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1. INTRODUCTION

Evolutionary game theory is a vast subfield of evolutionary dynamics which models the

interactions of species through dynamical systems using game theory. Within evolution-

ary game theory, there are further specializations of games with weak or strong selection,

mutation, drift, populations with graph structure, populations with group structure, and

finite- and continuous-strategies.

Perhaps the most general frameworks of evolutionary games are those on populations

with structure, introduced by [LHN05], as games without structure arise as well-mixed

cases of structured populations. As such, we narrow our focus to the subfield of evolu-

tionary graph theory.

Within evolutionary graph theory, one of the most commonly considered games is the

Prisoner’s Dilemma or donation game. In this game, there are two actions, cooperating

C or defecting D, with the payoff matrix A from Equation 1.1, where b > c > 0 are real

parameters.

(1.1) A =

C D[ ]
C b − c −c
D b 0
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A comprehensive summary of the dynamics of this game in scenarios of weak and

strong selection dynamics with continuous-strategies on two players, contiuous-strategies

with well-mixed (finite- or infinite-) populations, and in finite-strategy structured popu-

lations, particularly the subset of these problems where the interaction and reproduction

graphs are equal, can be found in [Now06]. This subset of results naturally raise the chal-

lenge of describing the dynamics of weak and strong selection with continuous-strategies

in structured populations.

To answer this question, [ZKT12] analyzed continuous-strategy evolutionary dynamics

under strong selection on graphs playing the donation game, finding largely contrasting

empirical results from discete-strategies on graphs. In particular, continuous-strategies

allowed for statistically significantly more frequent evolution of cooperating strategies

than finite-strategies, suggesting differing equilibria of the systems.

In the case of weak selection, [ZZL11] found continuous-strategy analogues for many

discrete-strategy results in the donation game framework on regular graphs, in particu-

lar the result that if b/c > k, where k is the degree of the regular population graph and

assumed to be much less than the population size, then cooperation is favored asymp-

totically. These theoretical results were found to hold empirically on non-regular graphs,

where k instead signifies the average degree of the population graph.

Despite the positive empirical results of [ZKT12] and [ZZL11] for the donation game

on general population graphs and continuous-strategies, there is no noted approach to

generalize the theoretical approaches from regular graphs to the more general graphs

considered in finite-strategy games. We hope to provide one such framework for theo-

retical analysis of general evolutionary games on arbitrarily structured populations with

continuous-strategies.

In particular, the work of [SVS20] has introduced a sheaf theoretic methodology of for-

malizing so-called open dynamical systems, a generalization of the dynamical systems con-

sidering in most evolutionary dynamics literature where the dynamical system may be

exposed to “inputs” that affect the dynamics and exposes “outputs” to other dynamical
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systems. In this language of “inputs” and “outputs”, it is easy to then describe “systems

of dynamical systems” where inputs are provided by outputs of other systems. As an

illustrative example [JM21], the Lotka-Volterra equations can be formed as an open dy-

namical system.

An additional benefit of the sheaf theoretic approach to open dynamical systems in

[SVS20] is the notion of “synchronized systems”, where a discrete system can be related

to a continuous system by correlating their time clocks. This makes the wiring diagrams

of synchronized systems a promising framework to analyze general continuous-strategy

evolutionary games in structured populations, a goal we describe in further detail in Sec-

tion 2.

2. MODEL

We describe three different leading approaches to open dynamical systems, each of

which could prove to be a fruitful avenue of research for evolutionary graph dynamics

in generalized finite and infinite strategies. The three leading theories are those of (see

referenced works for notation and definitions)

(Ti) Polynomial functors and the category Poly to describe categories and dynamics

[SN21],

(Tii) Time categories C (for discrete systems, ˜IntN and for continuous systems, ˜IntR), a

synchronized time topos ˜Int/ Sync, wiring diagram categories WC, wiring diagram

algebras WW → Cat, machines SpnC : WC → Cat, and synchronized machines

MchSync : W ˜Int/ Sync → Cat to describe sheaf theoretic open dynamical systems

[SVS20],

(Tiii) Bundle categories Bun, bundle doctrines (Bun, T), lenses of bundle categories LensBun,

interfaces of bundles Bun in the interface category Interface, and the category of

bundle doctrine dynamical systems Dyn : Interface → Cat to develop covariant

and contravariant theories of open dynamical systems [JM21].
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We note that all of these theories are connected, as the topoi ˜Int and ˜Int/ Sync as well as

the machines SpnC and MchSync constructed in (Tii) [SVS20] are embedded in the polyno-

mial functors and category Poly of (Ti) [SN21], and in turn the covariant and contravariant

bundle doctrines (Bun, T) and resulting dynamics Dyn of (Tiii) are too contained within

Poly of (Ti).

Each of these theories is quite verbose and intricate, and so we present now only a

heuristic guiding approach to modeling evolutionary graph dynamics as open dynamical

systems, and leave the specifics of each theory’s model to future work as noted in Section

3.

In essence, an open dynamical system (in the notation of [JM21]) can be characterized

as having input variables I, output variables O, internal state S, a readout map r : S → O,

and an update map u : I × S → S. A wiring diagram (in the sense of [SN21] and [SVS20])

consists of many open dynamical subsystems who’s inputs through time are dictated by

some subset of the other open subsystems’ outputs. A graph structure can then clearly

be developed into a wiring diagram, where the wiring is determined by the edges, if

the subsystems’ readout and update dynamics are specified (as well as their inputs, out-

puts, and internal state). In the setting of evolutionary graph theory, we aim to model

each individual in the population as an open subsystem, with internal state equal to their

strategy, update dictated by reproduction, mutation, and selection dynamics (such as the

quasispecies equation), and readout dictated by their fitness.

We note that an added benefit of the theory (Ti) available in wiring diagrams is the

ability to model changes in the wiring through time, i.e. changes in the graph/group

structure of the evolutionary graphs, and thus could help to provide a suitable analogue

to drift.

3. FUTURE WORK

This hierarchy of theories suggest several approaches that could be taken to general-

ize evolutionary graph dynamics to open dynamical systems, as one may note that the
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inclusions of (Tii) and (Tiii) within (Ti) would make (Ti) the most natural choice for a

more general formalization of open dynamical systems on evolutionary graphs, but in

some sense loses the granularity of synchronized machines of (Tii) or the specification of

covariant and contravariant systems provided by (Tiii).

To balance this tradeoff, we make note that (Tiii), while the least general, provides a

result that the open dynamical systems may be described as a form of “matrix arithmetic”

akin to the well-understood approaches currently taken in evolutionary graph dyanmics.

As such, (Tiii) seems an appropriate theory in which to initially generalize evolutionary

graph dynamics to open dynamical systems.

With this formalization in mind, then (Tii) provides an accesible template to synchro-

nizing finite and infinite open dynamical systems, and to some extent characterizes the

relationships between finite and infinite systems. We hope that the formalization from

(Tiii) could be bootstrapped with (Tii) to provide continuous time analogues of the well-

characterized finite evolutionary graph dynamics that are currently known.

Finally, (Tiii) as the most general would be the final step in a full formalization of evo-

lutionary graph dynamics through open dynamical systems.

At each steps of these increasingly general theories and formalizations, we hope that

we could reproduce the known results of evolutionary graph dynamics in the various for-

malizations, showing the soundness of the formalization. After showing this soundness,

we hope the more robust theories could provide currently unknown results.

We also make final mention Poly of (Ti) and bundles of (Tiii) has historically been devel-

oped in an effort for improving the speed of numerical approximations of large systems

with repeated subparts, much like those observed in evolutionary graph dynamics, and

would hope to explore these efficient approximations as empirical justification of our the-

orization.

This proposed plan would hopefully illuminate evolutionary graph theory with the

added tools of open dynamical systems, or in failing could also characterize short-comings

of open dynamical systems as currently formalized.
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