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We will examine a modified version of the evolutionary language game introduced in ”The Evolution
of Language” (Nowak and Krakauer, 1999). Specifically, we relax the assumption that all concepts are
weighted equally, and introduce a mutant who can communicate a previously ‘undefined’ concept.

Our modifications were inspired by the idea that small subsets of a larger population may come up
with new words for previously unnamed concepts. For example, the scientific community continues to
create words to describe new discoveries. Teens invent abbreviations during texting to express di↵erent
emotions. In the early stages of language development, humans must also have created new words to
express increasingly abstract concepts. We did not see a mechanism for this creative process to reach
fixation in the existing model.

The Basic Model: An Evolutionary Language Game

We examine Nowak’s (1999) language game on a finite population, with a language L defined by sending
and receiving matrices Pm⇥n, Qn⇥m. We have the following criterion for the sending and receiving matrices:
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where P,Q 2 R+
n⇥m and

Pm
j=1 pij = 1 8i,

Pm
i=1 qji = 1 8i. If a sender P interacts with receiver Q, then

the probability that they successfully communicate concept i is
P

j=1 pijqji. Since there are n concepts,
we define the “communication potential” of a language as
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nX
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pijqji = tr(PQ).

The payo↵ function for communication between individuals with two di↵erent languages L1 : (P1, Q1) and
L2 : (P2, Q2) is

f [(P1, Q1), (P2, Q2)] =
1

2
tr(P1, Q2) +

1

2
tr(P2, Q1) = f [(P2, Q2), (P1, Q1)],

since we assume that each individual has equal probability of being the sender or receiver. This yields a
symmetric payo↵. The average payo↵ of the communication game for an individual, given its own type
(language) and the languages present in the rest of the population, is equal to its fitness when analyzing
replicator dynamics.

Pawlowitsch (2007) finds that, in a finite population, the only evolutionary stable strategies in this game
are bidirectional (bijective) languages, where one concept is associated with one signal with probability 1
for both senders and receivers. In other words, pij=qji for all concepts i and signals j, this value is either
0 or 1, and there is exactly one 1 entry in each column and each row of both the sending and receiving
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matrices. This is true if and only if a language is “e�cient,” or, when P = QT . Intuitively, individuals
send concepts with signals that they themselves would understand to have the same meaning.

Our Modification: Concept Weighting

We first relax the assumption that all concepts have equal weights. In our adapted model, the successful
communication of certain concepts gives a higher fitness payo↵ than others. So the payo↵ of an interaction
becomes tr(WPQ), where W is a n ⇥ n diagonal matrix of concept weights. We retain the assumption
that all players have identical priorities, so W is the same for an entire population.

Ex. 1: Concept weights for non-bijective languages.
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So the payo↵ for each protolanguage against itself under equal weights is simply
f [(P1, Q1), (P1, Q1)] = f [(P2, Q2), (P2, Q2)] = 2, since the last two concepts (the
last two rows of P1, the last two columns of Q1) are mis-communicated under L1,
and the first two concepts are mis-communicated under L2, so each language only
has a payo↵ 2 out of possible total payo↵ 4. However, suppose we introduce the
following weight matrix

W =
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where ! > 0 is small. Now, L2 has a greater fitness than L1, since it correctly
communicates the more ‘important’ (heavily weighted) final concept.

f [(P2, Q2), (P2, Q2)] = tr(WP2Q2) = tr(
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We see that varying the weight distribution can result in unequal fitness levels for
languages with the same communicative potential, but di↵erent concepts communi-
cated correctly.

However, as shown by Pawlowitsch (2007), e�cient languages are the only ESS’s in a finite population.
But if all languages are one-to-one mappings from all concepts to all signals, then every language will have
the same payo↵, even with varying concept weights.
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We therefore a consider a case where n 6= m. Specifically, let n = m + 1, so that there must be one
concept that is unmatched with a signal in an e�cient language. In this case, two unique e�cient languages
will have a di↵erent set of matched concepts. Below, we show that (somewhat obviously), the language
with the ‘heavier’ set of matched concepts will have a fitness advantage.

Ex. 2: Concept weights with e�cient languages, n = m+ 1
Consider the following languages L : (P,Q) and L0 : (P 0, Q0), which are e�cient

under our slightly modified formulation of e�ciency, where one concept remains
unmatched. Here, we have n = m + 1 = 4, m = 3. (Recall that for all e�cient
languages, Ql = P T

l .)
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Suppose we have the same matrix of concept weights, W , as in Example 1. As
expected, we have

f [(P,Q), (P,Q)] = 3 < 3 + ! = f [(P 0, Q0), (P 0, Q0)]

since concepts 1, 2, and 4, which L0 communicates correctly, have a greater total
weight than concepts 1-3, which L communicates correctly.

Further Analysis and Modifications

As described in Nowak et. al (2004), symmetric payo↵ yields clean results. The introduction of a
mutant strategy (P 0, Q0) into a population of (P,Q) will lead to fixation with probability greater than
1
N , i↵ f(L0, L) � f(L,L) > f(L0, L0) � f(L,L). We plan to investigate this result on this model with our
modifications, and the condition for selection opposing the mutant invasion.

Other modifications to Nowak’s model we may explore are:

• Eliminating the assumption that individuals are senders and receivers with equal probabilities. For
example, we would have f(L1, L2) = ↵tr(P1Q2) + (1 � ↵)tr(P2Q1), where ↵ 6= 1

2 . If ↵ > 1
2 , then

individual 1 is the sender more often than the receiver when interacting with individual 2. In real
life, ↵ translates to the idea of ”chattiness”, i.e. how much we talk instead of listen.

• Introducing a cost to communication, for all senders, or for senders of a certain language.

• Introducing di↵erent concept-weight matrices for the non-mutant and mutant as senders. For exam-
ple, creating W1 and W2 with di↵erent values along the diagonal, so that f(L1, L2) =

1
2tr(W1P1Q2)+

1
2tr(W2P2Q1). In real life, this is reflected by the idea that we experience a benefit, happiness hor-
mones, from talking about ourselves or our favorite subjects.

We plan to graph frequencies of the mutant and non-mutant over time using Mathematica.
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