
1 1EVOLUTION OF VIRULENCE

EVOLUTIONARY CONSIDERATIONS of host–parasite interactions pro-

vide a fascinating topic for experimental and theoretical biologists. I use the

term “parasite” to denote anything that lives and multiplies inside another or-

ganism and usually causes some harm. Phages are parasites of bacteria. Many

viruses and bacteria are parasites of humans. There are many single and multi-

cellular eukaryotic parasites that cause infectious diseases in humans and other

animals. Our genome contains “parasitic” DNA that simply wants to increase

its own abundance without much concern for other genes.

Parasites are as old as life itself. As soon as there were self-replicating ma-

chines, there were parasites to exploit them. Much of the design of individual

cells and higher organisms can be explained as an adaptation to defend against

parasites and limit the damage that is associated with infection. Bacteria have

enzymes to cut viral genomes into pieces. Plants produce a vast library of

chemicals in self-defense. The vertebrate immune system is a highly compli-

cated, costly organ with the task of protecting against infectious agents. Even

sexual reproduction has been explained as an adaptation to maintain genetic
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diversity and to help evolve away from parasites. In return, sexually trans-

mitted parasites use this mode of reproduction of their hosts to their own

advantage.

The conventional wisdom of many medical textbooks has been that well-

adapted parasites are harmless to their hosts. This notion is based on the

argument that killing its host does not help a parasite that relies on its host

for reproduction. Some well-known observations seem to support this view.

A much-cited example is the evolution toward reduced virulence of the myx-

oma virus in Australian rabbit populations. A more recent example, which

we encountered in the previous chapter, is the observation that long-standing

primate lentivirus associations seem to be apathogenic. Simian immunode-

ficiency viruses (SIV) apparently do not cause disease in their natural hosts.

These viruses and their hosts have been coevolving for millions of years. In

contrast, the human immunodeficiency virus (HIV) entered the human pop-

ulation only a few decades ago and causes a fatal disease.

There are also many counterexamples, however, where long-standing host–

parasite systems have not evolved to become harmless. A major example is

human malaria, which is estimated to have caused more human death than

any other infectious disease. Another well-known example is provided by ne-

matodes in fig wasps. These nematodes have a strong detrimental effect on

their host, despite the observation that fig wasps preserved in twenty-million-

year-old amber have already been infected by nematodes.

Mathematical epidemiology is one of the oldest disciplines of theoretical

biology. In 1760 Daniel Bernoulli, hoping to influence public health policy,

developed a mathematical model to evaluate the effectiveness of variolation

against smallpox. In 1840 William Farr performed a statistical analysis of

deaths from smallpox in England and Wales. In 1908 Ronald Ross, who had

discovered that malaria was transmitted by mosquitoes, formulated a sim-

ple mathematical model to explore the relationship between the prevalence

of mosquitoes and the incidence of malaria. William Ogilvy Kermack and

Anderson Gray McKendrick, in 1927, established the important “threshold

theory”: introducing a few infected individuals into a population will cause

an epidemic only if the density of susceptibles is above a certain threshold.

In 1979 Roy Anderson and Robert May formulated many new approaches for

theoretical epidemiology and laid the foundation for much subsequent work.
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They developed simple mathematical models in order to explain laboratory

experiments or epidemiological data. They also studied ecological questions

by analyzing how infectious agents regulate the population size of their hosts.

They emphasized the importance of the “basic reproductive ratio” and its con-

sequences for vaccination programs.

May and Anderson also point out that parasite evolution does not neces-

sarily lead to avirulence, but instead selection works to increase the parasite’s

basic reproductive ratio, R0. If the rate of transmission is linked to virulence,

then selection can favor increasing virulence. They reanalyzed the classical

myxoma virus infection of Australian rabbits and argued that evolution had

led to intermediate levels of virulence. The data actually suggest an equilib-

rium distribution of viruses with different levels of virulence; after many years,

both the most virulent and the least virulent virus strains are still present in the

virus population. Most infections are caused by virus strains with intermediate

levels of virulence.

In this chapter we will study the evolutionary dynamics of parasites, but

will assume that the host does not evolve on the time scale that is under con-

sideration. This is a good assumption because, in general, parasites evolve

much faster than their hosts. We begin by investigating the basic model of epi-

demiology, where parasite evolution maximizes the basic reproductive ratio.

This result is based on the assumption that an already infected host cannot

be superinfected by another parasite strain. We will subsequently remove this

constraint and explore the evolutionary dynamics of superinfection. Superin-

fection means that an already infected host can be infected and taken over by

another parasite strain.

In the classification of Anderson and May, this whole chapter deals with

“microparasites,” which typically include viruses, bacteria, and protozoans.

They have small sizes, short generation times (compared with those of their

hosts), and high rates of direct reproduction within their hosts. In contrast

“macroparasites,” which comprise parasitic helminths and arthropods, have

longer generation times than microparasites and reproduce only very slowly

within a host individual. Mathematical models for microparasites are typi-

cally formulated in terms of infected and uninfected (and immune/recovered)

hosts. Models for macroparasites, in contrast, must keep track of the number

of parasites in individual hosts.
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Figure 11.1 The basic model of infection dynamics describes the spread of an infectious
agent (a parasite) in a population of hosts. An infected host meets an uninfected host
and passes on the infection. It is often useful to think of biological dynamics as chemical
kinetics: here an infected host “reacts” with an uninfected host to produce two new
infected hosts. The rate constant of this reaction, β , denotes the infectivity of the
parasite. The normal mortality of hosts is described by the death rate u. The disease-
induced mortality (virulence) is given by v. Uninfected hosts enter the population at a
constant rate, k.

1 1 . 1 THE BASIC MODEL OF INFECTION BIOLOGY

The basic epidemiological dynamics of a host–parasite interaction (Figure

11.1) can be described by the following system of ordinary differential equa-

tions

ẋ = k − ux − βxy

ẏ = y(βx − u − v)
(11.1)

Uninfected and infected hosts are denoted by x and y, respectively. In the ab-

sence of the parasite, the host population is regulated by a simple immigration-

death process, with k specifying the constant immigration rate of uninfected

hosts and u their natural death rate. This represents a simple, if somewhat

artificial, way of attaining a stable host population in the absence of infec-

tion. Infected hosts transmit the parasite to uninfected hosts at the rate βxy,

where β is the rate constant characterizing the parasite’s infectivity. Infected

hosts die at the increased rate u + v. The parameter v defines the virulence of

the infection; it is the excess mortality associated with infection. More gener-

ally, virulence can be defined as the parasite’s effect on reducing the fitness of

infected hosts.
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Figure 11.2 The basic reproductive ratio, R0, of
an infectious agent is given by the number of
secondary infections that are caused by one
infection that is introduced into an uninfected
population of hosts. R0 is a crucial quantity that
determineswhether or not a parasite can spread in a
host population. IfR0 < 1, then the parasite will die
out after a few rounds of infection. If R0 > 1, then
an explosive increase in the number of infections
(an epidemic) will occur.

The basic reproductive rate of the parasite is defined as the number of new

infections caused by a single infected host if introduced in a population of

uninfected hosts (Figure 11.2). For system (11.1), the basic reproductive ratio

is given by

R0 = β

u + v

k

u
. (11.2)

This can be understood as follows. The average lifetime of an infected host

is 1/(u + v). The rate at which one infected host produces new infections is

βx. The product of these two quantities is the average number of new infec-

tions caused by a single infected host in its lifetime if there are x uninfected

hosts. The equilibrium abundance of uninfected hosts prior to the arrival of

the infection is given by x = k/u. Hence equation (11.2) represents the basic

reproductive ratio, R0, which is a crucial concept of epidemiology.

If R0 is less than one, then the parasite cannot spread. The “chain reaction”

is sub-critical: a single case might cause a few additional cases, but then the

transmission chain will die out again. An epidemic cannot take place.

If R0 is greater than one, then the chain reaction is super-critical. There will

be an exponential increase in the number of infected hosts. An epidemic will

occur. After some time, the number of infected individuals will peak and then

start to decline. Damped oscillations lead to a stable equilibrium given by

x∗ = u + v

β
y∗ = βk − u(u + v)

β(u + v)
(11.3)
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A successful vaccination program must reduce the population size of sus-

ceptible hosts such that the basic reproductive ratio is below one. If R0 = 5,

then more than 80% of the population must be vaccinated to prevent an epi-

demic. If R0 = 50, then more than 98% of the population must be vaccinated.

In general, successful vaccines are those that are directed against infectious

agents with low reproductive ratios.

I call system (11.1) the “basic model of infection biology,” because it de-

scribes not only the dynamics of an infectious agent in a population of hosts

but also the dynamics of a virus within a single infected host. In the latter case,

x and y denote, respectively, uninfected and infected cells. The application of

this model to HIV infection is described in my book Virus Dynamics, coau-

thored with Robert May.

1 1 .2 SELECTION MAXIMIZES THE BASIC REPRODUCTIVE RATIO

To understand parasite evolution, we have to study the epidemiological dy-

namics of at least two parasite strains competing for the same host. Extending

equation (11.1), we obtain

ẋ = k − ux − x(β1y1 + β2y2)

ẏ1 = y1(β1x − u − v1)

ẏ2 = y2(β2x − u − v2)

(11.4)

The two parasite strains differ in their infectivity, β1 and β2, and in their degree

of virulence, v1 and v2. The basic reproductive ratios of strains 1 and 2 are,

respectively, given by

R1 = β1

u + v1

k

u
(11.5)

and

R2 = β2

u + v2

k

u
. (11.6)

Coexistence between the two parasite strains is only possible if R1 = R2, which

is ungeneric. At equilibrium, the time derivatives, ẋ, ẏ1, and ẏ2, must be zero.
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Furthermore, stable coexistence between strain 1 and strain 2 requires that

both y1 and y2 are positive at equilibrium. From ẏ1 = 0 and y1 > 0, we obtain

x = (u + v1)/β1. But from ẏ2 = 0 and y2 > 0, we obtain x = (u + v2)/β2. Both

conditions can only hold simultaneously if R1 = R2. Generically, however, we

expect that R1 �= R2, in which case coexistence is not possible.

If both basic reproductive ratios are less than one, R1 < 1 and R2 < 1, then

the only stable equilibrium is the uninfected population,

E0 : x = k

u
y1 = 0 y2 = 0 (11.7)

If R1 > 1 > R2, then strain 2 becomes extinct and the only stable equilib-

rium is

E1 : x∗ = u + v1

β1

y∗
1 = β1 − u(u + v1)

β1(u + v1)
y∗

2 = 0 (11.8)

If R1 < 1 < R2, then strain 1 becomes extinct and the only stable equilib-

rium is

E2 : x∗ = u + v2

β2

y∗
1 = 0 y∗

2 = β2 − u(u + v2)

β2(u + v2)
(11.9)

If both basic reproductive ratios exceed one, R1 > 1 and R2 > 1, then the

strain with the higher basic reproductive ratio will outcompete the strain with

the lower basic reproductive ratio. If R2 > R1, then all infected individuals

will eventually carry strain 2, while strain 1 becomes extinct. The system will

converge to equilibrium E2.

Note that R2 > R1 is precisely the condition that strain 2 can invade equilib-

rium E1. This means that the derivative ∂ẏ2/∂y2, evaluated at equilibrium E1,

is positive. R2 > R1 is also the condition that strain 1 cannot invade equilib-

rium E2. This means that the derivative ∂ẏ1/∂y1, evaluated at equilibrium E2,

is negative. These derivatives characterize the growth rate of an infinitesimal

amount of the invading strain at a particular equilibrium point. We conclude

that E1 is unstable, while E2 is stable. Coexistence between the two strains is

not possible. Therefore strain 2 outcompetes strain 1.

Therefore evolution will tend to maximize the basic reproductive ratio (Fig-

ure 11.3). If there is no constraint between infectivity and virulence, then the
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Figure 11.3 In simple models of
infection dynamics, selection
acts to maximize the parasite’s
basic reproductive ratio. If two
parasites compete for the same
host, then the parasite with
higher R0 will outcompete the
other parasite. Therefore well-
adapted parasites have a high
R0, but not necessarily low
virulence.

evolutionary dynamics will increase β and reduce v. This represents the con-

ventional wisdom that infectious diseases will evolve to become less virulent.

In general, however, we expect an association between virulence v and in-

fectivity β; usually the harm done to hosts (v) is associated with the produc-

tion of transmission stages (β). For certain functional relations between v and

β there is an evolutionarily stable degree of virulence, corresponding to the

maximum value of R0. Other situations allow evolution toward the extreme

values of very high or low virulences. The detailed dynamics depend on the

shape of β as a function of v. It is interesting to note that along some trajecto-

ries where virulence increases, parasite evolution can lead to lower and lower

parasite population sizes (in terms of total number of infected hosts).

If the infectivity is proportional to virulence, β = av, where a is some con-

stant, then the basic reproductive ratio, R0, is an increasing function of viru-

lence, v. In this case selection will always favor more virulent (and therefore

more infectious) strains.

If the infectivity is a saturating function of virulence, β = av/(c + v), then

the basic reproductive ratio, R0, is a one-humped function of virulence. The

maximum R0 is achieved at an intermediate optimum level of virulence given

by vopt = √
cu. If the virulence of a parasite population is greater than vopt,

then selection will reduce virulence. If it is less than vopt, then selection will

increase virulence.
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Figure 11.4 Superinfection means that an already-infected host can be infected by
another parasite strain. There is competition between the two parasite strains in the
superinfected individual; one parasite strain may win this competition and outcompete
theother. A consequenceof superinfection is that natural selection no longermaximizes
the basic reproductive ratio. Instead there can be coexistence of different parasite
strains with different levels of virulence. In general, superinfection leads to increased
virulence beyond what would be optimum for the parasite. Superinfection introduces
competition on two levels: within an infected host and in the population of hosts.

1 1 . 3 SUPERINFECTION

The analysis of the previous section did not include the possibility of superin-

fection. An infected host is not susceptible to another infection. We will now

remove this limitation and allow for an infected host to be superinfected by

another parasite strain (Figure 11.4).

We will consider a heterogeneous parasite population with a range of dif-

ferent virulences, and assume that more virulent strains outcompete less vir-

ulent strains within an infected individual. Thus increased virulence provides

a competitive advantage over other parasites in the same host.

For simplicity, we assume that the infection of a single host is always dom-

inated by one parasite strain. Therefore superinfection means that a more

virulent strain takes over a host infected by a less virulent strain. This can be

described by the following system of ordinary differential equations:

ẋ = k − ux − x

n∑
i=1

βiyi

ẏi = yi(βix − u − vi + sβi

i−1∑
j=1

yj − s

n∑
j=i+1

βjyj) i = 1, . . . , n

(11.10)
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Here vi denotes the virulence of strain i. We order the strains such that v1 <

v2 < . . . < vn. A more virulent strain can superinfect a host already infected

with a less virulent strain. The parameter s describes the rate at which superin-

fection occurs relative to infection of uninfected hosts. If either the host or the

parasite has evolved mechanisms to make superinfection more difficult, then

s is smaller than one. If already-infected hosts are more susceptible to acquir-

ing a second infection, then s is greater than one, which means superinfection

occurs at increased rates.

For the numerical simulations shown in Figure 11.5, we assume a functional

relation between virulence and infectivity given by

βi = avi

c + vi

. (11.11)

For low virulence, infectivity increases linearly with virulence. For high viru-

lence, there is a saturation of infectivity at a maximum level. The basic repro-

ductive ratio is given by

R0, i = akvi

u(c + vi)(u + vi)
. (11.12)

The optimal virulence, which maximizes R0, is given by

vopt = √
cu. (11.13)

Figure 11.5 shows the equilibrium population structure of the parasite for var-

ious values of s between 0 and 2. We have assumed k = 1, u = 1, and βi =

Figure 11.5 The equilibrium distribution of parasite strains with different levels of
virulence. The simulation is performed according to equation (11.10) with k = 1, u = 1,
n = 50, βi = 8vi/(1 + vi), and s = 0, 0.2, 1, 2 as indicated. The individual vi are
randomly distributed between 0 and 5. In the absence of superinfection, s = 0, the
strain with the maximum basic reproductive rate, R0, is selected. With superinfection,
s > 0, we find the coexistence of many different strains with different virulences,
vi , within a range vmin and vmax, but the strain with the largest R0 is not selected.
Superinfection does not optimize parasite reproduction. For increasing s , the values
of vmin and vmax increase, as well. The x-axis denotes virulence, the y-axes indicate
equilibrium frequencies (always scaled to the same largest value).
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8vi/(1 + vi). We simulated n = 100 strains of parasites with virulences ran-

domly distributed between 0 and 5. For this choice of parameters, the strain

with a virulence closest to 1 has the largest R0. Indeed we find that this strain

is selected in the absence of superinfection, s = 0. If superinfection is possi-

ble (s > 0), then there is selection of an ensemble of strains with a range of

virulences between two boundaries, vmin and vmax, with vmin > vopt. Thus su-

perinfection has two important effects: (i) it shifts parasite virulence to higher

levels, beyond the level that would maximize the parasite’s reproductive rate;

and (ii) it leads to a coexistence between a number of different parasite strains

with a range of virulences. There are amusing ups and downs in the equilib-

rium densities of strains. A strain has a high equilibrium frequency if the strain

with a slightly larger virulence has low frequency, and vice versa. Only a sub-

set of strains survive at equilibrium. What determines this complicated and

unexpected equilibrium structure?

1 1 .4 AN ANALYTICAL MODEL OF SUPERINFECTION

Let us now derive an analytical understanding of the complexities introduced

by superinfection. Instead of using a constant immigration rate k for unin-

fected hosts, we choose a variable immigration rate that balances exactly the

death of uninfected and infected hosts. This can be done by setting

k = ux + uy +
∑

viyi (11.14)

in equation (11.10). The total number of infected hosts is given by y =∑n
i=1 yi. The sum x + y remains constant and without loss of generality we

choose x + y = 1. We obtain the following system of n equations

ẏi = yi

⎡
⎣βi(1 − y) − u − vi + s

(
βi

i−1∑
j=1

yj −
n∑

j=i+1

βjyj

)⎤
⎦

i = 1, . . . , n

(11.15)

Note that y remains in the closed interval [0, 1].

System (11.15) is a Lotka-Volterra equation. It can be written in the form
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ẏi = yi(Ri +
n∑

j=1

Aijyj) i = 1, . . . , n (11.16)

Here Ri = βi − vi − u. The matrix is given by

A = −

⎛
⎜⎜⎜⎜⎜⎜⎝

β1 β1 + sβ2 β1 + sβ3 . . . β1 + sβn

β2(1 − s) β2 β2 + sβ3 . . . β2 + sβn

β3(1 − s) β3(1 − s) β3 . . . β3 + sβn
...

...
...

. . .
...

βn(1 − s) βn(1 − s) βn(1 − s) . . . βn

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.17)

For an analytic understanding, we take the limit c → 0 in our expression

for βi = avi/(c + vi). Now all parasite strains have the same infectivity, β, and

differ only in their degree of virulence, vi. We obtain

ẏi = yiβ[1 − y − vi + u

β
+ s(

i−1∑
j=1

yj −
n∑

j=i+1

yj)] i = 1, . . . , n (11.18)

This is a Lotka-Volterra equation with Ri = β − vi − u and

A = −β

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 + s 1 + s . . . 1 + s

1 − s 1 1 + s . . . 1 + s

1 − s 1 − s 1 . . . 1 + s
...

...
...

. . .
...

1 − s 1 − s 1 − s . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.19)

This system belongs to a class of Lotka-Volterra equations for which Josef

Hofbauer and Karl Sigmund have shown the existence of a unique globally

stable equilibrium. This equilibrium attracts all orbits from the interior of the

positive orthant. If this equilibrium lies on a face of the positive orthant, then

it also attracts all orbits from the interior of this face.

Equation (11.18) can be rewritten as

ẏi = yiβ[fi − syi]. (11.20)
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Here

fi = 1 − vi + u

β
− (1 − s)y + 2s

n∑
j=i+1

yj . (11.21)

All equilibrium points of equation (11.20) are given by the following relations:

y1 = 0 or y1 = f1/s

y2 = 0 or y2 = f2/s

...

yn = 0 or yn = fn/s

(11.22)

Note that each fi only depends on the total sum y and all yj with j > i.

Suppose we know y; then we can construct a specific equilibrium point in a

recursive “top-down” way:

yn = max{0, fn/s}
yn−1 = max{0, fn−1/s}
yn−2 = max{0, fn−2/s)}

...

y1 = max{0, f1/s}

(11.23)

The notation max{., .} simply denotes the larger of the two numbers. This

equilibrium point has to be stable, because either fi < 0 and hence yi → 0,

or fi > 0 and yi → fi/s.

11.4.1 The Case s = 1
The case s = 1 offers a quick solution, because y drops out of equation (11.23).

Hence the unique stable equilibrium distribution is given recursively in the

following way:
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yn = max{0, 1 − vn + u

β
}

yn−1 = max{0, 1 − vn−1 + u

β
− 2yn}

yn−2 = max{0, 1 − vn−2 + u

β
− 2(yn + yn−1)}

...

y1 = max{0, 1 − v1 + u

β
− 2(yn + yn−1 + . . . + y2)}

(11.24)

This is the only stable equilibrium. For each parasite strain i with equilib-

rium frequency yi = 0, we have ∂ẏi/∂yi < 0 for a generic choice of parame-

ters. Moreover, equation (11.24) corresponds to a simple and elegant geomet-

ric method for constructing the equilibrium configuration of the population

(Figure 11.6).

11.4.2 The General Case s > 0
Let us consider an equilibrium distribution with yi > 0 for i = 1, . . . , n,

which means we count only those strains that are present at equilibrium. From

equation (11.15) we can write
∑i−1

j=1 yj = y − yi − ∑n
j=i+1 yj , to get

yi = Bi − 2
n∑

j=i+1

yj (11.25)

with Bi = [1 − vi+u

β
− (1 − s)y]/s. We obtain

yn = Bn

yn−1 = −2Bn + Bn−1

yn−2 = 2Bn − 2Bn−1 + Bn−2

(11.26)

For even n we obtain y = B1 − B2 + B3 − . . . − Bn = (vn − vn−1 + . . . −
v1)/βs. For odd n we obtain y = B1 − B2 + B3 − . . . + Bn and hence y =
(β − u − vn + vn−1 − . . . − v1)/β. At first sight the expressions for odd and
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Figure 11.6 For s = 1, there is an elegant geometric method to construct the equilibrium
distribution of the parasite population. Suppose there are n strains with virulences v1 to
vn, all between 0 and 1. Start by drawing vertical lines at v1 to vn (shown in blue). Draw
a 45-degree line running up to the left from v = 1; the intersection with the vertical
line at vn determines the abundance yn. This corresponds to yn = 1 − vn. Now mirror
the construction triangle (shaded in blue) at the axis given by the vertical line at vn. The
intersection with the downward-pointing 45-degree line with the baseline determines
the point v = 1 − 2yn. Now there are two possibilities: (i) either vn−1 < v, in which case
draw a new 45-degree line up to the left from v; the intersection with the vertical line
at vn−1 gives yn−1; this corresponds to yn−1 = vn − vn−1 − (1 − vn); or (ii) vn−1 > v,
in which case the strain n − 1 will not be present at equilibrium and the construction
method proceeds directly with strain vn−2, and so on. The figure is self-explanatory. We
choose n = 6 strains. Four of those strains are present at equilibrium; their abundances
are indicated by red bars. Two strains are extinct.

even n look quite different. We want to calculate vmax, the maximum level of

virulence present in an equilibrium distribution for a given s. Assuming equal

spacing (on average), that is, vk = kv1, leads to y = vn/2βs for n even and to

y = 1 − u/β − vn/2β for n odd. (For n odd we have used the approximation

n − 1 ≈ n.) From yn ≥ 0 we derive in both cases
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vmax = 2s(β − u)

1 + s
. (11.27)

This is the maximum level of virulence that can be maintained in an equilib-

rium distribution. For s = 0, this is simply vmax = 0, that is, the strain with

the lowest virulence, which for our choice of parameters is also the strain

with the highest basic reproductive ratio. For s > 1, strains can be maintained

with virulences above β − u. These are strains that are by themselves unable to

invade an uninfected host population, because their basic reproductive ratio

is smaller than one.

Finally resolving the even- and oddities, we insert vmax for vn into the two

different expressions for y and find in both cases

y = β − u

β(1 + s)
. (11.28)

This is the equilibrium frequency of infected hosts. The more superinfection,

the fewer infected hosts.

1 1 .5 DYNAMICAL COMPLEXITIES

Let us now return to the model with different strains having different infectiv-

ities, βi, as given by equation (11.15). Here the solutions need not converge to

a stable equilibrium. Equation (11.15) can lead to very complex dynamics.

For two strains of parasite (n = 2) we may find coexistence (that is, a stable

equilibrium between the two strains) or a bistable situation, where either one

or the other strain wins, depending on the initial conditions. An interesting

situation can occur if s > 1 and strain 1 has a virulence too high to sustain

itself in a population of uninfected hosts (R0 < 1), whereas strain 2 has a

lower virulence but an R0 > 1. Since s > 1, infected hosts are more susceptible

to superinfection, and thus the presence of strain 2 can effectively shift the

reproductive rate of strain 1 above one. Superinfection can stabilize parasite

strains with extremely high levels of virulence.

For three or more strains of parasite, we may observe oscillations with in-

creasing amplitude and period, tending toward a heteroclinic cycle. Imagine
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three parasite strains, each of which by itself is capable of establishing an equi-

librium between uninfected and infected hosts (that is, all have R0 > 1). The

system in which these three strains occur simultaneously has three boundary

equilibria, where two strains always have frequency 0 and the population con-

sists of uninfected hosts and hosts infected by the third strain only. There is

also one unstable interior equilibrium with all three strains present. The sys-

tem converges toward the boundary equilibria and cycles from the first one

to the second to the third and back to the first. The period of such cycles gets

larger and larger. There will be long times where the infection is just domi-

nated by one parasite strain (and hence only one level of virulence), and then

suddenly another strain takes over. Such a dynamic can, for example, explain

sudden upheavals of pathogens with dramatically altered levels of virulence. If

we wait long enough, one of the parasite strains may become extinct by some

fluctuation when its frequency is low. Then one of the two remaining strains

will outcompete the other.

For small values of s all elements of matrix (11.17) will be negative. Such a

Lotka-Volterra system is called “competitive,” and all trajectories will converge

to an n − 1-dimensional subspace, which reduces the dynamical complexities.

This implies that for n = 2 there are no damped oscillations, and for n = 3 one

can exclude chaos.

SUMMARY

◆ The basic reproductive ratio of an infectious agent (parasite) is the number

of secondary infections caused by one infected individual that has been

introduced into a population of uninfected individuals.

◆ Parasite evolution tends to maximize the basic reproductive ratio.

◆ If there is a functional relationship between infectivity and virulence, then

well-adapted parasites need not be harmless. Parasite evolution can lead

to intermediate levels of virulence.

◆ Superinfection means that an already infected host can be infected by

another parasite strain.
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◆ Superinfection triggers intrahost competition for increased levels of

virulence and reduced transmission rates.

◆ Superinfection increases the average level of virulence above what would

be optimum for the parasite population.

◆ Superinfection does not maximize the basic reproductive ratio. Even the

strain with the highest R0 can become extinct.

◆ Superinfection leads to a coexistence of parasite strains with many

different levels of virulence within a well-defined range.

◆ Superinfection can maintain strains with very high levels of virulence,

including strains that are so virulent that they themselves could not persist

alone in an otherwise uninfected host population.

◆ Superinfection can lead to very complicated dynamics, such as heteroclinic

cycles, with sudden and dramatic changes in the average level of virulence.

◆ The higher the rate of superinfection, the smaller the number of infected

hosts. Hence superinfection is not advantageous for the parasite popula-

tion as a whole.
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