
9SPATIAL GAMES

LET US NOW STUDY the deterministic evolutionary dynamics of spatial

games. The members of a population are arranged on a two (or higher)-

dimensional array. In each round, every individual plays the game with its

immediate neighbors. After this, each site is occupied by its original owner

or by one of the neighbors, depending on who scored the highest payoff in

that round. These rules specify a deterministic cellular automaton. John von

Neumann stood at the beginning of both game theory and cellular automata.

In the theory of spatial games, these two approaches meet for the first time.

We will see that spatial effects can dramatically change the outcome of

frequency-dependent selection. In space, strategies can coexist that exclude

each other in a homogeneous setting. Moreover, spatial games have fascinating

mathematical properties and a rich dynamical behavior. We will encounter

spatial chaos, dynamic fractals, and evolutionary kaleidoscopes. Our goal is to

formulate the simplest possible theory for deterministic spatial evolutionary

game dynamics.
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9. 1 SPACED OUT

Consider an evolutionary game between two (or more) strategies. Each player

occupies a position on a spatial grid and interacts with all of its neighbors.

The payoffs from these interactions are added up. In the next generation,

depending on the payoff, each player retains its current strategy or adopts the

strategy of a neighbor.

We want to design a completely deterministic spatial game. This can be

achieved with the following two rules: (i) each player adopts the strategy with

the highest payoff in its neighborhood and (ii) all players are updated in

synchrony.

Figure 9.1 illustrates the rules of the game for a square lattice and the Moore

neighborhood; each cell has 8 nearest neighbors defined by a king’s move on

a chessboard. A player will retain its current strategy if it has a higher payoff

than all of its neighbors. Otherwise the player will adopt the strategy of that

neighbor that has the highest payoff. Note that the fate of a cell depends on

its own strategy, the strategies of the 8 neighbors, and the strategies of their

neighbors. Thus 25 cells in total determine what will happen to a cell. In

the terminology of cellular automata, the transition rules are complex, but in

terms of an evolutionary game they can be stated simply and naturally.

We are studying deterministic evolutionary game dynamics (without mu-

tation) in a population with spatial structure. The transition rules are entirely

deterministic. The outcome of the game depends only on the initial configu-

ration of the population and the payoff matrix.

9.2 SPATIAL COOPERATION

As a specific example, we will explore the most interesting evolutionary game,

the struggle between cooperators, C, and defectors, D. We will find that spatial

games lead to a fascinating new mechanism for the evolution of cooperation,

called “spatial reciprocity.”

Consider the following Prisoner’s Dilemma payoff matrix
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Figure 9.1 The rules of spatial games. Each cell plays the game with all of its neighbors.
In this example, we use a square lattice and the Moore neighborhood, where each
cell has 8 neighbors. The payoff for each player is evaluated. Subsequently each player
compares its own payoff with that of its neighbors and adopts the strategy of whoever
has the highest score. The fate of each cell depends on the state of all 25 cells in the
5 × 5 square that is centered around the cell.

⎛
⎜⎝

C D

C 1 0

D b ε

⎞
⎟⎠ (9.1)

If two cooperators interact, both receive one point. If a defector meets a co-

operator, the defector gets payoff b > 1, while the cooperator gets payoff zero.

The interaction between two defectors leads to the very small positive payoff

ε. This payoff matrix is designed to keep things as simple as possible. For ex-

ploring different evolutionary dynamics, we vary the single parameter, b, and

we choose to set ε → 0.
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On the square lattice with the Moore neighborhood, each individual has 8

neighbors. Therefore, the possible payoffs for a cooperator are given by the

set {1, 2, 3, . . . , 8}. The possible payoffs for a defector are given by the set

{b, 2b, 3b, . . . , 8b}. The discrete nature of the possible payoff values means

that there are only discrete transition points for b that can influence the dy-

namics. For 1 < b < 2, these transitions occur at

8/7 = 1.1428 . . .

7/6 = 1.166 . . .

6/5 = 1.2

5/4 = 1.25

8/6 = 1.333 . . .

7/5 = 1.4

3/2 = 1.5

8/5 = 1.6

5/3 = 1.666 . . .

7/4 = 1.75

9/5 = 1.8

Figure 9.2 shows typical distributions of cooperators and defectors for differ-

ent values of the parameter b. All simulations are performed on a 100 × 100

square lattice. There are periodic boundaries, which means that the edges of

the square are wrapped around to generate a torus. This geometry has the ad-

vantage that all positions on the grid are equivalent. There are no boundary

effects. The initial configuration is obtained at random with half of the cells

being cooperators, the other half defectors.
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The color code is as follows:

Blue represents a C that was a C in the previous generation.

Red represents a D that was a D in the previous generation.

Green represents a C that was a D in the previous generation.

Yellow represents a D that was a C in the previous generation.

Therefore blue and red indicate static cells, while green and yellow show

changing cells. If a picture contains only red and blue, then it is a fixed point

of the evolutionary dynamics: nothing has changed from the last generation,

and nothing will change anymore. The more green and yellow cells, the more

changes are occurring.

For b = 1.10, we observe a rather static pattern. Most cells are cooperators.

There are isolated lines of defectors, which do not change. There are a few

isolated single defectors, which generate squares of 9 defectors only to oscil-

late back to a single defector in the next generation. For b = 1.15, the lines of

defectors oscillate at the end. There are many oscillating positions including

isolated defectors. For b = 1.24, the lines of defectors start to be connected.

There are a few oscillating positions. There are single defectors that oscillate

to squares of 9 defectors, then to crosses of 5 defectors and back to single de-

fectors. For b = 1.35, there is a pulsating network of defectors. Lines oscillate

between thickness one and three. For b = 1.55, there is an irregular but static

network of defectors permeating a world which is still dominated by coopera-

tors.

For b = 1.65, the tide has turned. Defectors have won the majority. Cooper-

ators survive in clusters. The picture is neither static, nor oscillatory, but highly

dynamic. The clusters of cooperators always try to expand. They collide, break

into pieces, and disappear. New clusters are being formed all the time. The

system will certainly run into a cycle eventually (there are only finitely many

states), but the transient can be longer than the lifetime of the universe. For

b = 1.70, the pattern is again very static. There are mostly defectors. Cooper-

ators survive in a few clusters.

Is it possible to understand these observations?
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Figure 9.2 The spatial Prisoner’s Dilemma displays an amazing variety of patterns where
unconditional cooperators coexist with defectors. The figure shows configurations
of 100 × 100 square lattices for seven different parameter regions. There are periodic
boundary conditions, whichmeans the edges arewrapped around to generate a toroidal
universe. The color code is as follows: blue is a cooperator that was a cooperator in
the previous round; red is a defector that was a defector in the previous round; green
is a cooperator that was a defector in the previous round; yellow is a defector that
was a cooperator in the previous round. The more yellow and green in a picture, the
more changes are occurring. An entirely blue and red pattern is completely static. The
payoff matrix is given by equation (9.1). The parameter b denotes the advantage for
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defectors. Cooperators dominate the scene for b = 1.10, 1.15, 1.24, 1.35, and 1.55. For
these parameter values, there are various (static or pulsating) network structures of
defectors in a mostly cooperative world. For b = 1.65 there is a dynamic coexistence
between cooperators and defectors. Cooperators form clusters that grow, collide,
disappear, and fragment to form new clusters. The pattern is always changing, but
the average frequency of cooperators is always very close to 0.30. For b = 1.70 there
are static clusters of cooperators in a frozen world. The initial condition is a random
configuration with 10% cooperators; except for b = 1.70 when the simulation started
with 50% cooperators.
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Figure 9.3 Invasion conditions for defectors. If b > 1 then a single defector gives rise
to a square of 9 defectors, 9D. If b < 6/5, this square returns to a single defector. We
have a period two oscillator. If 6/5 < b < 7/5, then the 9D square turns into a 5D cross,
which turns into a single defector. We have a period three oscillator. If 7/5 < b < 8/5,
the 9D square is stable. If 8/5 < b, the 9D square can expand.

9.3 INVASION

The standard procedure for analyzing evolutionary games is to explore the

conditions for invasion. When does natural selection favor the spread of a new

mutant? Let us start with defectors invading cooperators.

9.3.1 Defectors Invading Cooperators
Figure 9.3 illustrates the conditions for a single defector to invade a population

of cooperators. The defector has payoff 8b. All of its immediate neighbors are

cooperators and have payoff 7. All of their neighbors have payoff 8. Therefore,

if 8b > 8, which means b > 1, then the defector will take over all its neighbors.

In the square cluster of 9 defectors, 9D, the central defector has payoff 0, the

four defectors at the corners have payoff 5b, the four remaining defectors have
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Figure 9.4 Cooperators can invade defectors when starting from a small cluster. Here
we analyze a cluster of 9 cooperators, 9C. If b < 3/2, this cluster will expand uniformly.
If 3/2 < b < 5/3, the cluster can grow along the lines but not along the diagonals. In
the next generation, there will be 12 new cooperators; all cells in a 5 × 5 square except
the 4 corner cells will be cooperators.

payoff 3b. The cluster is surrounded by cooperators with payoffs 5, 6 and 7.

The second row of cooperators all have payoff 8. There are four possibilities:

(i) If b < 6/5, then the 9D square will return to a single defector.

(ii) If 6/5 < b < 7/5, then the 9D square will turn into a cross consisting of

5 defectors which will subsequently turn into a single defector. There

is a period three oscillator: 1D to 9D to 5D and back to 1D.

(iii) If 7/5 < b < 8/5, then the 9D square will not change.

(iv) If 8/5 < b, then the 9D square will grow into a square consisting of 25

defectors, which will continue to expand.

9.3.2 Cooperators Invading Defectors
Let us now analyze the conditions for cooperators to invade defectors (Fig-

ure 9.4). First, we note that a single cooperator can never survive or expand,

but is always doomed to become eliminated in one step. In this deterministic

game, cooperators only have a chance if they arise in clusters.

If b < 3/2, then a square of 4 cooperators will expand to a square of 16

cooperators, then to 36 cooperators, and so on. There will be ever-increasing
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squares of cooperators. If b > 3/2, then a square of 4 cooperators will be

eliminated.

A square of 9 cooperators will also grow into bigger and bigger squares if

b < 3/2. If 3/2 < b < 5/3, then the 9C square can expand along the side lines,

but not diagonally. It will give rise to a cross-like structure of 21 cooperators.

This structure will continue to grow. If 5/3 < b < 8/3, then the 9C square is

stable; it will neither expand nor decline. If b > 8/3, the 9C square will be

eliminated in two steps.

9.3.3 Three Classes of Parameter Regions
In summary, the above analysis suggests the existence of three classes of pa-

rameter regions.

(i) If b < 8/5, then only C clusters can keep growing.

(ii) If b > 5/3, then only D clusters can keep growing.

(iii) If 8/5 < b < 5/3, then both C and D clusters can keep growing.

The various dynamical behaviors observed in Figure 9.2 fall into these three

broad classes. As long as b < 8/5, the world is dominated by cooperators.

If b > 5/3, defectors take over. If 8/5 < b < 5/3, there is a dynamic balance

between cooperators and defectors.

In parameter regions (i) and (ii), the final abundance of cooperators

strongly depends on the starting condition. In parameter region (iii), however,

most initial conditions converge to the same mixture of the two strategies with

roughly 30% cooperators. While the actual pattern of cooperators and defec-

tors is changing all the time, the frequency of cooperators, in a sufficiently

large array, is almost constant. We call this behavior a “dynamic equilibrium.”

9.4 DYNAMIC FRACTALS AND EVOLUTIONARY
KALEIDOSCOPES

An interesting sequence of patterns emerges if a single defector invades a world

of cooperators in the parameter region 8/5 < b < 5/3. The defector grows to

form a 3 × 3 and then a 5 × 5 square of defectors. The payoff for defectors at

the corners of this square is 5b, which is larger than 9. The payoffs for defectors
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Figure 9.5 The corner-and-line condition is responsible for spatial chaos, dynamic
fractals, and kaleidoscopes. A large square-shaped cluster of defectors can expand on
the corners if 8/5 < b, but shrink along the lines if b < 5/3. Hence in the parameter
region 8/5 < b < 5/3, cooperators win along straight lines, but lose along irregular
boundaries.

along the edges of the square is 3b, which is smaller than 6. Therefore the

defectors gain at the corners, but lose along the lines (Figure 9.5). The result is

a dynamic fractal that combines symmetry and chaos. Figure 9.6 shows the

growing fractal after 64, 124, and 128 time steps before it has encountered

any boundaries. There are fractal-like structures that repeat themselves. The

growing fractal is square-like at generations that are the powers of 2. The

fractal contains many clusters of cooperators, which move around, expand,

collide, fragment, and give birth to new clusters of cooperators. The frequency

of cooperators within the growing fractal converges to x ≈ 0.30, which is the

same numerical value as in the simulations with random initial conditions.

Figure 9.7 shows a sequence of the “evolutionary kaleidoscope” that is gen-

erated by a single defector invading a population of cooperators in a fixed array

with periodic boundaries. Each generation shows a new picture. There is an

amazing variety. The initial symmetry is never broken, because the rules are

symmetrical. The frequency of cooperators oscillates chaotically. These oscilla-

tions, however, cannot continue forever, because the total number of possible

states is finite. The kaleidoscope must eventually converge to some oscillator

with a finite period or a static configuration. Note that this convergence to a

periodic orbit also holds, of course, for asymmetric initial conditions.
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Figure 9.6 Starting with a single defector in a world of cooperators, there is an amazing
sequence of ever-growing “Persian carpets.” The structure is square-like with straight
boundaries at every generation that is a power of 2. Here we show generations 64, 124,
and 128. Parameter region 8/5 < b < 5/3.
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Figure 9.7 Kaleidoscopes are generated by a single defector invading a square of
cooperators of fixed size. There can be an amazingly long sequence of always changing
symmetric patterns. In the end (but after a very long time) the kaleidoscope must
reach a fixed pattern or a cycle, because the number of all possible configurations is
finite. Parameter region 8/5 < b < 5/3. The size of the square is 69 × 69 with periodic
boundary conditions.
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Figure 9.8 A “walker” is a cluster of 10 cooperators.

arrow. The legmoves from the right to the left every
other generation. When observed on a screen, it
appears as if the walker is walking on two legs.
Parameter region 3/2 < b < 5/3.

The interesting mathematical features of the growing fractal and the kalei-

doscopes arise from a combination of simplicity (the rules), deterministic

unpredictability (the eventual fate), transient chaos (the frequency of coop-

erators), and symmetry (beauty).

9.5 THE BIG BANG OF COOPERATION

Although the patterns of the previous section are beautiful, there is the dis-

concerting aspect that they describe the invasion and partial replacement of

a world of cooperators by defectors. Fortunately, the reverse invasion is also

possible and even more beautiful.

A “walker” is a structure of 10 cooperators (Figure 9.8). For 3/2 < b < 5/3,

this “fellowship of cooperators” moves bravely through an adverse world of

defectors. One such walker cannot change the world, but if two walkers collide

they can generate a “big bang” of cooperation, exploding into a world of

defectors (Figure 9.9).

Less dramatically, but no less beautiful, a big bang can also be initiated by

a single square of 9 cooperators or a rectangle of 6 cooperators. Figures 9.10

and 9.11 show big bangs of cooperators for two different parameter values.
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Figure 9.9 Cooperation “walks in.” A collision of two walkers in a world of defectors can
generate a big bang of cooperation. Four consecutive time points are shown. Parameter
region 8/5 < b < 5/3.
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Figure 9.10 A cluster of 3 × 3
cooperators in the parameter
region 8/5 < b < 5/3can invade
a world of defectors and also
generate a fractal-like growth
pattern.

Figure 9.11 Invasion of coop-
erators starting from a 3 × 3
cluster in the parameter region
3/2 < b < 8/5.
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9.6 OTHER GEOMETRIES

Spatial games can be studied with many variations on the basic theme. In-

stead of the Moore neighborhood, we can investigate the “von Neumann”

neighborhood, which consists of the 4 adjacent neighbors excluding the di-

agonals. Again there is a range of different patterns exhibiting coexistence

between cooperators and defectors in the nonrepeated Prisoner’s Dilemma.

For 4/3 < b < 3/2, we encounter the dynamic equilibrium with kaleidoscopes

and fractals of even greater allure (Figure 9.12). For 3/2 < b < 2, clusters of co-

operators can still expand horizontally and vertically generating a rectangular

“railway” network.

In a hexagonal lattice, each cell is surrounded by six others. There again dif-

ferent parameter regions allow coexistence between cooperators and defectors,

but there is no dynamic equilibrium. The patterns are more static. For other

evolutionary games, however, it is possible to obtain a dynamic equilibrium

on a hexagonal lattice.

We can also distribute individual cells randomly over a two-dimensional

plane. Two individuals are neighbors if their distance is less than a certain

“radius of interaction,” r . Cells can differ in the number of their neighbors.

The resulting random grid is, of course, closer to real-world situations than

the symmetrical lattices are. The payoff of an individual is the sum over the

interactions with all of its neighbors. As before, a cell is retained by its origi-

nal owner or given to the most successful neighbor, whoever has the highest

payoff. All cells are updated simultaneously. The evolutionary dynamics are

deterministic. Cooperators survive up to certain values of r . The equilibrium

frequency of cooperators depends on the initial conditions. Population dy-

namics on random grids are more static than on square lattices. We have not

yet found games that generate spatial chaos on irregular grids. Irregularity

tends to simplify dynamics.

9.7 OTHER UPDATE RULES

So far we have studied spatial games with entirely deterministic dynamics.

Each cell is given to whoever has the highest payoff in the neighborhood,

and all cells are updated in synchrony. These assumptions allowed us to study
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Figure 9.12 A kaleidoscope in the von Neumann neighborhood. On a square lattice,
each player interacts with the four nearest neighbors. Parameter region 4/3 < b < 3/2.
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the rich mathematical properties of deterministic spatial dynamics in discrete

time. We found fascinating and complicated behavior in terms of spatial chaos

and dynamic fractals. Although the fate of each single cell is totally determin-

istic, the overall population dynamics are highly complicated.

We can also study games with stochastic transition rules. For example, a

cell could become a cooperator with a probability that is given by the relative

payoff of cooperators in the neighborhood.

Instead of synchronous updating, we can also investigate asynchronous up-

dating: one player is chosen at random; its own payoff and the payoffs of all

neighbors are determined. Then the player is updated. Synchronous updating

means nonoverlapping generations; asynchronous updating means overlap-

ping generations (with continuous reproduction). Asynchronous updating in-

troduces random choice and therefore stochasticity. Figure 9.13 shows a clus-

ter of cooperators invading a world of defectors for asynchronous updating

with Moore neighborhood and b = 1.59.

In general, stochastic update rules display less variety in dynamical behav-

iors. Dynamic fractals and kaleidoscopes are not possible, because the stochas-

tic update rules do not maintain symmetry. Stochasticity disturbs straight

lines between cooperators and defectors, and irregular boundaries favor de-

fectors.

If the spatial competition between cooperators and defectors is described by

a stochastic process, then, in general, there will be only two absorbing states: all

cooperators or all defectors. The system will eventually reach one of these two

states, but it can take an extremely long time. In most cases, spatial games with

stochastic update rules still allow the coexistence of cooperators and defectors

for the lifetime of our universe.

If there are empty sites or more than two competing strategies, then spatial

games can lead to spiral waves.

9.8 VIRTUALLABS

Christoph Hauert has written a beautiful programming environment that

allows you to study every aspect of evolutionary games, spatial games, and

games on graphs. These “VirtualLabs” can be accessed on http://lorax.fas

.harvard.edu/virtuallabs/
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Figure 9.13 Invasion of coop-
erators with asynchronous up-
dating. At each time point a
random cell is chosen to be up-
dated. Its payoff is compared
with the payoff of all its neigh-
bors. Then the cell is given to
whoever has the highest payoff.
This takeover rule is still deter-
ministic, but the growth pattern
is stochastic, because the cells
updated in each time step are
chosen randomly. The starting
condition was a 3 × 3 cluster
of cooperators in a world of
defectors.

This Web page enables you to retrace the steps we have described here, but

you can also make many new discoveries. VirtualLabs represent a “language”

for evolutionary dynamics. Many “questions” of this language have not been

asked. Many “sentences” have not been spoken. You can use the VirtualLabs to

make new discoveries in many settings of evolutionary dynamics. The figures

of this chapter were generated with VirtualLabs. VirtualLabs are virtually error

free as they are “Swiss made.”

SUMMARY

◆ Evolutionary game dynamics (= frequency-dependent selection) can be

studied in a spatial setting.

◆ In spatial games, players interact with their nearest neighbors.
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◆ A player keeps his current strategy or adopts one of his neighbors’

strategies according to who has the highest payoff.

◆ It is possible to formulate entirely deterministic spatial game dynamics.

◆ In spatial games, the theory of cellular automata meets game theory.

◆ In the spatial Prisoner’s Dilemma, there is coexistence between coopera-

tors and defectors.

◆ Cooperators survive in clusters. This principle is called “spatial reci-

procity.”

◆ In some parameter regions, we discover spatial chaos, dynamic fractals,

and evolutionary kaleidoscopes.

◆ Cooperators can invade defectors when starting from a small cluster.

◆ Irregular grids tend to simplify dynamical complexity.

◆ Asynchronous updating or “proportional winning” introduces stochastic-

ity. Cooperators and defectors can nevertheless coexist for near eternity.
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