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Abstract

We propose a tentative framework of studying historical contingency and convergence depend-
ing on the fitness landscape.

1 Introduction

Does evolutionary dynamics repeat itself if we ”replay the tape of life”? [Gou90]. The full answer to this
question is unsurprisingly mixed and nuanced. On one hand, paleontologists and microbiologists have
observed that di↵erent species or populations can develop very similar complex traits independently,
eg. the biological eye [Mor06], or di↵erent species of yeast developing the same kind of behavior in
the Long-Term Evolution Experiment (LTEE) [GMB+17]. Such phenomenon of path-independent
evolutionary trait in the long run is coined as convergence, or parallelism in microbial evolutions
(there are subtle di↵erences between the two concepts, which go beyond the scope and purpose of this
project).

On the other hand, people have observed historical contingency in evolutionary trajectories, (eg.
rare mutations open up new evolutionary pathways and thus certain complex trait is path-dependent).
This observation was most famously (or rather infamously) theorized by Gould as ”punctuated equi-
librium”. Historical contingency has also been observed in microbial laboratories: eg. Lenski’s LTEE
revealed a background-dependent rare mutant of E. coli can utilize citrate as carbon source, which
wild-type E. coli cannot do [BBL08].

There is thus a long history of debate between contingency and convergence as the dominant driving
force on evolutionary dynamics. It is known that evolutionary dynamics is essentially governed by
parameters including the population size, mutation rate per individual U and the fitness landscape
X(~g), where X(~g) denotes the fitness of a specific genotype ~g. Perhaps surprisingly, rich and complex
dynamics can happen even with a simple fitness landscape without epistasis, for example in a small
population where drift is a dominant force.

For our purpose, we want to single out the e↵ect of the fitness landscape and ask how contingency or
convergence phenomenon would change based on the ”ruggedness” of the fitness landscape. Therefore,
we would choose the parameter regimes that ignore drift (N ! 1) and maybe with strong selection
and weak mutations (so that the selective adaptive walk is most pronounced), and still maintain
somewhat realistic and relevant for real organisms.

Even with simplifications of the model, the task is still di�cult due to the extremely high dimension
of genotype space. In the following chapters, we introduce a framework of exploring the question of
historical contingency depending on the fitness landscape. The main steps involve identifying a rugged
fitness landscape simple but good enough to generate contingency behavior, choosing workable models
to describe the evolutionary dynamics and finally quantifying the contingency phenomenon with some
metric.
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2 Choice of Evolutionary Dynamical Models

There exists a large set of viable models to describe evolutionary dynamics, depending on the level
of details in the problem. Of these, two specific models stood out and we will focus on them in this
chapter.

2.1 Quasi-Species Equation

The quasi-species model was first developed to describe the evolution of an infinite population of DNA
sequences [EMS89]. If we denote fi the frequency of the genotype i, Qij the mutation matrix and Xi

the fitness of genotype i (which is taken to be fixed constant), then the time dynamics of fi is

dfi
dt

=
X

j=1

fj(t)XjQji � fiX̄ (1)

where X̄(t) =
P

i fi(t)Xi is the average fitness of the population. Notice that we depart from the
traditional notation for the fitness and frequency in the literature, to be consistent with the fitness
class model we will introduce later.

The mutation matrix is easy to be calculated from per-site mutation rate µ as

Qij =
µ

|A|� 1

d(i,j)
(1� µ)L�d(i,j) (2)

where d(i, j) is the hamming distance between the two genotypes and L is the total sites of the genome,
and |A| is the genetic alphabet cardinality (eg. |A| = 4 for the real genetic code ”A,T,C,G”).

Even without drift, the full dynamics of the quasi-species equation is quite complicated as the
average fitness depends on fi. However, the equilibrium distribution is easy to obtain since it is
equivalent to solving an eigenvalue problem. This will aid us to characterize the fitness landscape
given the equilibrium distribution f⇤

i , as we will see later.
We can perhaps only keep track of the single or double point mutations (i.e. d(i, j)  2 as the

multi-point mutation becomes exponentially improbable. This will simplify the mutation matrix and
thus might aid us to write down the full dynamics of the quasi-species equation.

2.2 Distribution of Fitness Classes

The quasi-sepcies equation has the benefit of completely characterizing the evolutionary dynamics of
each genotype but it may not be the most feasible model due to the large dimesion of the genotype
space and degeneracy in fitness. Here we consider instead the evolution of fitness classes, where the
genotypes are grouped together according to their fitness strengths.

The dynamical equation for fitness distribution f(X, t) can be written as

@f(X, t)

@t
= (X � X̄)f(X, t) + U

Z
⇢(s)(f(X � s, t)� f(X, t))ds+

r
f

N
⌘(X, t) (3)

where again X̄ ⌘
R
Xf(X, t)dx is the average fitness, and the selection term is the same as before,

except grouped with the same fitness classes. Notice however the mutation term is easier than the
quasi-species equation, and the total e↵ect of mutation matrix and fitness landscape is combite into
the distribution of fitness (DFE) U⇢(s). Lastly, the drift term is a complicated object that depends on
the population size and is constrained to fix the population size to be constant. In the large population
(deterministic) limit, we can neglect the drift term and focus on the quantity hf(X, t)i averaged over
the statistical ensemble.

Using this fitness class model, we can easily compute the average fitness dynamics

X̄(t) =

Z
sU⇢(s)pfix(s) (4)

where pfix(s) is the fixation probability of a mutation of e↵ect size s that can be calculated from
the evolutionary equation. Thus given a hypothesized DFE U⇢(s), we can compare the theoretical
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prediction with the experimental fitness trajectory data (similarly with mutation accumulation), which
was described in [GD14].

The main challenge, though is to relate the DFE to the epistatic structure of the fitness landscape
in a useful way, which we will explore next.

In a nutshell, the quasi-species equation has main advantage of characterizing the deterministic
dynamics completely for genotypes given a fitness landscape but can be very ine�cient due to degen-
eracy; whereas the fitness class model presents exactly the opposite challenge. For our purpose of the
project, choosing models depending on the fitness landscape perhaps is the right path forward.

3 Characterizing the Fitness Landscape

The first step is to construct a realistic fitness landscape that could generate the behavior we desire.

3.1 Fitness Landscape Inference

To get a sense of what a real fitness landscape could look like, we first turn to a case study of inference
from the viral population data.

[SDGM+15]Seifert et. al used the Swiss HIV Cohaort Study data from two patients and tried
to infer from the sequencing genotypic data what their corresponding fitness is. They assumed that
by the time of sequencing, the viral evolution has reached equilibrium distribution governed by the
quasi-speicies equation. Therefore, the equilibrium distribution is given by Equation (1) as

X̄(f,X) ~f⇤ = QTdiag(X) ~f⇤ (5)

Thus the fitness landscape vector ~X can be inferred by solving the linear algebra equation. Since the
absolute magnitude of fitness does not matter in the equilibrium, we can assume X̄ = 1 in equilibrium,
thus removing one degree of freedom. Then the fitness is given by

~X = diag(f)�1Q�1 ~f⇤ (6)

With Bayesian MCMC sampling technique (omitted here), the fitness landscape thus can be ob-
tained and it is visualized in Figure 1.Thus we see that there is a vast majority of nearly neutral
haplotype network, connected with a few really fit mutants in the fitness landscape.

The biggest challenge of this method of inference is exactly the assumption of reaching evolutionary
equilibrium for the viral population, which might not be so bad after-all if we assume this is some sort
of quasi-equilibrium.

Another step towards analyzing the epistatic structure of the inferred fitness landscape is to identify
the quantitative trait locus or measure the hamming distance between di↵erent mutants to get a better
sense of how the really fit mutant emerges from epistatic interactions. This hopefully would aid us to
construct a realistic model of fitness landscape.

3.2 Microscopic vs. Macroscopic Epistasis

In the two preceding models of evolutionary dynamics, we have identified ~Xi (fitness vector) and ⇢(s)
as describing the action of fitness background. Thus the crux of the challenge, if using the fitness
class model, is to relate ⇢(s) to ~Xi that describes the genotype fitness. Traditionally the epistatic
interactions refer to the fitness e↵ect of certain mutation being dependent on its genetic background.
However, this does not directly translate to a non-constant DFE in the fitness class model. Good et.
al [GD14] especially distinguished the two as microscopic and macroscopic epistasis. They showed
that even without microscopic epistasis, there can still be seemingly epistatic phenomon such as the
diminishing return of fitness improvement due to ”running out of beneficial mutation” e↵ect. Similarly,
we can equally imagine a world where ⇢(s) does not change with microscopic epistasis.

In full characterization, the DFE ⇢(s|~f) depends on the distribution in the genotype space ~f .

To simplify, in the literature of uncorrelated landscape people assume that ⇢(s|~f) = ⇢(s| ~X) where
~X is the distribution in the fitness space rather than the genotype space. Much progress then can
be made by assuming certain structure of ⇢(s|X), (eg. exponential due to extreme value statistics
assumption [Orr03] or diminishing return dependent on X [WRL13].However, to model the contingency
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Figure 1: Fitness landscape inference from [Orr03].Rank fitness landscapes of the haplotypes in
each of two patients. A directed edge i ! j exists between haplotypes i and j if the posterior fitness
di↵erence Xj � Xi can credibly be inferred to be > 0, i.e., if, given the model, there is evidence for
haplotype j being fitter than haplotype i. Both graphs possess the transitive property; i.e., if j is fitter
than i (indicated by an edge i ! j) and k is fitter than j, then k is also fitter than i and a directed
path exists from i to k. Dark gray vertices possess credibly larger than average, light gray vertices
possess average, and colorless vertices possess lower than average fitness X̄ = 1.

phenomenon, we really need the details of microscopic epistatisis probably localized in some region
of the genotype fitness landscape, but not necessarily localized in ⇢(s| ~X), as we can imagine there is
some lower fitness plateau followed by a sudden jump to a really fit mutant in the nearby genotype
space due to strong microscopic epistasis (Figure 2).

Therefore, modeling contingency phenomenon needs a smart combination of thinking about both
the microscopic and macroscopic epistasis.

3.3 Criteria of a Contingency Fitness Landscape

We now turn to a first attempt at characterizing the fitness landscape for contingent adaptations. As
argued by [BBL08] contingent adaptations should tend to be complex and require multiple steps, some
of which might not even be beneficial given other more fit evolutionary pathways.

Furthermore, the prevalent microscopic epistasis besides such rare and pronounced contingency
epistasis can be tuned antagonistically, as described by [DWF07] as a more realistic model for long-
term evolution.

Intrigued by the visualization of haplotype network, we attempt to draw here a mutation network
in the fitness landscape to describe in a very conceptual level how contingency could happen (Figure
2).

3.4 Toy Model for Contingency Fitness Landscape

Inspired by the conceptual visualization, we try to come up with concrete construction of epistatic
structure. Stuart Kau↵man’s NK model is a simple way of generating random fitness landscapes of
tunable ruggedness, which can be written as

X(~a) =
LX

i=1

bi((aj)j2~ei) (7)

where ~a denotes the genotype of L sites and bi denotes the fitness contribution of allele ai, and ei is
the interaction structure of locus i.
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Figure 2: Conceptual fitness landscape for a contingent mutation.The rare yet really fit muta-
tion (colored red) is dependent on which nearly-neutral haplotype networks evolution chooses among
its potential pathways.

In addition to this, we can add some really large fitness peaks adjacent to a large nearly-neutral
haplotype network in an ad-hoc way, just as depicted in Figure 2. The exact details have not been
thought through, but it might simply involve tuning the bi’s in some region.

Once the fitness landscape is complete, we need to translate it into the macroscopic DFE U⇢(s|~f),
which again is a formidable task. This can be done in a perturbative way perhaps.

Finally, we need to characterize the ruggedness of the landscape using a viable metric.

4 Quantifying the Contingency Phenomenon

After generating a realistic yet simple fitness landscape for the contingency dynamics, we now should
quantify exactly what we mean by historical contingency. In the deterministic model, there is no such
sense of ”replaying the tape of life” since by defination it is deterministic. So we can turn to the
leakage rate to the fitness spikes as a way of describing the contingency phenomenon. For example,
we can calculate the leakage rate given initial population centered at some random point in the fitness
landscape, versus the leakage rate given the initial population centered exactly nearby the fitness spikes
(Figure 2).

The exact metric should be carefully designed and requires more reading into the literature.

5 Summary

In conclusion, interesting phenomenon of contingency and parallelism have been observed in evolution-
ary dynamics, but it remains a challenge to quantitatively characterize them depending on the fitness
landscape. In this project we aim to generate simple and realistic fitness landscape in describing the
contingency and hope to discover a law that relates the contingency to the ruggedness of the fitness
landscape. To do this, we pick the fitness class model to describe the evolutionary dynamics, but
have to work hard to get the distribution of fitness e↵ect (DFE) right that describes the microscopic
epistatic structure. Simplifying our model is key to the success of this project and we welcome any
suggestion on how to streamline the assumptions and neglect irrelevant details.
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