothesis generation, evaluation, and refinement.
This is reflected in the observed improvement in hypothesis quality over time. This self-evolution can be
improved further by expanded tool use integration, including database queries, allowing the co-scientist to
ground its proposals in existing knowledge and identify novel connections. In the future, we may leverage
data and tournament ranking generated by the co-scientist itself as feedback to improve the whole system
using reinforcement learning.

Frontier LLM advancements and the AI co-scientist. The frontier LLMs used within the co-scientist
system have demonstrated a continuing trend of rapidly improved capabilities, including reasoning, logic, and
also some aspects of scientific literature comprehension. As our system is designed to be model-agnostic, we
hypothesize that further improvements in frontier LLMs will also result in improved co-scientist performance,
and enable new avenues of research including optimal agentic use of tools.

Implications for drug repurposing and discovery. These advancements have significant implications
for various biomedical and scientific domains. For example, the integration of the co-scientist into the
drug candidate selection process represents a significant advancement in evidence-based drug repurposing.
Beyond simple literature mining, the co-scientist maybe capable of synthesizing novel mechanistic insights
by connecting molecular pathways, existing preclinical evidence, and potential therapeutic applications into
structured, testable specific-aims. This capability is particularly valuable as it provides researchers with
literature-supported rationales and suggests specific experimental approaches for validation. Notably, the
co-scientist’s structured output can be leveraged to develop comprehensive single-patient IND (Investigational
New Drug) applications for compassionate use cases. By systematically presenting mechanistic evidence,
relevant preclinical data, and proposed monitoring parameters, the co-scientist facilitates the development
of well-reasoned treatment protocols for patients with refractory (treatment-resistant) disease who have
exhausted standard therapeutic options and are ineligible for clinical trials. This application is particularly
valuable in rare or aggressive diseases where traditional drug development timelines may not align with urgent
patient needs. The platform’s ability to rapidly generate evidence-based therapeutic hypotheses, complete
with safety considerations and monitoring parameters, can help clinicians and regulatory bodies make informed
decisions about compassionate use applications while maintaining scientific rigor.

The application of the co-scientist in drug repurposing presents a very compelling opportunity for orphan drugs,
where extensive safety and clinical data already exist from their original rare disease indications. Given that
Phase III clinical trials can cost hundreds of millions of dollars, repurposing these well-characterized therapeutics
offers an efficient path to expanding treatment options across multiple diseases. This is especially relevant as
orphan drugs often target fundamental biological pathways that may be relevant in other conditions, but these
connections might not be immediately apparent through traditional research approaches. By systematically
evaluating existing clinical data, safety outcomes, and mechanistic insights, the co-scientist can help identify
promising new therapeutic applications while taking advantage of the investment already made in drug
development and safety validation. This approach not only maximizes the utility of existing therapeutics but
also provides a more rapid path to addressing unmet medical needs across a broader patient population.

More broadly, the co-scientist may also be potentially impactful throughout the entire drug discovery spectrum
as evidenced by the early work on co-scientist assisted target discovery for liver fibrosis.

Automation bias and impact on human scientific creativity. Realizing the full potential of AI in
biomedicine and science requires proactively addressing potential pitfalls. Over-reliance on AI-generated
suggestions in collaborative AI systems could diminish critical thinking and increase homogeneity in research.
Studies on AI’s impact on creativity and ideation show mixed results; some suggest a risk of homogenization
of ideas across populations [129], while others are less conclusive [130]. The correlated success / failure modes
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of LLMs [131], due to similar training data, could also artificially narrow scientific inquiry. Furthermore,
AI system blind spots and performance variations across research domains must be considered. Therefore,
scalable factuality and verification methods, alongside peer review and careful consideration of potential
biases, are essential. Careful design and use of systems like the co-scientist are crucial to mitigate these risks.

AI as a catalyst for both scientific discovery and equity. Despite these risks, AI holds immense
potential to democratize access to scientific information and accelerate discovery, particularly benefiting
historically neglected and resource-constrained areas [132, 133]. In essence, AI can “raise the tide” of scientific
progress, lifting all boats, especially those that have historically been left behind. Realizing this potential
requires strategic investments and careful calibration of AI systems to foster ideation and innovation while
minimizing false positives. This includes focusing on historically neglected research topics and addressing
variations in performance across different scientific domains with varying amounts of pre-existing data. While
current AI systems may tend to produce incremental ideas and research hypotheses, ongoing development
aims to create systems capable of generating truly original, unorthodox and transformative scientific theories.
Proactive mitigation of these challenges will ensure that AI serves as a powerful tool for all scientists, promoting
a more equitable and innovative future for scientific explorations.

9 Conclusion

The AI co-scientist represents a promising step towards AI-assisted augmentation of scientists and acceleration
of scientific discovery. Its ability to generate novel testable hypotheses across diverse scientific and biomedical
domains, some supported by experimental findings, along with the capacity for recursive self-improvement
with increasing compute, demonstrates the promise of meaningfully accelerating scientists’ endeavours to
resolve grand challenges in human health, medicine and science. This innovation opens numerous questions
and opportunities. Applying the empiric and responsible approach of science to the AI co-scientist system itself
can thereby enable safe exploration of its undoubted potential, including how collaborative and human-centred
AI systems might be able to augment human ingenuity and accelerate scientific discovery.
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Appendix

In the following sections, we report additional details on the following topics:

• Examples of the AI co-scientist system inputs, intermediate outputs, and final results (Section A.1)
• Supplementary information for drug repurposing evaluation (Section A.2)

– Datasets (Section A.2.1)
– Computational biology analyses (Section A.2.2)
– In vitro wet-lab validation (Section A.2.3)
– Additional wet-lab results (Section A.2.4)

• Supplementary information for the co-scientist drug repurposing Specific Aims evaluation (Section A.3)

– Specific Aims count distribution (Section A.3.1)
– Specific Aims evaluation rubric (Section A.3.2)
– Examples of co-scientist generated Specific Aims with expert evaluation (Section A.3.3)

• Prompts for the specialized agents in the AI co-scientist system (Section A.4)

– Prompts for the Generation agent (Section A.4.1)
– Prompt for the Reflection agent (Section A.4.2)
– Prompts for the Ranking agent (Section A.4.3)
– Prompts for the Evolution agent (Section A.4.4)
– Prompt for the Meta-review agent (Section A.4.5)

• An example of tool use in the AI co-scientist with AlphaFold (Section A.5)
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A.1 Examples of the AI co-scientist inputs, intermediate outputs and final results

From research goal to research plan configuration

Scientist research goal
Develop a novel hypothesis for the key factor or process which causes ALS related to phosphorylation of a Nuclear Pore
Complex (NPC) nucleoporin. Explain mechanism of action in detail. Include also a feasible experiment to test the
hypothesis.

Parsed research plan configuration

• Preferences: Focus on providing a novel hypothesis, with detailed explanation of the mechanism of action.
• Attributes: Novelty, Feasibility
• Constraints: should be correct, should be novel.

Figure A.1 | An example of a research goal and a parsed research plan configuration. This figure illustrates how the
co-scientist system parses a scientist’s natural language research goal into a research plan configuration, which guides subsequent
reasoning and computation.
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Example output of the Generation agent

Research goal Develop a novel hypothesis for the key factor or process which contributes to ALS progression ... We
can use iPSC cells for the in-vitro experiments. ...

Introduction
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor
neurons, leading to progressive muscle weakness, paralysis, and ultimately death. While the exact cause of ALS remains
unknown, a complex interplay of genetic predisposition, environmental factors, and age-related cellular changes is
believed to contribute to its pathogenesis. ...

Recent findings and related research
Recent research has implicated several key players and processes in ALS. TDP-43, an RNA-binding protein, is found
mislocalized and aggregated in the cytoplasm of affected neurons in the majority of ALS cases. This protein’s ability
to undergo liquid-liquid phase separation (LLPS) has come under intense scrutiny, with evidence suggesting that
dysregulation of this process leads to the formation of pathological aggregates. Further, impairments in nucleocytoplasmic
transport, the process by which molecules move between the nucleus and cytoplasm, have been observed in ALS and
linked to TDP-43 pathology. Endoplasmic reticulum (ER) stress, a cellular response to protein misfolding, has also been
implicated as a potential contributing factor.

Hypothesis
Cellular stress (including but not limited to ER stress) induces post-translational modifications (PTMs) on
specific FG-Nups (focusing initially on Nup98 and Nup62) at the nuclear pore complex (NPC). These Nup
PTMs modify the interaction between these Nups and TDP-43, leading to altered TDP-43 dynamics and increased
retention at the NPC. This increased retention at the NPC, in turn, triggers the disruption of nucleocytoplasmic transport.

Rationale and specificity
Instead of making the hypothesis about LLPS, we are making it much more specific but with the same starting point.
Cellular stress, a broad concept encompassing various cellular insults, can trigger a cascade of molecular events. A key
consequence of stress response is altered protein structure and function, which can be mediated by PTMs. Nuclear pore
proteins, particularly FG-Nups like Nup98 and Nup62, form a "hydrogel" or selective barrier at the NPC, regulating the
movement of molecules between the nucleus and cytoplasm. We hypothesize that specific PTMs on these FG-Nups
(e.g., phosphorylation, O-GlcNAcylation initially) directly alter their interaction with TDP-43. TDP-43, known to
interact with the NPC and be involved in nucleocytoplasmic transport, may get inappropriately trapped or retained at
the NPC when interacting with PTM-modified Nups. This trapping alters TDP-43 dynamics (even if not disrupting
LLPS directly initially), meaning it cannot perform its normal functions and disrupting nucleocytoplasmic transport,
which we know is happening in ALS. Since even a small change in transport could lead to downstream problems,
this is a plausible initial event with testable consequences. The specific FG-Nups (Nup98/62) and chosen PTMs
(phosphorylation/O-GlcNAcylation) provide a concrete starting point for experimentation. This mechanism directly
links cellular stress to TDP-43 dysfunction and the key ALS pathology of defective nucleocytoplasmic transport by
invoking a novel interaction mechanism at the NPC – all testable in vitro.

Experimental design and validation
Cell Types: Human iPSC-derived motor neurons from healthy controls and ALS patients. Stress Induction: Induce
cellular stress using established pharmacological agents (e.g., tunicamycin for ER stress, arsenite for oxidative stress,
oligomycin A for mitochondrial stress) and physical stressors (heat shock). Test different stressors individually and in
combination. This broadened approach allows for a more robust investigation of the stress response.
Nup PTM Analysis: Assess PTMs of Nup98 and Nup62 specifically using mass spectrometry and immunoblotting
with PTM-specific antibodies (specifically looking for phosphorylation and O-GlcNAcylation). Focus the analysis on
these two.
...

Figure A.2 | An example output of the Generation agent. The abbreviated example showcases an initial hypothesis and
research proposal generated by the co-scientist Reflection agent pertaining to the research goal of explaining the basic mechanism
for Amyotrophic Lateral Sclerosis (ALS).
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Example output of a complete novelty review by the Reflection agent

Aspects already explored:

• TDP-43 mislocalization and aggregation in ALS: Extensively documented in multiple abstracts [1, 3, 4, 5, 6].
• Nucleocytoplasmic transport defects in ALS: Demonstrated in connection with TDP-43 pathology and C9orf72

mutations [4, 5, 6].
• NPC disruption in neurodegenerative diseases: Identified in ALS/FTD, Alzheimer’s, Huntington’s, and others,

suggesting a common mechanism [4, 5, 7, 8].
• The link between cellular stress and TDP-43 pathology: Explored in the context of stress granule formation and

TDP-43 aggregation [5]. Note - stress is explored in general, but the idea of it leading to PTMs of Nups is new.
• Role of FG-Nups in NPC function: FG-Nups are known to form a selective barrier regulating transport, but the

impact of their PTMs on TDP-43 interaction in ALS is novel [7].
• The implication of PTMs for TDP-43: TDP-43 PTMs are widely researched, especially phosphorylation and

ubiquitination. However, our hypothesis doesn’t speak about TDP-43 PTMs, it is about Nup PTMs [1, 3, 4].

Novel Aspects:

• Cellular stress as an initiator of Nup PTMs: While stress is linked to TDP-43 pathology, the idea that it triggers
specific PTMs on Nups (Nup98/Nup62) as an initiating event in ALS is novel, especially that these PTMs are
phosphorylation and O-GlcNAcylation.

• Nup PTMs (phosphorylation and O-GlcNAcylation specifically) altering TDP-43 interaction at the NPC: The
hypothesis proposes a novel mechanism where stress-induced PTMs on specific Nups (Nup98/Nup62) directly
modify their interaction with TDP-43. This hasn’t been explored before, particularly the focus on these specific
PTMs and Nups.

• TDP-43 retention at the NPC as a key event: Instead of focusing on LLPS or aggregation directly, the hypothesis
suggests that altered TDP-43 dynamics, specifically increased retention at the NPC due to modified Nup
interactions, are a triggering factor. This specific mechanism at the NPC disrupting nucleocytoplasmic transport
is novel.

• Focus on early events and potential for therapeutic intervention: By pinpointing early molecular events (Nup
PTMs, altered TDP-43-Nup interaction), the hypothesis opens new avenues for therapeutic intervention targeting
these specific processes, potentially before irreversible damage occurs.

• Broadening stress beyond ER stress: It is novel to consider multiple stressors in combination and it broadens the
idea beyond ER stress (as suggested in the original provided idea).

Figure A.3 | An example output of a complete novelty review from the Reflection agent. The abbreviated example
showcases a complete novelty review by the co-scientist Reflection agent for an example hypothesis pertaining to explaining the
basic mechanism for Amyotrophic Lateral Sclerosis (ALS).

Example output of review critiques by the Reflection agent

• Lack of strong justification for motor neuron specificity: The initial hypothesis lacked a strong explanation for
why the proposed mechanism would predominantly affect motor neurons, a critical aspect of ALS pathology.

• Limited exploration of downstream consequences: While the idea connects to nucleocytoplasmic transport defects,
it doesn’t fully elaborate on how these defects lead to other ALS-related pathologies like TDP-43 aggregation or
RNA processing defects.

• Potential technical challenges: Identifying the specific PTMs responsible and demonstrating their direct impact
on TDP-43 retention and transport might be technically difficult.

• Narrow focus on specific Nups and PTMs: Initially focusing only on Nup98/Nup62 and two types of PTMs
(phosphorylation, O-GlcNAcylation) could be too restrictive, potentially overlooking other important factors.

• Less holistic approach: The focus on a specific mechanism at the NPC might neglect broader cellular processes
involved in ALS pathogenesis.

• The temporal relationship with TDP-43 pathology is not clear: It’s not clear whether the hypothesized mechanism
occurs before or after other ALS hallmarks like cytoplasmic TDP-43 aggregation, which is crucial for establishing
causality.

• ...

Figure A.4 | An example output of review critiques from the Reflection agent.
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Example output of a full review by the Reflection agent

Related Articles:
[5] TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD - PMC: This
article is highly relevant because it directly links TDP-43 pathology to nuclear pore complex (NPC) dysfunction and
nucleocytoplasmic transport (NCT) defects in ALS/FTD, providing a strong foundation for the hypothesis.
[4] Unraveling the impact of disrupted nucleocytoplasmic transport systems in C9orf72-associated ALS - PMC: This
article provides context on NCT defects in ALS, particularly in the context of C9orf72 mutations, highlighting the
broader relevance of NCT dysfunction in different forms of ALS.
[7] Nuclear pore and nucleocytoplasmic transport impairment in oxidative stress-induced neurodegeneration: relevance to
molecular mechanisms in Pathogenesis of Parkinson’s and other related neurodegenerative diseases - PMC: This article
connects oxidative stress, a form of cellular stress, to NPC dysfunction and NCT impairment in neurodegenerative
diseases, supporting the idea that cellular stress can impact NPCs.
[3] Frontiers | Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis: This article
reviews TDP-43 pathology in ALS, including its mislocalization and aggregation, which are central to the proposed
hypothesis.
[1] TDP-43 proteinopathies: a new wave of neurodegenerative diseases - PMC: Provides an overview of TDP-43
proteinopathies, establishing the importance of TDP-43 dysfunction in ALS and other neurodegenerative diseases.
[8] Aβ-driven nuclear pore complex dysfunction alters activation of necroptosis proteins in a mouse model of Alzheimer’s
Disease: Although focused on Alzheimer’s, this article demonstrates that NPC dysfunction can occur in neurodegenerative
diseases and highlights the potential impact on cellular processes like necroptosis. It supports the general idea that NPC
defects can be a consequence of proteinopathy-associated stress.
[9] Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology: This article provides
another example of how cellular stress (traumatic injury) can lead to NCT defects and TDP-43 pathology, further
supporting the link between stress, NCT, and TDP-43 dysfunction.
...

Assumptions of the Idea:

• Cellular stress induces PTMs on Nup98 and Nup62: The hypothesis assumes that various forms of cellular stress
can trigger specific PTMs (phosphorylation and O-GlcNAcylation) on Nup98 and Nup62.

• PTMs on Nup98/Nup62 alter their interaction with TDP-43: It’s assumed that these specific PTMs directly
modify the binding affinity or interaction dynamics between Nup98/Nup62 and TDP-43 at the NPC.

• Altered Nup-TDP-43 interaction leads to increased TDP-43 retention at the NPC: This assumption posits that
the modified interaction results in TDP-43 being trapped or retained at the NPC for longer durations.

• Increased TDP-43 retention at the NPC disrupts nucleocytoplasmic transport: The hypothesis assumes that this
prolonged retention of TDP-43 at the NPC interferes with the normal transport of other molecules across the
nuclear envelope.

• Nucleocytoplasmic transport defects contribute to ALS pathology: The idea assumes that the resulting NCT
disruption is a significant contributor to the downstream pathological events in ALS, such as motor neuron
degeneration.

• Motor neurons are more susceptible to this mechanism: It’s assumed that motor neurons are particularly vulnerable
to this stress-induced, Nup-mediated TDP-43 retention and subsequent NCT defects compared to other cell types.

Reasoning about assumptions:

• Cellular stress induces PTMs on Nup98 and Nup62: This is plausible. Cellular stress is known to activate various
signaling pathways that can lead to PTMs on numerous proteins. Nups, being long-lived proteins, are susceptible
to modifications. However, whether Nup98 and Nup62 are specifically targeted by stress-induced phosphorylation
and O-GlcNAcylation needs experimental verification.

• PTMs on Nup98/Nup62 alter their interaction with TDP-43: This is possible but requires experimental validation.
PTMs can significantly alter protein-protein interactions by changing surface charge, conformation, or binding
sites. While there’s no direct evidence for this specific interaction, it’s a reasonable hypothesis given the role of
FG-Nups in interacting with transport factors.

• Nucleocytoplasmic transport defects contribute to ALS pathology: This is supported by existing literature [4, 5].
NCT defects have been observed in ALS and are thought to contribute to disease pathogenesis. However, whether
this specific mechanism is a primary driver or a downstream consequence needs further investigation.

• Motor neurons are more susceptible to this mechanism: This is a crucial assumption but lacks strong justification
in the current proposal. Motor neurons have unique characteristics (high metabolic demand, long axons) that
might make them more vulnerable to stress and NCT defects. However, this needs to be explicitly tested by
comparing motor neurons to other cell types.

• ...

Figure A.5 | An example output of a full review by the Reflection agent The abbreviated example showcases a
full initial review generated by the co-scientist Reflection agent for an example hypothesis pertaining to explaining the basic
mechanism for Amyotrophic Lateral Sclerosis (ALS).

|41



Example output of deep verification by the Reflection agent

Assumptions:

• Cellular stress induces PTMs like phosphorylation and O-GlcNAcylation.
• Nup98 and Nup62 interact with TDP-43 at the NPC.

– Nup98 can interact with TDP-43
– Nup62 can interact with TDP-43

• Altered interaction between Nups and TDP-43 leads to increased TDP-43 retention at the NPC.
• Disrupted nucleocytoplasmic transport triggers downstream ALS pathology.
• Motor neurons are inherently more vulnerable to this mechanism.
• The level of cellular stress inducing these PTMs is sufficient to cause a significant impact on TDP-43 localization.
• TDP-43 localizes to the nuclear pore complex (NPC).
• ...

1. Cellular stress induces PTMs like phosphorylation and O-GlcNAcylation.
Cellular stress encompasses a range of conditions that disrupt cellular homeostasis, including nutrient deprivation,
hypoxia, oxidative stress, and the accumulation of misfolded proteins. The endoplasmic reticulum (ER) is a central
organelle involved in protein synthesis, folding, and modification. When the ER’s capacity to handle protein folding
is overwhelmed, a condition known as ER stress arises. This triggers a signaling pathway called the unfolded protein
response (UPR) aimed at restoring ER homeostasis.
Post-translational modifications (PTMs) are covalent modifications to proteins that occur after translation. They play
crucial roles in regulating protein function, localization, and interactions. Phosphorylation, the addition of a phosphate
group, and O-GlcNAcylation, the addition of O-linked N-acetylglucosamine, are two common PTMs.
Numerous studies have demonstrated a strong link between cellular stress, including ER stress, and the alteration of
PTMs. Here’s a breakdown:

• ER Stress and Phosphorylation: The UPR, activated during ER stress, involves multiple signaling path-
ways, many of which rely on phosphorylation. For example, PERK (PKR-like ER kinase), a key UPR sensor,
undergoes autophosphorylation upon sensing misfolded proteins. This activated PERK then phosphorylates
eIF2α (eukaryotic initiation factor 2 alpha), leading to a global attenuation of translation. Another UPR sensor,
IRE1 (inositol-requiring enzyme 1), possesses both kinase and endoribonuclease activity. Upon activation, IRE1
autophosphorylates and splices XBP1 mRNA, leading to the production of a transcription factor that upregulates
chaperones and other proteins involved in protein folding and degradation. These are just two examples; numerous
other proteins are phosphorylated during ER stress, affecting various cellular processes.

• ER Stress and O-GlcNAcylation: O-GlcNAcylation is a dynamic PTM influenced by nutrient availability
and cellular stress. Evidence suggests a complex interplay between ER stress and O-GlcNAcylation. Some
studies report increased O-GlcNAcylation during ER stress, potentially as a protective mechanism. For example,
O-GlcNAcylation of certain chaperones can enhance their activity and promote protein folding. Conversely, other
studies suggest that ER stress can lead to decreased O-GlcNAcylation. The exact relationship likely depends on
the specific stress conditions, cell type, and the targeted proteins.

• Cellular Stress (beyond ER Stress) and PTMs: Other forms of cellular stress also impact PTMs. Oxidative
stress, for example, can lead to protein oxidation, which can affect protein function and stability. Nutrient
deprivation can alter the availability of substrates for PTMs, such as UDP-GlcNAc for O-GlcNAcylation. Hypoxia
can also induce changes in phosphorylation and other PTMs, influencing cellular responses to low oxygen levels.

In summary, the available evidence strongly supports the assertion that cellular stress, including ER stress, can induce
PTMs like phosphorylation and O-GlcNAcylation on proteins. This effect is mediated by complex signaling pathways
and serves to regulate various cellular processes in response to stress.

Figure A.6 | An example output of a deep verification review by the Reflection agent. The abbreviated example
showcases a deep verification review by the co-scientist Reflection agent for the Amyotrophic Lateral Sclerosis (ALS) basic
mechanism research goal given the co-scientist’s generated hypothesis and other reviews of it.
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Example output of deep verification via probing questions by the Reflection agent

[Research Goal]
Repurposing Reparixin for AML treatment.
Suggest an existing drug that could be repurposed for Acute myelogenous leukemia (AML) treatment and provide
experimentally testable concentrations for an IC50 assay. The drug should inhibit the proliferation of AML cell lines,
particularly MOLM13.
The drug should have minimal cytotoxicity in healthy cell lines (have a good tradeoff for AML treatment). The drug
should not have been experimentally tested for AML treatment before.
Reason about the drug’s molecular mechanism, impacted pathways, and effect on AML cell proliferation inhibition.
Describe the mechanism of action in detail. Reason about the safety and toxicity, stating if no safety data exists.
[Output]
Question: Sufficiency of CXCR1/2 Inhibition: What is the rationale for assuming that CXCR1/2 inhibition *alone*
will be sufficient to overcome the established heterogeneity and multiple compensatory pathways known to drive AML
progression and resistance, *even before* considering combination therapies?

This challenges the fundamental assumption that targeting a single pathway (even a dual-target one) will be effective in
a complex disease like AML. AML is known for its ability to bypass single-target inhibition. Addressing this upfront is
crucial to justify the entire approach, especially before investing heavily in combination studies.

Answer: The rationale for initially focusing on CXCR1/2 inhibition with Reparixin, before immediately jumping to
combinations, stems from several interwoven, but not entirely definitive, points:

• Targeting a Key TME Node: CXCR1/2 are major regulators of neutrophil and myeloid-derived suppressor
cell (MDSC) recruitment to the tumor microenvironment. These cells, in turn, contribute significantly to immune
suppression, angiogenesis, and therapy resistance in AML. By blocking these receptors, Reparixin aims to disrupt
a central hub of TME-mediated support for AML cells. The idea is not necessarily that CXCR1/2 inhibition is
sufficient in all cases, but that it addresses a significant and often overlooked contributor to AML progression.

• Dual Receptor Blockade: Reparixin’s dual inhibition of CXCR1 and CXCR2 is hypothesized to be more
effective than targeting either receptor individually. While not explicitly stated in the provided text, there could
be redundancy or synergy between these two receptors in promoting AML progression. Blocking both might offer
a more substantial impact on the TME than single-receptor antagonists.

• Establishing a Baseline: The proposal, while acknowledging the complexity of AML, strategically starts with
single-agent Reparixin to establish a clear baseline of its activity and effects. This is crucial for several reasons:

– Understanding Single-Agent Effects: It’s essential to dissect the specific contributions of Reparixin alone
before introducing the complexity of combinations. This allows for a more rational design of combination
strategies.

– Identifying Resistance Mechanisms: Studying single-agent resistance is simpler and more direct than
untangling resistance mechanisms in a multi-drug scenario. The extensive resistance studies proposed are
specifically geared towards understanding Reparixin-specific resistance.

– Patient Stratification: The comprehensive patient stratification plan is designed to identify patients who
might respond to Reparixin as a single agent, or for whom it forms a critical foundation for combination
therapy.

• TME Reprogramming, Not Just Cytotoxicity: The proposal positions Reparixin not just as a cytotoxic
agent, but as a TME modulator. The hypothesis is that by altering the TME, Reparixin may sensitize AML cells
to other therapies or even trigger immune-mediated clearance. This "reprogramming" effect might not be fully
captured by traditional cytotoxicity assays alone.

• Sequential therapy: The proposal includes sequential administration of drugs, where Reparixin can prime the
tumor cells for killing and/or resensitize them too.

Reasoning: The idea isn’t incoherent, but it requires careful consideration of the sufficiency assumption. While the
points above provide a rationale, they don’t guarantee that CXCR1/2 inhibition alone will be sufficient in all, or even
most, cases of AML. The heterogeneity of AML, with its multitude of driver mutations and compensatory pathways,
strongly suggests that combination therapies will ultimately be necessary for many patients.
The strength of the proposal lies in its methodical approach. It doesn’t claim that Reparixin is a magic bullet. It sets
out to systematically investigate its potential, both alone and in combination, and to identify the specific patient subsets
most likely to benefit. The extensive in vivo and patient stratification studies are key to addressing the "sufficiency"
question empirically. The proposal is essentially a very detailed roadmap for determining when and how CXCR1/2
inhibition can be most effectively used in AML treatment, rather than an assertion of universal single-agent efficacy.
Therefore the idea may require combination approaches but the study plan described in the proposal is structured in a
way to determine that.

Figure A.7 | An example of a deep verification review via probing questions by the Reflection agent. The example
demonstrates how the Reflection agent performs deep verification via probing question for a research hypothesis pertaining to
drug repurposing for Acute Myeloid Leukemia (AML). The original research goal is provide for illustration only, it is not included
in the review output. |43



Example output of an observation review by the Reflection Agent

[Research Goal]
Unravel a specific and novel molecular mechanism explaining how the same cf-PICI can be found in different bacterial
species.
...
Why can cf-PICIs, but not other types of PICIs or satellites, be easily found in different bacterial species? What is the
mechanism that explains this?
[Output]
The "Modular Capsid-OMV Mediated Transfer" (MCOMT) hypothesis proposes that cf-PICIs achieve their broad host
range through a combination of modular capsid interactions and OMV-mediated transfer, using both tail-dependent and
tail-independent mechanisms. Several observations support this hypothesis:

• Widespread presence of PICIs in Gram-negative bacteria, particularly Enterobacteriaceae and Pastuerellaceae:
These bacteria readily produce and internalize OMVs, aligning with the MCOMT hypothesis that OMVs are
crucial for cf-PICI dissemination. The modular capsid, with its broad bacterial surface binding capabilities, further
enhances transfer even without specific tail receptors on target cells.

• Unique PICI att sites not used by temperate prophages: The MCOMT hypothesis, by reducing reliance on helper
phage integration due to OMV-mediated transfer and diverse entry routes, explains the evolution of cf-PICI-specific
att sites independent of phage integration sites. This allows wider integration across bacterial genomes.

• ...

Figure A.8 | An example output of an observation review by the Reflection agent. The abbreviated example
showcases an observation review by the co-scientist Reflection agent for a hypothesis related to explaining a mechanism of
antimicrobial resistance (AMR). The original research goal is provide for illustration only, it is not included in the review output.
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Example of a scientific debate match in the Ranking agent tournament

Expert 1: I’m intrigued by both ideas, but I have a few clarifying questions. For Idea 1, while the focus on
TDP-43 retention at the NPC is novel, I’m not entirely convinced that it’s fundamentally different from the
extensively studied TDP-43 mislocalization. Could the retention just be a consequence of mislocalization, or are there
experiments that can distinguish these two phenomena? Another question I have: Is there evidence already that specific
PTMs modulate the interaction of Nups and TDP-43? Not necessarily in the context of ALS, but are there any precedents?

Expert 2: For Idea 2, I appreciate the bold approach, but the ISR as a trigger is a significant departure from the
conventional view. Can the proponents of this idea elaborate on the evidence supporting this? Also, what specific lipid
species are they proposing to be most critical at the ER-mitochondria interface and the AIS? Is there any preliminary
reason why those lipids would be disrupted in ALS?

Expert 3: I agree with Expert B regarding the ISR. Shifting it from a response to a trigger is a big claim that needs
strong justification. However, I think there are some initial clues that might be worth investigating. For example, there
are reports that chronic low-level stress responses can actually be detrimental in some contexts. Perhaps a low, persistent
activation of the ISR could predispose cells to damage. This idea needs to be fleshed out though.

...

Expert 3: I also find Idea 1 more compelling at this point. It’s a more focused hypothesis with a clear path for
experimental validation. While Idea 2 is undoubtedly more "outside the box," I’m concerned about the lack of evidence
for the ISR as a trigger and the technical challenges. It feels like a high-risk, high-reward scenario, and given that we can
only choose one, I’d prefer the more grounded approach of Idea 1. I do agree with the idea that the technical challenges
are significant, but I like that the experiments proposed are standard and there are many commercial antibodies available
to start testing this idea.

...

Expert 2: Alright, I’m on board with Idea 1. Let’s focus our efforts on testing this specific mechanism and address the
motor neuron specificity question rigorously in the experimental design. Perhaps by comparing different cell types and
focusing on motor neuron-specific RNAs, as suggested earlier. We should also consider investigating different types of
stress and their combined effects.

Better idea: 1

Figure A.9 | An example of a scientific debate match between two hypotheses in the tournament conducted by
the Ranking agent. The abbreviated example showcases a scientific debate match orchestrated by the co-scientist Ranking
agent as part of its tournament to compare two ideas related to explaining the mechanism of ALS.
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Example output of a critique by the Meta-review agent

I. Core Hypothesis and Mechanism:

• Primary Driver vs. Consequence: A very common critique across many ideas was the difficulty in proving
that the proposed mechanism is a primary initiating event in ALS rather than a downstream consequence of other
processes. Future ideas need to:

– Provide strong evidence for the temporal sequence of events using longitudinal experiments.
– Employ models where early-stage events can be studied and manipulated.
– Explicitly address whether the proposed mechanism is causative or correlative.
– Specifically knockdown the primary driver to prove it’s necessary and sufficient to cause the pathology.

• Specificity: Many hypotheses were criticized for a lack of specificity in various aspects:

– Molecular Targets: Imprecise identification of specific proteins, RNA species, lipids, PTMs, etc. involved.
Ideas should name specific candidates.

– Cellular Compartments: Vague localization (e.g., "mitochondria" or "AIS"). Ideas should pinpoint
specific subcellular locations whenever possible.

– Disease Mechanisms: Broad terms like "oxidative stress" or "autophagy impairment." Ideas need to
define the precise molecular events involved.

– Types of Stress: If stress is involved, the specific type of stress needs to be defined (e.g., ER stress,
nutrient deprivation, mitochondrial stress, ionic stress).

– Temporality: The timing of the intervention is critical. Early vs. late events, duration of processes, etc.,
should be clearly specified.

• Motor Neuron Specificity: Given the focus on ALS, a strong explanation for why the proposed mechanism
would specifically or preferentially affect motor neurons (and often specific subtypes of motor neurons) is crucial.
Many ideas were critiqued for not adequately addressing this.

• Over-Simplification vs. Complexity: This is a balancing act. Some ideas were criticized for being too
narrowly focused, potentially oversimplifying the complex, multifactorial nature of ALS. Others were criticized for
being overly complex, making them difficult to test and validate experimentally. When in doubt, err on the side
of testability in a reasonable timeframe and budget.

• ALS Subtype Relevance: Ideas should address whether the proposed mechanism is relevant to all ALS subtypes
or specific to certain genetic or sporadic forms. Ideally, address how the proposed work will differentiate or be
applicable to different subtypes.

II. Experimental Design and Feasibility:

• Model System Limitations: Reviewers frequently pointed out the limitations of in vitro models, particularly
iPSC-derived motor neurons. While valuable, these models may not fully capture the in vivo environment, cell-cell
interactions, or the aging process. Future ideas need to:

– Acknowledge the limitations of the chosen model system.
– Propose validation in multiple model systems if possible, including eventually animal, ex-vivo and, if

applicable, in-vivo models.
– Carefully consider and justify the choice of control cell types.
– Propose isogenic controls where relevant.

• Technical Challenges: Many ideas proposed experiments that are technically very challenging. Reviewers often
raised concerns about feasibility and the potential for ambiguous results. Future ideas should:

– Demonstrate awareness of the technical hurdles.
– Propose realistic solutions and alternative approaches.
– Prioritize experiments that are most likely to yield clear, interpretable data.

• Specificity of Tools: When using inhibitors, antibodies, or other tools, their specificity needs to be carefully
considered and validated to avoid off-target effects that can confound results. Appropriate controls and validation
experiments must be included.

• Quantitative Rigor: Many critiques centered on the need for more rigorous quantification of experimental
results. Future ideas need to:

– Clearly define measurable outcomes.
– Describe the specific assays and techniques that will be used for quantification.
– Include appropriate statistical analysis plans.
– Have a proposed plan for controls, replicates, and sample sizes.

Figure A.10 | An example of a critique generated by the Meta-review agent. This is an example of the meta-review
critique generated by the the co-scientist Meta-review agent for the Amyotrophic Lateral Sclerosis (ALS) mechanism research
hypothesis
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Example output of a critique by the Meta-review agent (continued)

• Time-Course Experiments: Given the dynamic nature of cellular processes, incorporating time-course experi-
ments is often crucial to understanding the sequence of events and demonstrating causality.

• Distinguishing Cause from Effect: This requires careful experimental design, including:

– Longitudinal studies to observe the temporal order of events.
– Intervention experiments to manipulate the proposed cause and observe the effects downstream.
– Temporal resolution to demonstrate that the potential cause occurs before a downstream event.

III. Novelty and Impact:

• Incremental vs. Groundbreaking: Many ideas were criticized for being incrementally novel, building upon
existing knowledge rather than proposing truly groundbreaking mechanisms.

• "Key Switch" Claims: Several ideas were criticized for prematurely claiming that the proposed mechanism is
the "key switch" for ALS. This type of strong claim requires very strong supporting evidence. It is often better to
frame the hypothesis in terms of a significant contributing factor and test its requirement for the pathology.

• Therapeutic Potential: While not always explicitly stated, the potential for translating the findings into
therapeutic strategies is an important consideration. Ideas that offer a clear path toward therapeutic development
may be viewed more favorably, provided a strong rationale is presented for the specific therapeutic approach.

IV. Assumptions and Validation:

• Strong Assumptions: Many hypotheses rely on strong assumptions that lack direct experimental support.
Future ideas need to:

– Clearly state all assumptions.
– Provide a strong rationale for each assumption, citing relevant literature.
– Propose experiments to directly test the most critical assumptions.

• Validation of Assumptions:

– Reviewers consistently emphasized the need for rigorous experimental validation of all assumptions.
– Assumptions should be addressed in the order of the proposed mechanism.
– If the initial steps are not validated, it may be unnecessary to proceed to later steps.

V. General Advice Based on Common Critiques:

• Mechanistic Detail: Provide as much specific mechanistic detail as possible. Don’t just state that pathway X is
affected; describe how it is affected at the molecular level.

• Literature Review: Demonstrate a thorough understanding of the existing literature, including contradictory
findings. Address how the proposed idea fits into the current understanding of ALS and how it differs from
previous work.

• Focus on Causality: Always design experiments that can distinguish between cause and effect.
• Feasibility: Prioritize experiments that are feasible with available resources and expertise. Consider using a

phased experimental approach. Prioritize the experiments used to validate assumptions in the order they appear
in the proposed mechanism.

• Strong Rationale: Provide a clear and compelling rationale for every aspect of the hypothesis and experimental
design.

• Specificity of Controls: Explain why the choices of controls used in the experimental design are the best choice
to test the effects of interest. Demonstrate that the effect is not due to a more general effect or mechanism.

• Address Limitations: Acknowledge the limitations of the proposed approach and discuss potential alternative
explanations.

• Quantitative data: Emphasize quantitative data, consider including mathematical modeling of data where
appropriate.

Figure A.11 | An example of a critique generated by the Meta-review agent (continued). This is an example of
the meta-review critique generated by the co-scientist Meta-review agent for the Amyotrophic Lateral Sclerosis (ALS) mechanism
research hypothesis.
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Example of a research overview by the Meta-review agent

[Main Research Directions]
We will be focusing on these interrelated areas:

• Mitochondrial Dysfunction and Oxidative Stress: This direction investigates defects in mitochondrial
DNA repair, mitochondrial dynamics, calcium handling, and oxidative stress response, focusing on their role in
initiating inflammatory signaling and neurodegeneration.

• RNA Processing and Stress Granules: This direction explores abnormalities in RNA processing, transport,
and modification, as well as impaired stress granule dynamics, and their impact on protein homeostasis and
neuronal survival. It includes examining RNA-binding proteins, RNA structure and modifications, translation
defects, and the interplay between RNA and proteostatic stress responses.

• Protein Homeostasis and the Nucleocytoplasmic Transport: This direction is aimed at investigating
defects in protein folding, trafficking, aggregation, and degradation, as well as nucleocytoplasmic transport (NCT)
dysfunction, with a particular focus on the nuclear pore complex (NPC). This includes how those pathways and
processes influence, and are influenced by, TDP-43 and FUS protein function and localization.

• ...

Mitochondrial Dysfunction and Oxidative Stress

• Rationale: Mitochondrial dysfunction and oxidative stress are consistently implicated in ALS pathogenesis.
Mitochondria are critical for cellular energy production, and their dysfunction can lead to a cascade of events
including increased oxidative stress, impaired calcium handling, inflammation, and ultimately cell death. Given
the high energy requirements of motor neurons, especially upper motor neurons, these deficits are expected to have
a significant impact. We hypothesize that specific mitochondrial vulnerabilities, not just generalized dysfunction
play a very early role in initiating disease and provide a specific cellular event which can be targeted for research
and for potential future therapy.

• Recent Findings: Research has shown that mutations in mitochondrial DNA (mtDNA) maintenance genes are
associated with ALS. Further there are links between impaired mitochondrial calcium handling and oxidative
stress, with a particular focus on base excision repair (BER) pathway defects and a potential link to activation
of the cGAS-STING pathway. These findings suggest that a deeper understanding of mtDNA integrity, repair
mechanisms, and ROS dynamics is critical for uncovering the initial drivers of ALS.

• Areas of Research:

– Mitochondrial DNA Repair Defects:
∗ Why Research? Explore the possibility that a deficiency in base excision repair (BER) enzymes for

mitochondrial DNA is a primary driver of ALS.
∗ What to Research? Investigate the activity and expression of specific BER enzymes (e.g., OGG1) in

iPSC-derived motor neurons from ALS patients and controls. Assess whether deficiencies correlate
with increased accumulation of oxidized mtDNA lesions (e.g., 8-oxo-dG) and whether these can be
released into the cytoplasm after VDAC or MOMP activation. Determine if this release activates the
cGAS-STING pathway.

∗ Example Idea: Measure OGG1 enzyme activity, oxidized mtDNA levels (8-oxo-dG) and cGAS-STING
activation in iPSC-derived motor neurons. Genetically manipulate (knock-out/overexpress) key com-
ponents of the mitochondrial BER pathway or target specific pathways using small molecules. Use
VDAC inhibitors to prevent release or modulate MOMP function to understand cause and effect of
ox-mtDNA release and cGAS-STING activation on cell death and inflammatory outcomes.

– Mitochondrial Calcium Handling and Oxidative Stress:
∗ Why Research? Motor neurons have high calcium demands and are sensitive to oxidative damage.

Imbalances in mitochondrial calcium handling and ROS production may trigger a cascade leading to
neurodegeneration.

∗ What to Research? Examine the role of mitochondrial calcium uniporter (MCU) and other calcium
transporters in ALS. Assess if dysregulated calcium influx into mitochondria leads to increased ROS
production and whether this is different in different types of motor neurons. Study the potential role
of calcium handling defects as a primary trigger or modifier of the disease.

∗ Example Idea: Use calcium indicators and ROS sensors in iPSC-derived motor neurons to monitor
real-time calcium and ROS levels in mitochondria. Manipulate mitochondrial calcium uptake via
pharmacological or genetic approaches (e.g., MCU inhibitors or knock-outs). Assess cell survival and
the impact on inflammatory response markers and activation of the cGAS-STING pathway to assess
direct causality.

– ...

Figure A.12 | An abbreviated example of a research overview generated by the Meta-review agent. This is an
example of a research overview generated by the co-scientist Meta-review agent for the research goal pertaining to explaining the
basic mechanism of Amyotrophic Lateral Sclerosis (ALS). In addition to the the individual hypotheses and proposals, this the
main output presented to the scientist by the AI co-scientist system.
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Example of a research overview by the Meta-review agent (continued)

RNA Processing and Stress Granules:

• ...

Protein Homeostasis and the Nucleocytoplasmic Transport:

• Rationale: The proper folding, trafficking, degradation, and localization of proteins are critical for cellular
function. Defects in these processes can lead to the accumulation of toxic protein aggregates, disrupt cellular
signaling, and initiate pathways leading to cell death in ALS. The nucleus is a key compartment, and transport
into and out of this organelle is essential for cellular function.

• Recent Findings: Research has identified misfolded TDP-43 and FUS as key pathological features of ALS.
Furthermore, the dysregulation of nucleocytoplasmic transport (NCT) and the nuclear pore complex (NPC) is a
recurring feature, with recent findings that emphasize defects in early stages of assembly and dynamic function of
the NPC as an early initiating step.

• Areas of Research:

– Ubiquitin-Proteasome System (UPS) Dysfunction:
∗ Why Research? The UPS is a major cellular protein degradation machinery. Defects in the UPS can

lead to an accumulation of misfolded proteins, which could lead to cellular stress and death. Exploring
the potential of a functional deficiency in these system as an early trigger in disease.

∗ What to Research: Investigate how UPS functionality is altered in ALS models, with particular
attention to the role of E3 ligases in TDP-43 and FUS degradation. Determine whether specific
modifications on ALS related proteins impair their degradation and whether specific pathways of
protein quality control are affected in early stages of the disease. Assess if this is a primary cause or
secondary outcome of other disease related pathways.

∗ Example Idea: Use cell-based assays to measure UPS activity and substrate degradation rates in
iPSC-derived motor neurons. Conduct proteomic analysis to identify specific ubiquitinated proteins
that accumulate in ALS cells. Genetically manipulate UPS components or use small molecules to
modulate their function and assess cellular responses (e.g. measuring protein aggregation and cell
survival)

– Autophagy Dysfunction:
∗ Why Research? Autophagy is crucial for clearing cellular debris and aggregates. Dysfunctional

autophagy can lead to the accumulation of toxic proteins and can lead to organelle defects.
∗ What to Research? Explore how autophagy pathways are altered in ALS, focusing on the specific

mechanisms of cargo recognition, autophagosome formation, and lysosome fusion. Assess if specific
types of autophagy including mitophagy (mitochondrial specific) or lipophagy (lipid specific) are more
vulnerable in specific cell types.

∗ Example Idea: Track the formation and degradation of autophagosomes in real-time in hiPSC-derived
motor neurons after different stress conditions. Manipulate key effectors of the autophagy pathway
and observe cellular response, measuring protein aggregation, cell viability and inflammatory markers.

– Nucleocytoplasmic Transport (NCT) Defects:
∗ ...

– Targeted Protein misfolding:
∗ ...

• ...

Figure A.13 | An abbreviated example of a research overview generated by the Meta-review agent (continued).
This is an example of a research overview generated by the co-scientist Meta-review agent for the research goal pertaining
to explaining the basic mechanism of Amyotrophic Lateral Sclerosis (ALS). In addition to the the individual hypotheses and
proposals, this the main output presented to the scientist by the co-scientist system.
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Example of research contact identification by the Meta-review agent

Research Direction: Oxidative DNA Damage & Mitochondrial Base Excision Repair (BER) in ALS

• [Researcher names]: They directly study the role of mitochondrial OGG1 (a key BER enzyme) in controlling
cytosolic mtDNA release and neuroinflammation. Their expertise is highly valuable for understanding the
link between BER, mtDNA, and inflammation. Also, they have experience with experiments using mtOGG1
overexpressing mice which is relevant to the in-vitro experiments proposed.

• ...

Figure A.14 | An example of a research contact identified by the Meta-review agent as a potential domain
expert in the research topic and hypothesis of interest.
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A.2 Supplementary information for drug repurposing evaluation

A.2.1 Datasets

Cancer type dataset A list of 33 cancer types, along with their corresponding abbreviations, was constructed
based on a curated text string derived from the TCGA project (Appendix Table A.1). This list includes 10
rare cancers.

Cancer Name Abbreviation Cancer Name

LAML Acute Myeloid Leukemia
ACC Adrenocortical carcinoma
BLCA Bladder Urothelial Carcinoma
LGG Brain Lower Grade Glioma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
LCML Chronic Myelogenous Leukemia
COAD Colon adenocarcinoma
CNTL* Controls
ESCA Esophageal carcinoma
FPPP FFPE Pilot Phase II
GBM Glioblastoma multiforme
HNSC Head and Neck squamous cell carcinoma
KICH Kidney Chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LIHC Liver hepatocellular carcinoma
LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
MESO Mesothelioma
MISC* Miscellaneous
OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach adenocarcinoma
TGCT Testicular Germ Cell Tumors
THYM Thymoma
THCA Thyroid carcinoma
UCS Uterine Carcinosarcoma
UCEC Uterine Corpus Endometrial Carcinoma
UVM Uveal Melanoma

Table A.1 | TCGA cancer type. We consider all cancer types except CNTL and MISC while exploring the drug repurposing
candidates with preclinical evidences. *Not a cancer type.

Drug repurposing proposals. We used the co-scientist to generate drug repurposing proposals for different
types of cancer from a subset of 2300 drugs curated with the Open Targets Platform. The proposal for each
drug candidate includes a generated hypothesis, a review of the hypothesis, and a description of the possible

|51

https://www.cancer.gov/tcga
https://platform.opentargets.org/downloads


mechanism of action. For each drug, the co-scientist assigned a drug repurposing likelihood score indicating
how likely this drug can be successfully repurposed for a given cancer across all 33 TCGA cancer types.

A.2.2 Computational biology analyses

To enhance our drug repurposing hypothesis generation, verification, and evaluation processes, we integrated
a computational biology approach utilizing DepMap (Cancer Dependency Map). DepMap is a project focused
on identifying genetic vulnerabilities in cancer cells [69]. By systematically perturbing genes in a large panel
of cancer cell lines using techniques like CRISPR and observing the resulting phenotypic effects, researchers
are able to construct a comprehensive map of genetic dependencies for different cancers. This resource can be
leveraged to identify promising drug targets for cancer therapies.

Specifically, DepMap generates perturbational data from CRISPR screens that are subsequently used to
calculate DepMap dependency scores. These scores represent the probability of gene essentiality for a given
cancer cell line. A high DepMap score indicates a high probability that a gene is required for cell survival and
proliferation, thereby highlighting it as a potential therapeutic target. A DepMap score of 1.0 indicates a very
strong signal, and any novel drug repurposing hypotheses with a high DepMap score would be interesting
targets to explore.

For our experiments, we utilized the Q2 2024 data release of DepMap and used the default DepMap dependency
probability. We first observed a significant correlation between DepMap score and the co-scientist score. As
shown in Appendix Figure A.15, drug-cancer pairs scored highly by the co-scientist also have high average
DepMap score. We then leveraged DepMap data to assess the novelty of high-scoring proposals generated by
the co-scientist. Candidates selected for expert review were required to meet stringent criteria, exhibiting
both co-scientist review score ≥ 4 and a DepMap score ≥ 0.99.

Figure A.15 | The co-scientist review score is concordant with the DepMap score. We demonstrate the distribution
of the DepMap score across five AI co-scientist review score groups. The group with the co-scientist score of 5 has the highest
median DepMap score, and the group with co-scientist score of 1 has the lowest. All pairwise comparisons between the group of
AI co-scientist score of 5 and each of the other groups are statistically significant (Two-sided Wilcoxon rank-sum test, p < 0.001).

A.2.3 In vitro wet-lab validation

We tested expert selected drug candidates for AML repurposing by measuring the half-maximal inhibitory
concentration (IC50), the concentration of drug required to inhibit cell viability by 50%, of each drug on
representative AML cell lines for the respective cancer indication. IC50 is a value commonly used as a way to
quantify the effectiveness of a drug at inhibiting cellular processes, and can be measured by treating cells
across a broad range of drug concentrations and fitting the dose response to a sigmoidal curve to determine
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50% of maximal inhibition [134]. For our measurements, cells were plated in 96-well cell culture-treated plates,
seeding 5000 cells per well, and treated with the respective drug concentrations for 48 hours. Subsequently,
cell viability was assayed using an MTS assay (CellTiter 96 AQueous One Solution Cell Proliferation Assay,
Promega). After 1 hour incubation with the MTS reagent at 37°C, absorbance at 490 nm was measured
in each well using a plate reader. Each condition was performed in triplicate. Dose response curves were
background corrected (subtracted the smallest response), normalized (divided by the largest response), fit,
and plotted using the Quest Graph™ IC50 Calculator (AAT Bioquest, Inc). The cell lines used (MOLM13,
HL60, and KG-1) were generous gifts from the lab of Dr. Ravi Majeti (Stanford University).

• MOLM-13 cells are a human AML cell line that were derived from bone marrow samples of a 62-year-old
woman with AML.

• HL60 cells are a human cell line from a patient with acute promyelocytic leukemia (APL), often used to
study the development and proliferation of normal and leukemic cells.

• KG-1 cells are a human cell line isolated from the bone marrow aspirate of a 59-year-old, white male
with erythroleukemia that evolved into AML.

A.2.4 Additional wet-lab results

This section provides additional in vitro laboratory results of drug repurposing. Appendix Figure A.16 shows
dose-response curves of Binimetinib in KG-1 and HL-60 cell lines. Appendix Figure A.17 shows the does
response curves of drug repurposing candidates for AML suggested by the AI co-scientist with little to no
effect on MOLM-13 cells.

Figure A.16 |Dose-response curve of drug repurposing candidate Binimetinib in other AML cell lines. Binimetinib
demonstrates activity inhibiting cell viability in KG-1 and HL-60 cell lines. X-axis is the drug concentration (nM), and Y-axis is
normalized cell viability.
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Figure A.17 | Dose-response curve of the drug repurposing candidates with little to no effect on MOLM-13. Of
the expert-selected drug repurposing candidates, Pravastatin and DMF did not show an effect on the MOLM-13 cell line. Of the
novel drug repurposing candidates, Leflunomide and Nanvuralat did not show an effect on the MOLM-13 cell line. X-axis is the
drug concentration (nM), and Y-axis is normalized cell viability.

A.3 Supplementary information for the co-scientist drug repurposing Specific
Aims evaluation

A.3.1 Specific Aims count distribution

Repurposed Cancer Count

Acute Myeloid Leukemia (LAML) 13
Colon adenocarcinoma (COAD) 10

Breast invasive carcinoma (BRCA) 10
Skin Cutaneous Melanoma (SKCM) 8

Lung adenocarcinoma (LUAD) 6
Head and Neck squamous cell carcinoma (HNSC) 5

Bladder Urothelial Carcinoma (BLCA) 5
Pancreatic adenocarcinoma (PAAD) 4
Stomach adenocarcinoma (STAD) 3
Rectum adenocarcinoma (READ) 3
Esophageal carcinoma (ESCA) 3

Uveal Melanoma (UVM) 2
Uterine Corpus Endometrial Carcinoma (UCEC) 2

Prostate adenocarcinoma (PRAD) 2
Lung squamous cell carcinoma (LUSC) 1

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) 1

Grand Total 78

Table A.2 | Count distribution of the cancer types in the Specific Aims drug repurposing proposals generated
by the AI co-scientist.
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A.3.2 Specific Aims evaluation rubric

A pilot evaluation framework was developed by oncologists at a US institute, inspired by the axes used in
evaluating research proposals in their field (for example, the NIH Specific Aims review criteria). While such
original criteria serve as a gold standard for the review of in-depth proposals written by human domain
experts, a context-specific approach is needed for AI systems such as the AI co-scientist because there are
AI-specific limitations to consider.

The evaluation framework therefore focused on enabling assessment of similar axes of proposal quality viewed to
be important by collaborating oncologists, while additionally accounting for unique limitations and capabilities
of LLM-based systems.

For instance, while precedent real-world criteria assume deep domain expertise and the ability to cite
contemporary unpublished work, the pilot framework presented here emphasizes the evaluation of logical
consistency and the appropriate use of publicly available scientific knowledge. This acknowledges that LLMs,
unlike human experts, may struggle to draw upon tacit knowledge or recent unpublished findings in their field.

The resulting pilot framework explores two domains: (1) clinical significance and (2) scientific rigor and
methodology, with 5 and 10 questions respectively, for a total of 15 evaluation criteria.

A 5-point Likert-type scale is used for each item (Strongly Disagree, Disagree, Neutral, Agree and Strongly
Agree). The approach used here represents a pilot framework only and would require considerable further
research if it were to be developed into a reproducible or valid ratings instrument, including assessment of
validity and reliability, inter and intra-observer variance, and correlation of ratings with ground truths or
well-established prior frameworks not designed to evaluate AI systems.

The “clinical significance” domain addressed some fundamental aspects of drug repurposing proposals, including
unmet clinical needs, therapeutic landscape analysis, and scientific rationale. Items in this domain aimed
to assess the clinical relevance and theoretical foundation of proposals, and how AI systems integrate and
synthesize publicly available information.

The “scientific rigor and methodology” domain aimed to evaluate technical quality of proposals, including
hypothesis formation, methodological clarity, translational potential, overall scientific accuracy as reflected
by the quality of preclinical experimental design and the presence of well-defined clinical endpoints. Special
attention was paid to evaluating LLM-specific concerns, such as the assessment of factual accuracy and the
avoidance of hallucinated content. This pilot framework is not comprehensive and is not intended to mirror the
full breadth and depth of grant design evaluations. For example, omitted axes of quality could be addressed
by future works, including absence of detailed criteria for experimental design (for example, review of power
calculation or study design methodologies).

Significance and innovation (5 questions)

1. The proposal adequately identifies significant unmet clinical needs that could be addressed through drug
repurposing of this pharmacological agent.

2. The proposal effectively bridges an important gap in the current therapeutic landscape for the target
disease by repurposing this drug.

3. The proposal presents a scientifically rigorous rationale for repurposing the drug, grounded in current
evidence and literature.

4. The scientific background integrates relevant prior studies and preliminary data to support the proposed
drug repurposing.

5. The proposal avoids over-extrapolation or speculative conclusions beyond the supporting evidence.

Rigor and feasibility (10 questions)

1. Does each Specific Aim have a clear hypothesis, and specific methodological approaches?
2. Are the Specific Aims clearly stated and logically organized?
3. There is a clear path from the proposed research to clinical application, including consideration of

necessary pre-clinical and clinical studies.
4. The proposal includes well-defined and clinically relevant endpoints.
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5. The pre-clinical experiments are designed to yield meaningful insights into the drug’s potential efficacy
and safety in its new therapeutic role.

6. The proposal includes a well-described translational component to assess the drug’s efficacy in its new
indication.

7. The proposal avoids factual inaccuracies or hallucinations, presenting information that is accurate and
reliable.

8. The assumptions made within the proposal regarding the drug’s efficacy, mechanism, and potential
outcomes are grounded in current scientific evidence.

9. The proposal demonstrates originality in thought and approach, employs precise and appropriate
scientific terminology and avoids ambiguous or generic statements.

10. The proposal is clearly written, with well-organized sections and a logical flow of ideas that enhances
comprehension and ensures the aims are easily understood.
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A.3.3 Examples of co-scientist generated Specific Aims with expert evaluation

Figure A.18 | Example of co-scientist generated Specific Aims drug repurposing proposal for AML.

Givosiran for AML

Disease Description
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with an incidence rate of approximately
4.3 per 100,000 persons per year in the United States, predominantly affecting older adults. AML arises from a
complex interplay of genetic mutations, epigenetic alterations, and dysregulated signaling pathways, disrupting normal
hematopoiesis by blocking myeloid differentiation and promoting uncontrolled blast proliferation. This leads to bone
marrow failure, infections, bleeding, and other life-threatening complications. The current standard of care includes
intensive chemotherapy, often combined with targeted therapies or hematopoietic stem cell transplantation. However,
these treatments are often associated with significant toxicity, high relapse rates, and limited efficacy in certain patient
populations, particularly in relapsed/refractory or high-risk AML.

Unmet Need
Despite advancements, significant unmet needs persist in AML treatment. Current therapies often cause severe side
effects, particularly in older or frail patients, limiting their tolerability and effectiveness. Relapse rates remain high,
and treatment options for relapsed/refractory AML are limited and often less effective. Many patients fail to achieve
complete remission or experience only short-lived responses, underscoring the urgent need for novel, less toxic, and more
effective therapies, especially for patients with relapsed/refractory or high-risk disease.

Proposed Solution
Givosiran sodium is an RNA interference (RNAi) therapeutic approved for acute hepatic porphyria (AHP). It targets
aminolevulinate synthase 1 (ALAS1) mRNA, the rate-limiting enzyme in heme biosynthesis, reducing the production of
heme precursors δ-aminolevulinic acid (ALA) and porphobilinogen. This prevents the accumulation of neurotoxic heme
intermediates in AHP.
Repurposing givosiran for AML stems from the crucial role of heme biosynthesis in AML pathogenesis. Several studies
suggest that disrupting heme biosynthesis offers a therapeutic advantage in AML. The proposed approach addresses
the unmet need by targeting AML cells dependent on increased heme biosynthesis, particularly those with MYCN
overexpression [1]. Modulating heme levels could influence oxidative stress [5, 6], apoptosis [1, 2], and drug sensitivity in
AML [2]. Givosiran’s ALAS1 inhibition aligns with this approach, offering a novel therapeutic strategy.
We hypothesize that givosiran, by inhibiting ALAS1 and reducing heme biosynthesis, will suppress AML cell growth
and survival, particularly in those with upregulated heme biosynthesis. This is supported by preclinical evidence
demonstrating that altering heme levels impacts AML cell proliferation, apoptosis, and drug sensitivity [2]. Abstract
[1] suggests that elevated heme biosynthesis in MYCN-driven AML is a therapeutic vulnerability. Reducing ALA and
porphobilinogen accumulation via givosiran can mitigate oxidative stress [6], a factor implicated in AML progression.
Overall, our goal is to evaluate the efficacy and safety of givosiran as a novel therapeutic strategy for AML by exploiting
the crucial role of heme biosynthesis in its pathogenesis and the drug’s ability to modulate heme levels and downstream
effects on AML cell proliferation, survival, and drug sensitivity.

Specific Aims 1
Overarching goal:
Determine the anti-leukemic activity of givosiran in MYCN-driven AML models.
Hypothesis:
Givosiran treatment will decrease the viability and proliferation of MYCN-overexpressing AML cells in vitro and reduce
tumor growth in MYCN-driven AML xenograft mouse models.
Reasoning:
MYCN-driven AML frequently exhibits upregulated heme biosynthesis [1], creating a potential dependency on this
pathway. Givosiran, by inhibiting ALAS1, could disrupt this dependency, leading to decreased heme and growth
inhibition. This is supported by preclinical data showing that inhibiting heme biosynthesis impacts AML cell growth
and survival [1, 2].
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Figure A.19 | Example of co-scientist generated Specific Aims drug repurposing proposal for AML (continued).

Givosiran for AML (continued)

Specific Aims 2
Overarching goal:
Elucidate the impact of givosiran on oxidative stress and drug sensitivity in AML.
Hypothesis:
Givosiran treatment will modulate oxidative stress levels and enhance the cytotoxic effects of standard AML
chemotherapeutics (e.g., cytarabine) in AML cell lines and primary patient samples.
Reasoning:
Heme plays a role in oxidative stress regulation, and its modulation by givosiran could influence AML cell chemosensitivity.
Abstracts [5, 6] highlight oxidative stress in AML and the potential for ALA accumulation to contribute to it. By
reducing ALA and heme, givosiran could alter reactive oxygen species (ROS) levels and potentially sensitize AML cells
to chemotherapy-induced death.

Specific Aims 3
Overarching goal:
Characterize the safety and tolerability of givosiran in preclinical AML models, focusing on its impact on liver function.
Hypothesis:
Givosiran treatment will be well-tolerated in AML mouse models, with minimal adverse effects on liver function and
drug metabolism, at doses that effectively inhibit ALAS1 and reduce heme biosynthesis.
Reasoning:
Given givosiran’s hepatic target (ALAS1), evaluating its safety profile in AML is crucial. Abstracts [7, 8] highlight the
clinical significance of liver function in AML patients. This aim will assess potential hepatotoxicity and drug-drug
interactions, ensuring safe translation to clinical trials. We will evaluate relevant liver function markers and givosiran’s
impact on standard AML chemotherapeutic metabolism.

Pilot Evaluation
A pilot study in a human AML xenograft mouse model will assess givosiran’s in vivo efficacy and safety. Givosiran
will be administered at various doses, monitoring tumor growth, survival, and liver function. The primary
endpoint will be tumor growth inhibition. Secondary endpoints include survival, changes in heme levels, oxidative
stress markers, and liver function tests. Existing safety data from givosiran’s use in AHP will inform dose
selection and monitoring. While givosiran is approved for AHP, its use in AML requires an Investigational New
Drug (IND) application to the FDA before clinical trials. Existing safety data might facilitate a streamlined review process.

Articles
[1] Upregulated heme biosynthesis, an exploitable vulnerability in MYCN-driven leukemogenesis Summary: This study
demonstrates increased heme biosynthesis in MYCN-driven leukemias, suggesting it as a therapeutic target. Relevance:
Supports the rationale for targeting heme biosynthesis in MYCN-driven AML and provides a rationale for the proposed
mechanism of action of givosiran in this context.
[2] Systematic Dissection of the Metabolic-Apoptotic Interface in AML Reveals Heme Biosynthesis to Be a Regulator
of Drug Sensitivity Summary: This study highlights the role of heme biosynthesis in regulating apoptosis and drug
sensitivity in AML. Relevance: Supports the potential for givosiran to impact AML cell survival and treatment response
by modulating heme biosynthesis.
[3] 3113 – IDENTIFICATION OF HEME AS A CRITICAL REGULATOR OF LEUKEMOGENESIS Summary: This
abstract points to the importance of heme levels in AML, especially in leukemic stem cells, and suggests targeting heme
biosynthesis. Relevance: Reinforces the rationale for targeting heme biosynthesis as a therapeutic strategy in AML.
...
[8] Acute myeloid leukemia with hepatic infiltration presenting as obstructive jaundice Summary: This abstract shows
liver dysfunction in AML and the need to consider liver health in treatment. Relevance: Reinforces the importance of
monitoring liver function in AML patients treated with givosiran, further supporting the rationale for Aim 3.
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Figure A.20 | Example of co-scientist generated Specific Aims drug repurposing proposal for colon cancer.

Selinexor for colon cancer

Disease Description
Colon adenocarcinoma (COAD) is a significant public health concern, with an estimated incidence rate of over 1.9
million new cases and 935,000 deaths globally in 2020. COAD arises from the epithelial lining of the colon and is driven
by a complex interplay of genetic mutations (e.g., APC, KRAS, BRAF, TP53) and epigenetic alterations, leading to
uncontrolled cell proliferation, impaired apoptosis, and chronic inflammation. These molecular changes disrupt crucial
cellular pathways like Wnt/β-catenin signaling, cell cycle control, and DNA damage repair, ultimately driving tumor
progression. COAD typically progresses through stages, from localized polyps to invasive tumors with potential for
metastasis. Current standard of care involves surgery, chemotherapy, radiation therapy, and targeted therapies, but
treatment resistance and recurrence remain major challenges, highlighting the need for new therapeutic approaches.
Unmet Need
Current COAD treatments have limitations, including acquired resistance to chemotherapy, significant toxicities, and
incomplete responses in advanced disease. Patients often experience diminished quality of life due to treatment side
effects and disease burden. High recurrence rates and limited effective treatment options after progression contribute to
poor long-term outcomes. This unmet need underscores the urgency for novel therapeutic strategies that can overcome
resistance, improve response rates, and minimize toxicity, ultimately extending survival and enhancing quality of life for
COAD patients.
Proposed Solution
Selinexor, a first-in-class selective inhibitor of nuclear export (SINE), is currently approved for the treatment of multiple
myeloma and diffuse large B-cell lymphoma. It specifically targets XPO1 (Exportin 1), a key protein responsible for the
nuclear export of tumor suppressor proteins, oncoproteins, and RNA. By binding to XPO1, Selinexor blocks the nuclear
export of these molecules, leading to their accumulation in the nucleus and restoration of tumor suppressor function, cell
cycle arrest, and apoptosis induction.
Repurposing Selinexor for COAD is rationally supported by its mechanism of action and the molecular characteristics
of the disease. Overexpression of XPO1 is common in various cancers, including COAD [1, 2, 6]. Selinexor inhibits
XPO1, preventing the nuclear export and restoring the function of key tumor suppressors (p53, RB, FOXO, APC)
frequently dysregulated in COAD [2, 3, 4, 5]. Furthermore, Selinexor can suppress constitutively activated NF-κB
signaling, a driver of chronic inflammation and tumor progression in COAD, by blocking IκB export and increasing its
nuclear accumulation [7, 8]. These mechanisms align with key aspects of COAD pathogenesis and offer opportunities for
therapeutic intervention.
We hypothesize that Selinexor will effectively inhibit COAD cell growth and enhance apoptosis by restoring tumor
suppressor function and modulating crucial signaling pathways. Selinexor has shown anti-tumor activity in solid tumors
in a Phase I trial [3], with observations of nuclear accumulation of tumor suppressor proteins [3, 6]. While not specific to
COAD, these findings, coupled with evidence of Selinexor’s efficacy in other cancers driven by XPO1 overexpression [3, 6],
suggest that a similar mechanism could be effective in COAD. Further supporting our hypothesis, XPO1 overexpression
has been linked to NF-κB activation and increased proliferation in COAD [7]. Overall, our goal is: to demonstrate that
Selinexor’s XPO1 inhibitory activity can effectively target key oncogenic drivers and restore tumor suppressor functions
in COAD, ultimately leading to tumor growth inhibition and improved patient outcomes.
Specific Aims 1
Overarching goal:
Determine the in vitro efficacy of Selinexor in inhibiting COAD cell growth and inducing apoptosis.
Hypothesis:
Selinexor treatment will significantly reduce the viability and increase apoptosis in a panel of COAD cell lines, including
those with varying genetic backgrounds (e.g., APC, KRAS, TP53 mutations).
Reasoning:
Selinexor’s inhibition of XPO1 leads to nuclear accumulation of tumor suppressors like p53, a key regulator of apoptosis
[2, 6]. Restoration of p53 function and suppression of NF-κB, a pro-survival pathway [7, 8], are expected to induce
apoptosis in COAD cells. We will evaluate this hypothesis using cell viability and apoptosis assays in diverse COAD cell
lines to assess the impact of genetic background on Selinexor’s efficacy.
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Figure A.21 | Example of co-scientist generated Specific Aims drug repurposing proposal for colon cancer
(continued).

Selinexor for colon cancer (continued)

Specific Aims 2
Overarching goal:
Elucidate the mechanisms by which Selinexor inhibits COAD cell growth, focusing on XPO1-mediated restoration of
tumor suppressor function.
Hypothesis:
Selinexor treatment will increase nuclear accumulation of p53, RB, and FOXO proteins and decrease nuclear export of
IκB, leading to cell cycle arrest and decreased NF-κB activity in COAD cells.
Reasoning:
Selinexor blocks XPO1, preventing nuclear export of key tumor suppressors (p53, RB, FOXO) [2, 4, 5] and the
NF-κB inhibitor IκB [7, 8]. Increased nuclear localization of these proteins should restore their growth regulatory
functions, leading to cell cycle arrest and reduced NF-κB-driven proliferation. We will evaluate this hypothesis using
immunofluorescence and western blotting to assess protein localization and activity.
Specific Aims 3
Overarching goal:
Characterize the potential synergistic effects of Selinexor in combination with standard-of-care chemotherapies for COAD.
Hypothesis:
Combination treatment with Selinexor and 5-fluorouracil (5-FU) will synergistically reduce COAD cell viability compared
to either treatment alone.
Reasoning:
XPO1 inhibition can sensitize cancer cells to chemotherapy [9]. Combining Selinexor with 5-FU, a common COAD
chemotherapy, may enhance cellular stress and improve treatment response. We will test this hypothesis using cell
viability assays and investigate the underlying mechanisms of synergy.
Pilot Evaluation
A pilot study will evaluate Selinexor’s efficacy in a patient-derived xenograft (PDX) model of COAD. The primary
objective is to determine the effect of Selinexor on tumor growth. The study will utilize an open-label, single-arm
design with escalating Selinexor doses in established COAD PDX models. Inclusion criteria: established COAD PDX
models. Exclusion criteria: none. Primary endpoint: tumor volume change. Secondary endpoints: changes in biomarkers
(p53, Ki67, NF-κB) within the tumor. Selinexor’s established safety profile in other cancers provides a basis for evalu-
ating its safety in this new indication. Potential for expedited review through existing regulatory pathways will be explored.

Expert rating
1. Strongly Agree (unmet clinical needs)
2. Agree (bridges therapeutic gap)
3. Strongly Agree (scientifically rigorous rationale)
4. Agree (integrates prior studies)
5. Agree (avoids over-extrapolation)
6. Strongly Agree (clear hypotheses and methods)
7. Strongly Agree (clearly stated aims)
8. Agree (path to clinical application)
9. Agree (well-defined endpoints)
10. Agree (meaningful pre-clinical experiments)
11. Agree (translational component)
12. Strongly Agree (avoids inaccuracies)
13. Strongly Agree (evidence-based assumptions)
14. Agree (originality and terminology)
15. Strongly Agree (clear writing and organization)
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Figure A.22 | Example of co-scientist generated Specific Aims drug repurposing proposal for colon cancer.

Lapatinib for colon cancer

Disease Description
Colon adenocarcinoma (COAD) is a significant public health concern, with an estimated incidence rate of over 150,000 new
cases annually in the United States [19]. COAD arises from the epithelial lining of the colon, and its pathogenesis involves
a complex interplay of genetic and environmental factors. Key molecular mechanisms include mutations in genes such as
APC, KRAS, BRAF, and PIK3CA, as well as dysregulation of signaling pathways like Wnt, RAS/RAF/MEK/ERK,
and PI3K/AKT/mTOR [8, 9, 12]. These alterations drive uncontrolled cell proliferation, evade apoptosis [14], promote
angiogenesis [15], and ultimately lead to tumor growth, invasion, and metastasis [16]. The disease typically progresses
through a series of stages, from localized tumors to regional lymph node involvement and distant metastasis. Current
standard of care involves surgery, chemotherapy, and targeted therapies such as anti-EGFR antibodies. However, these
treatments have limitations, including acquired resistance and significant toxicity.
Unmet Need
A major unmet need in COAD treatment is the development of effective therapies for patients who progress on or
are refractory to standard treatments, particularly those with resistance to anti-EGFR therapy [2]. Despite available
therapies, many patients experience disease recurrence and metastasis, leading to poor outcomes and diminished quality
of life. There’s a critical need for new therapeutic options that can overcome resistance mechanisms, improve response
rates, and offer better tolerability profiles. Specifically, addressing resistance driven by KRAS mutations [10] and
exploring alternative therapeutic targets remains crucial.
Proposed Solution
Lapatinib is an orally available small molecule tyrosine kinase inhibitor currently approved for use in combination with
capecitabine for the treatment of HER2-positive metastatic breast cancer. It reversibly inhibits the intracellular tyrosine
kinase domains of both EGFR (ErbB1) and HER2 (ErbB2), thereby blocking downstream signaling cascades, including
RAS/RAF/MEK/ERK and PI3K/AKT/mTOR. This inhibition leads to decreased cell proliferation and increased
apoptosis.
Repurposing lapatinib for COAD is rationalized by the shared ErbB signaling pathway between breast cancer and a
subset of COAD. EGFR is commonly overexpressed in COAD [1], and while HER2 overexpression is less frequent than
in breast cancer, it occurs in a clinically relevant subset [3, 17] and is associated with resistance to anti-EGFR therapy
[2]. Lapatinib can directly inhibit both EGFR and HER2, potentially disrupting crucial oncogenic signaling [13, 14]
including PLCγ [7].
We hypothesize that lapatinib can effectively inhibit ErbB signaling in COAD, leading to decreased cell proliferation,
increased apoptosis, and suppression of metastasis. Preclinical studies demonstrate synergistic antitumor activity of
lapatinib with HDAC inhibitors in COAD models [6], and lapatinib has also been shown to sensitize COAD cells to
TRAIL-induced apoptosis via an off-target mechanism [5]. Studies have also investigated HER2 as a therapeutic target
in CRC, especially after failure of anti-EGFR therapy [2, 18]. Although lapatinib as a single agent has shown limited
efficacy in unselected CRC populations, this could be attributed to the heterogeneity of COAD and the presence of
resistance mechanisms like KRAS mutations. We anticipate that patient stratification based on molecular profiles will
identify subgroups that derive greater benefit.
Overall, our goal is: to demonstrate the efficacy of lapatinib in specific molecular subtypes of COAD, potentially in
combination with other targeted therapies, to address the unmet need for new treatment options, particularly in patients
resistant to standard therapies.
Specific Aims 1
Overarching goal:
To determine the efficacy of lapatinib in inhibiting HER2/EGFR signaling and suppressing cell proliferation in a panel
of well-characterized COAD cell lines.
Hypothesis:
Lapatinib will inhibit cell proliferation in HER2-amplified/overexpressing and/or EGFR-overexpressing COAD cell lines.
Reasoning:
Lapatinib directly inhibits both HER2 and EGFR, key drivers of cell proliferation in a subset of COAD. Inhibition of
these receptors should lead to reduced downstream signaling through the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR
pathways, ultimately suppressing cell growth [6].
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Figure A.23 | Example of co-scientist generated Specific Aims drug repurposing proposal for colon cancer
(continued).

Lapatinib for colon cancer (continued)

Specific Aims 2
Overarching goal:
To elucidate the impact of lapatinib on apoptosis and key signaling pathways in COAD models.
Hypothesis:
Lapatinib will induce apoptosis and modulate key signaling pathways (RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, and
PLCγ) in COAD cell lines, especially those with HER2/EGFR alterations.
Reasoning:
Inhibition of HER2/EGFR by lapatinib disrupts pro-survival signaling, potentially promoting apoptosis [14]. Additionally,
lapatinib can indirectly modulate downstream pathways [4, 7], even demonstrating synergistic effects with other agents
[6]. This aim will explore the extent of this modulation in various COAD subtypes.
Specific Aims 3
Overarching goal:
To identify predictive biomarkers for lapatinib response and explore potential combination strategies in COAD.
Hypothesis:
A combination of lapatinib with a MEK inhibitor will enhance antitumor activity in KRAS-mutant COAD cell lines
compared to lapatinib alone.
Reasoning:
KRAS mutations are a known mechanism of resistance to EGFR/HER2 targeted therapies [10]. Combining lapatinib
with a MEK inhibitor may overcome this resistance by blocking the downstream MAPK pathway activation, leading to
enhanced antitumor efficacy.
Pilot Evaluation
A pilot study will be conducted to evaluate the safety and preliminary efficacy of lapatinib in patients with HER2-positive
metastatic COAD who have progressed on standard therapy. This open-label, single-arm study will enroll 15-20 patients
with confirmed HER2 overexpression/amplification and KRAS wild-type status. Key exclusion criteria will include
prior treatment with lapatinib and significant comorbidities. The primary endpoint will be progression-free survival,
and secondary endpoints will include overall response rate, duration of response, and safety. Lapatinib’s known safety
profile from its use in breast cancer will inform the monitoring plan. Expedited regulatory review may be possible due
to lapatinib’s existing approval.
Articles
[1] Targeting the EGFR signalling pathway in metastatic colorectal cancer
Summary: Details the importance of EGFR signaling in CRC and how targeting it is a crucial therapeutic strategy.
Relevance: Provides context for lapatinib’s action as it targets EGFR.
[2] HER2 as an Emerging Oncotarget for Colorectal Cancer Treatment After Failure of Anti-Epidermal Growth Factor
Receptor Therapy
Summary: Discusses HER2 as a target in CRC, especially in the context of anti-EGFR therapy resistance.
Relevance: Directly relevant to lapatinib’s mechanism and potential in COAD.
...
[19] United States Cancer Statistics
Summary: Provides official U.S. cancer incidence and mortality statistics.
Relevance: Source of epidemiological data for colon adenocarcinoma.

Expert rating
1. Strongly Agree (unmet clinical needs)
2. Agree (bridges therapeutic gap)
3. Strongly Agree (scientifically rigorous rationale)
4. Strongly Agree (integrates prior studies)
5. Strongly Agree (avoids over-extrapolation)
6. Strongly Agree (clear hypotheses and methods)
7. Strongly Agree (clearly stated aims)
8. Strongly Agree (path to clinical application)
9. Agree (well-defined endpoints)
10. Neutral (meaningful pre-clinical experiments)
11. Strongly Agree (translational component)
12. Strongly Agree (avoids inaccuracies)
13. Strongly Agree (evidence-based assumptions)
14. Strongly Agree (originality and terminology)
15. Agree (clear writing and organization)
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A.4 Prompts for the specialized agents in the AI co-scientist system

A.4.1 Prompts for the Generation agent

Prompt for hypothesis generation after literature review

You are an expert tasked with formulating a novel and robust hypothesis to address
the following objective.

Describe the proposed hypothesis in detail, including specific entities, mechanisms,
and anticipated outcomes.

This description is intended for an audience of domain experts.

You have conducted a thorough review of relevant literature and developed a logical framework
for addressing the objective. The articles consulted, along with your analytical reasoning,
are provided below.

Goal: {goal}

Criteria for a strong hypothesis:
{preferences}

Existing hypothesis (if applicable):
{source_hypothesis}

{instructions}

Literature review and analytical rationale (chronologically ordered, beginning
with the most recent analysis):

{articles_with_reasoning}

Proposed hypothesis (detailed description for domain experts):

Figure A.24 | Example Generation agent prompt for hypothesis generation after literature review and relevant
article exploration.
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Prompt for hypothesis generation after scientific debate

You are an expert participating in a collaborative discourse concerning the generation
of a {idea_attributes} hypothesis. You will engage in a simulated discussion with other experts.
The overarching objective of this discourse is to collaboratively develop a novel
and robust {idea_attributes} hypothesis.

Goal: {goal}

Criteria for a high-quality hypothesis:
{preferences}

Instructions:
{instructions}

Review Overview:
{reviews_overview}

Procedure:

Initial contribution (if initiating the discussion):
Propose three distinct {idea_attributes} hypotheses.

Subsequent contributions (continuing the discussion):
* Pose clarifying questions if ambiguities or uncertainties arise.
* Critically evaluate the hypotheses proposed thus far, addressing the following aspects:

- Adherence to {idea_attributes} criteria.
- Utility and practicality.
- Level of detail and specificity.

* Identify any weaknesses or potential limitations.
* Propose concrete improvements and refinements to address identified weaknesses.
* Conclude your response with a refined iteration of the hypothesis.

General guidelines:
* Exhibit boldness and creativity in your contributions.
* Maintain a helpful and collaborative approach.
* Prioritize the generation of a high-quality {idea_attributes} hypothesis.

Termination condition:
When sufficient discussion has transpired (typically 3-5 conversational turns,
with a maximum of 10 turns) and all relevant questions and points have been
thoroughly addressed and clarified, conclude the process by writing "HYPOTHESIS"
(in all capital letters) followed by a concise and self-contained exposition of the finalized idea.

#BEGIN TRANSCRIPT#
{transcript}
#END TRANSCRIPT#

Your Turn:

Figure A.25 | Example Generation agent prompt for hypothesis generation after simulated scientific debate.
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A.4.2 Prompt for the Reflection agent

Prompt for generating observations which can be explained by the hypothesis

You are an expert in scientific hypothesis evaluation. Your task is to analyze the
relationship between a provided hypothesis and observations from a scientific article.
Specifically, determine if the hypothesis provides a novel causal explanation
for the observations, or if they contradict it.

Instructions:

1. Observation extraction: list relevant observations from the article.
2. Causal analysis (individual): for each observation:

a. State if its cause is already established.
b. Assess if the hypothesis could be a causal factor (hypothesis => observation).
c. Start with: "would we see this observation if the hypothesis was true:".
d. Explain if it’s a novel explanation. If not, or if a better explanation exists,

state: "not a missing piece."
3. Causal analysis (summary): determine if the hypothesis offers a novel explanation

for a subset of observations. Include reasoning. Start with: "would we see some of
the observations if the hypothesis was true:".

4. Disproof analysis: determine if any observations contradict the hypothesis.
Start with: "does some observations disprove the hypothesis:".

5. Conclusion: state: "hypothesis: <already explained, other explanations more likely,
missing piece, neutral, or disproved>".

Scoring:
* Already explained: hypothesis consistent, but causes are known. No novel explanation.
* Other explanations more likely: hypothesis *could* explain, but better explanations exist.
* Missing piece: hypothesis offers a novel, plausible explanation.
* Neutral: hypothesis neither explains nor is contradicted.
* Disproved: observations contradict the hypothesis.

Important: if observations are expected regardless of the hypothesis, and don’t disprove it,
it’s neutral.

Article:
{article}

Hypothesis:
{hypothesis}

Response {provide reasoning. end with: "hypothesis: <already explained, other explanations
more likely, missing piece, neutral, or disproved>".)

Figure A.26 | Example Reflection agent prompt for generating observations from prior experimental results
which can be explained by the hypothesis under consideration.

|65



A.4.3 Prompts for the Ranking agent

Prompt for hypothesis comparison during tournament

You are an expert evaluator tasked with comparing two hypotheses.

Evaluate the two provided hypotheses (hypothesis 1 and hypothesis 2) and determine which one
is superior based on the specified {idea_attributes}.
Provide a concise rationale for your selection, concluding with the phrase "better idea: <1 or 2>".

Goal: {goal}

Evaluation criteria:
{preferences}

Considerations:
{notes}
Each hypothesis includes an independent review. These reviews may contain numerical scores.
Disregard these scores in your comparative analysis, as they may not be directly comparable across reviews.

Hypothesis 1:
{hypothesis 1}

Hypothesis 2:
{hypothesis 2}

Review of hypothesis 1:
{review 1}

Review of hypothesis 2:
{review 2}

Reasoning and conclusion (end with "better hypothesis: <1 or 2>"):

Figure A.27 | Example Ranking agent prompt for hypothesis comparison during tournament.
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Prompt for hypothesis comparison via simulated scientific debate during tournament

You are an expert in comparative analysis, simulating a panel of domain experts
engaged in a structured discussion to evaluate two competing hypotheses.
The objective is to rigorously determine which hypothesis is superior based on
a predefined set of attributes and criteria.
The experts possess no pre-existing biases toward either hypothesis and are solely
focused on identifying the optimal choice, given that only one can be implemented.

Goal: {goal}

Criteria for hypothesis superiority:
{preferences}

Hypothesis 1:
{hypothesis 1}

Hypothesis 2:
{hypothesis 2}

Initial review of hypothesis 1:
{review1}

Initial review of hypothesis 2:
{review 2}

Debate procedure:

The discussion will unfold in a series of turns, typically ranging from 3 to 5, with a maximum of 10.

Turn 1: begin with a concise summary of both hypotheses and their respective initial reviews.

Subsequent turns:

* Pose clarifying questions to address any ambiguities or uncertainties.
* Critically evaluate each hypothesis in relation to the stated Goal and Criteria.
This evaluation should consider aspects such as:

- Potential for correctness/validity.
- Utility and practical applicability.
- Sufficiency of detail and specificity.
- Novelty and originality.
- Desirability for implementation.

* Identify and articulate any weaknesses, limitations, or potential flaws in either hypothesis.

Additional notes:
{notes}

Termination and judgment:

Once the discussion has reached a point of sufficient depth (typically 3-5 turns, up to 10 turns)
and all relevant questions and concerns have been thoroughly addressed, provide a conclusive judgment.
This judgment should succinctly state the rationale for the selection.
Then, indicate the superior hypothesis by writing the phrase "better idea: ",
followed by "1" (for hypothesis 1) or "2" (for hypothesis 2).

Figure A.28 | Example Ranking agent prompt for hypothesis comparison via simulated scientific debate during
tournament.
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A.4.4 Prompts for the Evolution agent

Prompt for hypothesis feasibility improvement

You are an expert in scientific research and technological feasibility analysis.
Your task is to refine the provided conceptual idea, enhancing its practical implementability
by leveraging contemporary technological capabilities. Ensure the revised concept retains
its novelty, logical coherence, and specific articulation.

Goal: {goal}

Guidelines:
1. Begin with an introductory overview of the relevant scientific domain.
2. Provide a concise synopsis of recent pertinent research findings and related investigations,

highlighting successful methodologies and established precedents.
3. Articulate a reasoned argument for how current technological advancements can facilitate

the realization of the proposed concept.
4. CORE CONTRIBUTION: Develop a detailed, innovative, and technologically viable alternative

to achieve the objective, emphasizing simplicity and practicality.

Evaluation Criteria:
{preferences}

Original Conceptualization:
{hypothesis}

Response:

Figure A.29 | Example Evolution agent prompt for hypothesis feasibility improvement.

Prompt for hypothesis generation through out-of-the-box thinking

You are an expert researcher tasked with generating a novel, singular hypothesis
inspired by analogous elements from provided concepts.

Goal: {goal}

Instructions:
1. Provide a concise introduction to the relevant scientific domain.
2. Summarize recent findings and pertinent research, highlighting successful approaches.
3. Identify promising avenues for exploration that may yield innovative hypotheses.
4. CORE HYPOTHESIS: Develop a detailed, original, and specific single hypothesis

for achieving the stated goal, leveraging analogous principles from the provided
ideas. This should not be a mere aggregation of existing methods or entities. Think out-of-the-box.

Criteria for a robust hypothesis:
{preferences}

Inspiration may be drawn from the following concepts (utilize analogy and inspiration,
not direct replication):
{hypotheses}

Response:

Figure A.30 | Example Evolution agent prompt for hypothesis generation through out-of-the-box thinking.
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A.4.5 Prompt for the Meta-review agent

Prompt for meta-review generation

You are an expert in scientific research and meta-analysis.
Synthesize a comprehensive meta-review of provided reviews
pertaining to the following research goal:

Goal: {goal}

Preferences:
{preferences}

Additional instructions:
{instructions}

Provided reviews for meta-analysis:
{reviews}

Instructions:
* Generate a structured meta-analysis report of the provided reviews.
* Focus on identifying recurring critique points and common issues raised by reviewers.
* The generated meta-analysis should provide actionable insights for researchers

developing future proposals.
* Refrain from evaluating individual proposals or reviews;

focus on producing a synthesized meta-analysis.

Response:

Figure A.31 | Example Meta-review agent prompt for meta-review generation from existing reviews.
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A.5 An example of tool use in the AI co-scientist with AlphaFold

The AI co-scientist is a general purpose system broadly applicable across different areas of science and
medicine. To better understand the capabilities and limitations of the system, we task it with the goal of
suggesting protein sequences with specific properties. Determining the correct primary amino acid sequence
with the desired properties is an essential part of protein engineering. While LLM-based systems can predict
protein properties and suggest modifications [135], they can sometimes generate incorrect sequences (i.e.,
hallucinations). To address this, we integrate AlphaFold [35], a specialized AI system for predicting protein
3D structure, into our co-scientist. AlphaFold acts as a validation tool, evaluating the structural plausibility
of sequences proposed by the co-scientist and provides feedback. This increases the reliability of the sequence
design optimization process, which can be further validated with wet laboratory experiments. The approach to
integrate tools highlights how specialized AI models can work in collaboration with more general AI systems
like the AI co-scientist, facilitating the solution of complex challenges like protein design.

As an illustrative example, we used AlphaFold to assess a co-scientist’s proposed modification to the OCT4
(octamer-binding transcription factor 4) protein (Appendix Figure A.32), one of the four Yamanaka factors [136],
to increase binding affinity of its DNA binding domain. The co-scientist suggested adding a mechano-sensitive
loop to the POU domain (a family of eukaryotic transcription factors) and a dynamic phosphorylation site
outside of it. The co-scientist first verified the proposed sequence against the UniProt database via web-
search. AlphaFold then predicted the 3D structure of the modified protein, suggesting that the modifications
maintained structural stability. These predictions were used to refine the co-scientist’s hypothesis, allowing
it to improve its protein sequence design in subsequent iterations. We also independently validated the
modification using ESM-2 [137] and RoseTTAFold [138]. ESM-2 predicted an increased log-likelihood ratio
and a similar predicted local distance difference test (pLDDT), and RoseTTAFold predicted similar confidence
score (GDT), compared to the original sequence. The insertion and modification did not seem to disrupt
SOX2 and OCT4 interactions, indicated by the similar pLDDT scores between the original and modified
OCT4 sequences. However, this example is for demonstration purposes only. Further in silico analysis (e.g.,
predicting binding affinity and off-target effects), and thorough laboratory validation are necessary to confirm
that the proposed modifications actually improve the complex roles of OCT4 binding, while maintaining
SOX2 interaction integrity, during pluripotency.

Original OCT4 
ipTM 0.53
pTM 0.46
pTM (POU) 0.84
pLDDT (OCT4) 63.25
pLDDT (SOX2) 52.99

Modified OCT4 (mechano) 
ipTM 0.51
pTM 0.45
pTM (POU) 0.72
pLDDT (modified OCT4) 64.75
pLDDT (SOX2) 57.26

Figure A.32 | AlphaFold predicted protein 3D structure and metrics for original OCT4 and AI co-scientist
suggested modifications. (left panel) original OCT4 sequence with SOX2 and DNA binding (right panel) modified OCT4
sequence with SOX2 and DNA binding. The left 3D structure in each panel is the POU domain of the corresponding OCT4
sequence. The predicted template modeling (pTM) score, the interface predicted template modeling (ipTM), and predicted local
distance difference test (pLDDT) are derived from the AlphaFold outputs.

Combining AlphaFold with the co-scientist framework offers a powerful approach for both improving existing
proteins and designing entirely new ones. This integrated system allows researchers to iteratively optimize
protein sequences for enhanced properties (e.g., stability, binding affinity, or catalytic activity) or putatively
to create proteins with novel functions. It enables exploration of protein design while ensuring structural
feasibility. Future work will focus on experimentally validating these capabilities and applying them to targeted
protein design efforts as well as expansion to integration of other specialized AI tools with the co-scientist.
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