
2WHAT EVOLUTION IS

THIS CHAPTER introduces three basic building blocks of evolutionary dy-

namics: replication, selection, and mutation. These are the fundamental and

defining principles of biological systems. They apply to any biological organi-

zation anywhere in our or other universes and do not depend on the particular

details of which chemistry was recruited to embody life. Any living organism

has arisen and is continually modified by these three principles.

Evolution requires populations of reproducing individuals. In the right en-

vironment, biological entities, such as viruses, cells, and multicellular organ-

isms can make copies of themselves. The blueprint that determines their struc-

ture, the genomic material in form of DNA or RNA, is replicated and passed

on to the offspring. Selection results when different types of individuals com-

pete with each other. One type may reproduce faster and thereby outcompete

the others. Reproduction is not perfect, but involves occasional mistakes, or

mutations. Mutation is responsible for generating different types that can be

evaluated in the selection process, and thus results in biological novelty and

diversity. Selection will choose to maintain some innovations and dismiss oth-

ers, and can favor or oppose genetic diversity.
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At the end of this chapter we will focus on the Hardy-Weinberg law of ran-

dom mating. This discussion will be our only venture into the mathematics

of sexual reproduction. In subsequent chapters we will encounter additional

principles of evolutionary dynamics, such as random drift and spatial move-

ment.

2 . 1 REPRODUCTION

Imagine a single bacterial cell in a perfect environment that contains all the

nutrients required for growth and happiness. In this bacterial heaven, the for-

tunate cell and all its offspring divide every 20 minutes, which is the known

world record for bacterial cell division in an ideal lab setting. After 20 minutes

the cell has given rise to 2 daughter cells. After 40 minutes there are 4 grand-

daughters, and after one hour there are 8 great granddaughters. How many

cells will there be after three days?

After t generations there are 2t cells. In three days there are 216 generations.

Hence we expect 2216 = 1065 cells. The total mass of these cells would exceed

the mass of the earth by many orders of magnitude.

The growth law for this overwhelming expansion can be written as a recur-

sive equation

xt+1 = 2xt . (2.1)

Here xt is the number of cells at time t , and xt+1 is the number of cells at time

t + 1. The equation means that at time t + 1 there are twice as many cells as at

time t . Time is measured in numbers of generations.

The number of cells at time 0 is given by x0. With this initial condition, the

solution of equation (2.1) can be written as

xt = x02t . (2.2)

Equation (2.1) is a so-called difference equation, because time is measured in

discrete steps.

We can also formulate a differential equation for exponential growth that

measures time as a continuous quantity. Let x(t) denote the abundance of cells

at time t . Suppose that cells divide at rate r . More precisely, we assume that the
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time for cell division follows an exponential distribution with average 1/r . We

can write the differential equation

ẋ = dx

dt
= rx . (2.3)

Throughout this book, I will use the standard notation ẋ to refer to differen-

tiation (of x) with respect to time. If the abundance of cells at time 0 is given

by x0 then the solution of the differential equation (2.3) is

x(t) = x0e
rt . (2.4)

Let us reconsider our bacterial supernova. If we measure time in units of

days, then r = 72 means that the time for a cell cycle requires, on average, 20

minutes (calculated by dividing the total number of minutes in a day, 1,440, by

72). Hence there are 72 cell divisions in one day. After three days, one bacterial

cell has generated e216 cells which is approximately 6 × 1093 cells.

The discrepancy between the differential equation and the difference equa-

tion is a consequence of the varying assumptions for the distribution of the

generation time. The difference equation assumes that each cell division oc-

curs after exactly 20 minutes. The differential equation assumes that each cell

division occurs after a time which is exponentially distributed around an av-

erage of 20 minutes. The exponential distribution is defined as follows: the

probability that cell division occurs between time 0 and τ is given by 1 − e−rτ .

On average, cells divide after 1/r time units.

So far we have ignored cell death. Let us now suppose that cells die at rate

d , which means that they have an exponentially distributed lifespan with an

average of 1/d . The differential equation becomes

ẋ = (r − d)x . (2.5)

The effective growth rate is the difference between the birth rate, r , and

the death rate, d . If r > d , then the population will expand indefinitely. If

r < d , then the population will converge to zero and become extinct. If r = d ,

then the population size remains constant, but this situation is unstable: small

deviations from absolute equality between birth and death will lead to either

exponential expansion or decline. It is important to note that setting r = d
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in equation (2.5) does not constitute a mechanism for maintaining a stable

constant population size.

The simple equation (2.5) allows us to introduce an extremely important

concept in evolution, ecology and epidemiology: the basic reproductive ra-

tio, r/d . This ratio denotes the expected number of offspring that come from

any one individual. The average lifetime of a cell is 1/d . The rate of produc-

ing offspring cells is given by r . If each cell produces on average more than

one offspring, r/d > 1, then an exponential expansion will follow. A basic

reproductive ratio greater than one is a necessary condition for population

expansion.

We have observed that ongoing exponential growth can lead to unreason-

ably high numbers in a very short time. In a realistic environment, the ex-

panding population will hit constraints that prevent further expansion. For

example, the population might run out of nutrients or physical space.

A model for population expansion with a maximum carrying capacity is

given by the logistic equation

ẋ = rx(1 − x/K). (2.6)

As before, the parameter r refers to the rate of reproduction in the absence

of density regulation, when the population size, x, is much smaller than the

carrying capacity K . As x increases, the rate of growth slows down. When x

reaches the carrying capacity, K , then the population expansion ceases. For

the initial condition x0, the solution of equation (2.6) is given by

x(t) = Kx0e
rt

K + x0(e
rt − 1)

. (2.7)

In the limit of infinite time, t → ∞, the population size converges to the

equilibrium x∗ = K . Throughout the book we will use a superscript asterisk

to denote a quantity at equilibrium.

2.1.1 Deterministic Chaos
We can also study a logistic difference equation. Without loss of generality, let

us rescale the population abundance in such a way that the maximum carrying

capacity is given by K = 1. We have
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xt+1 = axt(1 − xt). (2.8)

Note that the growth rate in the difference equation, a, is analogous to 1 + r

in the differential equation (2.6). In contrast to the differential equation, the

logistic difference equation (2.8) has many surprises. The behavior of this

equation is so rich that many papers and even books have been written about

it, and it has generously awarded glorious careers to some scientists who have

studied it.

The abundance of the population, x, is given by a number between 0 and 1.

The growth rate, a, can vary between 0 and 4. If a < 0 or a > 4, then negative

x values will be generated, which are not biologically meaningful.

The point x = 0 is always an equilibrium. If a < 1, then the only stable

equilibrium of the system is given by x∗ = 0. This means the population will

die out. If 1 < a < 3, then the only stable equilibrium is given by x∗ = (a −
1)/a. All trajectories starting from any initial condition x0 (greater than 0 and

less than 1) will converge to this value. The point x∗ is a global attractor for

the open interval (0, 1).

If a > 3, then the point x∗ becomes unstable. For a values slightly above

3, we find a stable oscillation of period two. As a increases, the period two

oscillator is replaced by period four, then by eight, and so on. For a = 3.57

there are infinitely many even periods. For a = 3.6786 the first odd periods

appear. For 3.82 < a ≤ 4 all periods occur.

The logistic map with a = 4 is a simple and most illuminating example for

studying deterministic chaos. For any value xt it is straightforward to compute

the population size in the subsequent generation, xt+1. Yet the dynamics are

unpredictable in the following sense. Suppose the value of xt is only known

subject to a small uncertainty. It may not be clear whether xt = 0.3156 or

0.3157. After ten generations, however, the trajectories starting from these two

initial values will have diverged completely. Hence prediction is impossible.

Anything can happen.

We conclude that simple rules can generate complicated behavior. Much of

the apparent complexity and unpredictability of biological time series, such

as the population size of birds in a particular habitat, the number of measles

cases in New York City, or the price fluctuations of stocks and bonds, could in

principle be the consequence of deterministic laws.
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Figure 2.1 Evolution requires a population
of reproducing individuals. Strictly speaking,
neither genes, nor cells, nor organisms, nor ideas
evolve. Only populations can evolve.

2 .2 SELECTION

Selection operates whenever different types of individuals reproduce at differ-

ent rates. At the very least we need two types (Figure 2.1). Let us call them A

and B. Type A individuals reproduce at rate a. Type B individuals reproduce

at rate b. The rate of reproduction is interpreted as fitness. Therefore the fit-

ness of A is a, the fitness of B is b. Denote by x(t) the number of A individuals

at time t . Denote by y(t) the number of B individuals at time t . At time t = 0,

the numbers of A and B are respectively given by x0 and y0. The A and B

subpopulations grow according to the differential equations

ẋ = ax

ẏ = by
(2.9)

Equation (2.9) is a system of two ordinary, linear differential equations. The

analytical solution is given by

x(t) = x0e
at

y(t) = y0e
bt

(2.10)
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Hence the A and B subpopulations grow exponentially at rates a and b, re-

spectively. The doubling time for A is log 2/a. The doubling time for B is

log 2/b. If a is greater than b, then A reproduces faster than B: after some

time, there will be more A than B individuals.

Denote by ρ(t) = x(t)/y(t) the ratio of A over B at time t . We have

ρ̇ = ẋy − xẏ

y2
= (a − b)ρ . (2.11)

The solution of this differential equation, for the initial condition ρ0 = x0/y0,

is given by

ρ(t) = ρ0e
(a−b)t . (2.12)

Hence if a > b then ρ tends to infinity. In this case A will outcompete B, which

means selection favors A over B. If, on the other hand, a < b, then ρ tends to

zero. In this case B will outcompete A, which means that selection favors B

over A.

constant. This situation can arise, for example, when an ecosystem has a con-

stant maximum carrying capacity. Let x(t) denote the relative abundance of

A at time t . Instead of “relative abundance” we can also say “frequency.” Let

y(t) denote the frequency of B. Since there are only A and B individuals in

the population, we have x + y = 1. As before, A and B individuals reproduce,

respectively, at rates a and b.

We have the system of equations

ẋ = x(a − φ)

ẏ = y(b − φ)
(2.13)

The term φ ensures that x + y = 1. This is only possible if φ = ax + by.

Observe that φ is the average fitness of the population.

The system (2.13) describes only a single differential equation, because y

can be replaced by 1 − x. We obtain

ẋ = x(1 − x)(a − b). (2.14)

WHAT EVOLUT ION I S 1 5
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Figure 2.2 Selection arises if two types, A and
B , have different rates of reproduction, a and b.
If A reproduces faster than B , which means
a > b, then A will become more abundant
than B . Eventually A will take over the entire
population; B will become extinct. Denote by
x the relative abundance (= frequency) of type
A. The quantity x is a number between 0 and
1. Therefore selection dynamics are defined on
the closed interval [0, 1].

This differential equation has two equilibria, one for x = 0 and the other for

x = 1. At these two points, we have ẋ = 0. This observation makes sense: if

x = 1 then the system consists only of A individuals and nothing more can

happen; if x = 0, then the system consists only of B individuals and again

nothing more can happen.

We can, however, make an additional observation. If a > b, then ẋ > 0

for all values of x that are strictly greater than 0 and strictly smaller than 1.

This means that for any mixed system (consisting of some A and some B

individuals) the fraction of A will increase if the fitness of A is greater than

the fitness of B. In this case, the fraction of B will converge to 0, while the

fraction of A converges to 1. We have encountered the concept of “survival of

the fitter” (Figure 2.2).

2.2.1 Survival of the Fittest
The model can be extended to describe selection among n different types.

Let us label them i = 1, . . . , n. Denote by xi(t) the frequency of type i. The

structure of the population is given by the vector �x = (x1, x2, . . . , xn).

Denote by fi the fitness of type i. As before, fitness is a non-negative real

number and describes the rate of reproduction. The average fitness of the
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Figure 2.3 If the total population size is constant, then selection dynamics can be
formulated in terms of relative abundance (= frequency). Suppose there are n different
types, i = 1, . . . , n. Type i has frequency xi . The sum over all xi is one. The set of all
points, (x1, . . . , xn) with the property

∑n
i=1 xi = 1, is called the simplex Sn. Selection

dynamics occur on the simplex Sn. The figure shows S2, S3, and S4. The simplex Sn is
an n − 1 dimensional structure embedded in an n-dimensional Euclidian space. The
simplex Sn has n faces that each consist of the simplex Sn−1.

population is given by

φ =
n∑

i=1

xifi . (2.15)

Selection dynamics can be written as

ẋi = xi(fi − φ) i = 1, . . . , n (2.16)

The frequency of type i increases, if its fitness exceeds the average fitness of

the population. Otherwise it will decline. The total population size remains

constant:
∑n

i=1 xi = 1 and
∑n

i=1 ẋi = 0.

The set of points with the property
∑n

i=1 xi = 1 is called the simplex Sn

(Figure 2.3). Each point in the simplex refers to a particular structure of the

population. The interior of the simplex is the set of points �x with the property

that xi > 0 for all i = 1, . . . , n. The face of the simplex is the set of points

�x with the property that xi = 0 for at least one i. The vertices of the simplex

WHAT EVOLUT ION I S 1 7
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Figure 2.4 The interior of a simplex is the set of all points where all coordinates are
strictly positive; this means no type has become extinct. The faces are the sets of
points where at least one coordinate is zero; this means at least one type has become
extinct. The vertices describe pure populations, where all but one type have become
extinct.

are the corner points where exactly one type is present, xi = 1, while all other

types are extinct, xj = 0 for all j �= i (Figures 2.4 and 2.5).

The simplex S2 is given by the closed interval [0, 1]. The notation [0, 1]

refers to all numbers which are greater than or equal to 0 and less than or

equal to 1. In contrast, (0, 1) is the open interval; it contains all numbers that

are strictly greater than 0 and strictly less than 1. The open interval (0, 1) is

the interior of the closed interval [0, 1] and, therefore, is also the interior of

the simplex S2.

Equation (2.16) contains a single globally stable equilibrium. Starting from

any initial condition in the interior of the simplex, the population will con-

verge to a corner point where all but one type have become extinct. The win-

ner, k, enjoys a well-deserved victory because it has the property of having

the largest fitness, fk. Thus fk > fi for all i �= k. The system shows competi-

tive exclusion: the fittest type will outcompete all others. This is the concept of

“survival of the fittest.”

2.2.2 Survival of the First, Survival of All
Let us return to the selection of two types, A and B, but without making the

assumption that their growth rates are linear functions of their frequencies.

Instead consider the equation

1 8 EVOLUT IONARY DYNAMICS
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Figure 2.5 Five points on the simplex
S3. In the center, (1/3, 1/3, 1/3), all
three types have the same frequency.
There are three faces. The center
of one particular face is given by
(0, 1/2, 1/2); one type has become
extinct. The corner points (vertices)
indicate populations that consist of
only one type. S3 has three corners:
(1, 0, 0), (0, 1, 0), and (0, 0, 1).

ẋ = axc − φx

ẏ = byc − φy
(2.17)

As before, a and b denote the fitness values of A and B, respectively. If c = 1,

we are back to equation (2.13). If c < 1, then growth is subexponential. In the

absence of the density limitation, φ, the growth curve of the two types would

be slower than exponential.

In contrast, if c > 1, then growth is superexponential. In the absence of the

density limitation, φ, the growth curve of the two types would be faster than

exponential (hyperbolic). To maintain a constant population size, x + y = 1,

we set φ = axc + byc. Equation (2.17) reduces to

ẋ = x(1 − x)f (x) (2.18)

where

f (x) = axc−1 − b(1 − x)c−1. (2.19)
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Figure 2.6 Survival of all: for
subexponential growth (c <

1), there is a stable mixed
equilibrium between A and
B , even if one type has a
faster growth rate than the
other. Survival of the first: for
superexponential growth (c >

1), there is an unstable mixed
equilibrium between A and B ,
while the pure populations are
stable. For example, if thewhole
population consists of B , then
A cannot invade even if it has a
higher growth rate.

This equation always has fixed points for x = 0 and x = 1. For c �= 1there exists

exactly one other fixed point between 0 and 1. It is given by

x∗ = 1

1 + c−1
√

a/b
. (2.20)

If c < 1, then the boundary fixed points, x = 0 and x = 1, are always unstable;

the interior fixed point, x∗, is globally stable. Hence there is survival of both A

and B. Surprisingly, even if A is fitter than B, a > b, then a small amount of

B can invade an A population.

If c > 1, then the boundary fixed points, x = 0 and x = 1, are always stable;

the interior fixed point, x∗, is unstable. If x > x∗, then A will outcompete B. If

x < x∗, then B will outcompete A. Again this observation is remarkable. Even

if A is fitter than B in the sense that a > b, a B population cannot be invaded

by an A mutant.

We conclude that superexponential growth favors whoever was there first

(survival of the first) whereas subexponential growth leads to the survival of

all (Figure 2.6).
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What is the intuition behind this observation? An extreme form of subex-

ponential growth is “immigration,” c = 0. The growth rate does not depend

on x or y at all. We have

ẋ = a − φx

ẏ = b − φy
(2.21)

with φ = a + b. This equation can be interpreted as the immigration of A and

B into the population from some other place. It is clear that these immigra-

tion dynamics lead to coexistence. A value of c between 0 and 1 is a mixture

between immigration and linear growth and retains the property of coexis-

tence.

If c > 1, on the other hand, then A cannot invade B even if a > b. (“Inva-

sion” means that an infinitesimally small fraction of A individuals can increase

in abundance in a population where almost all individuals are of type B.) The

intuitive explanation is as follows: we can think of the case c = 2 as implying

that two individuals of the same type have to meet in order to reproduce. If

there is only an infinitesimally small fraction of A individuals, then two A in-

dividuals will never meet and hence A will not reproduce. If c = 3 then three

individuals of the same type have to meet in order to reproduce. Again arbi-

trarily small fractions of a type can never increase. The same intuition holds

for all values c > 1.

The case c = 2 can also be interpreted as an evolutionary game between two

strategies, A and B, that are strict Nash equilibria. Neither strategy can invade

the other. We will encounter these concepts in Chapter 4.

2 .3 MUTATION

Life takes advantage of mistakes. Replication of DNA or RNA can lead to

slightly modified sequences that represent novel variants. Errors during repro-

duction are called mutations. In this section, we study the simplest possible

differential equations that describe mutation (Figure 2.7).

Let us again consider just two types, A and B. Denote by u1 the mutation

rate from A to B: u1 is the probability that the reproduction of A leads to B.
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Figure 2.7 Mutation can occur during repro-
duction: type A produces an offspring that
is type B . Mutation can also occur in the
absence of reproduction: type A changes
into type B . Many genetic mutations occur
when the genomic material of a cell is be-
ing copied. But mutagens can also change
the genetic material of a cell when it is not
dividing.

Conversely, denote by u2 the mutation rate from B to A. As before, let x and

y denote the frequencies of A and B, respectively. We have

ẋ = x(1 − u1) + yu2 − φx

ẏ = xu1 + y(1 − u2) − φy
(2.22)

Since A and B have the same fitness (a = b = 1), the average fitness of the

population is constant and given by φ = 1. Taking into account x + y = 1,

system (2.22) reduces to the differential equation

ẋ = u2 − x(u1 + u2). (2.23)

The frequency of A converges to the stable equilibrium

x∗ = u2

u1 + u2

. (2.24)

Hence mutation leads to coexistence between A and B. The relative propor-

tion of A and B at equilibrium depends on the mutation rates. At equilibrium,

the ratio of A to B is given by x∗/y∗ = u2/u1. If the mutation rates are the

same, u1 = u2, and then x∗ = y∗.

2 2 EVOLUT IONARY DYNAMICS
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Sometimes the mutation rate in one direction is much larger than in the

other direction. In these cases, it often makes sense to ignore mutation in the

other direction altogether. Let u2 = 0. We have

ẋ = −xu1. (2.25)

Therefore the frequency of A declines over time as

x(t) = x0e
−u1t . (2.26)

The frequency of B increases as

y(t) = 1 − (1 − y0)e
−u1t . (2.27)

If mutation occurs only from A to B but not the other way around, then A

will die out and B will take over the whole population. We see that mutation

can affect survival. Different mutation rates can introduce selection even in

the absence of different reproductive rates.

2.3.1 Mutation Matrix
We can extend mutation dynamics to n different types. Let us introduce the

mutation matrix, Q = [qij]. The probability that type i mutates to type j is

given by qij . Since each type i has to produce itself or some other type, we

have
∑n

j=1 qij = 1. Thus Q is a stochastic n × n matrix. A stochastic matrix

is defined by the properties that (i) all entries are numbers from the interval

[0, 1](so-called probabilities), (ii) there are as many rows as columns, and (iii)

the sum of each row is 1. Stochastic matrices always have 1 as an eigenvalue,

and no eigenvalue has an absolute value greater than 1.

Mutation dynamics can be written as

ẋi =
n∑

j=1

xjqji − φxi i = 1, . . . , n (2.28)

In vector notation we can write

�̇x = �xQ − φ�x . (2.29)

WHAT EVOLUT ION I S 2 3
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Again the average fitness is just φ = 1. The equilibrium is given by the left-hand

eigenvector associated with eigenvalue 1:

�x∗Q = �x∗. (2.30)

The point �x∗ denotes the unique globally stable equilibrium of the mutation

dynamics.

2 .4 MATING

One of the problems that Charles Darwin could not solve was the following:

under random mating and blending inheritance, the variability in a popu-

lation should rapidly decline. Yet it was clear that variability was needed for

natural selection. If variability disappears, then natural selection has nothing

upon which to act. Suppose there is a distribution of body size in a popula-

tion. If children inherit the average body size of their parents, then after some

time everybody is the same size. Under these circumstances, how can natural

selection affect changes in body size?

The first part of the solution is that inheritance (on the level of genes) is

not blending but particulate, as had been discovered by Gregor Mendel and

published in 1866. That is, individuals have discrete genotypes that get reshuf-

fled, not blended, during mating. Mendel’s work was unknown to Darwin.

The second step was a simple mathematical analysis, which was performed by

the British mathematician G. H. Hardy, who was proud never to have done

anything useful (= applied) in his life, only to have his name forever asso-

ciated with a highly useful and very applied concept in population genetics.

Moreover, Hardy’s brief calculation was generalized by the German physician

Wilhelm Weinberg.

Consider an infinitely large population of a diploid organism with two sexes

and random mating (a diploid organism has two copies of its genome; humans

and many other animals are diploid). Let us look at one particular gene locus

and assume there are two alleles, A1 and A2. The alleles are variants of the same

gene and might differ in one or a few point mutations. (Point mutation means

that only one single base of the DNA sequence is changed.)
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There are 3 different genotypes: A1A1, A1A2, A2A2. Let us denote their

frequencies in the population by x, y, and z, respectively. Denote by p and

q the frequencies of alleles A1 and A2. We have x + y + z = 1 and p + q = 1.

Moreover,

p = x + 1

2
y

q = z + 1

2
y

(2.31)

Let us now assume random mating. In the next generation, the genotype

frequencies are given by

x′ = p2

y ′ = 2pq

z′ = q2

(2.32)

For the allele frequencies in the next generation we have again

p′ = x ′ + 1

2
y ′

q ′ = z′ + 1

2
y ′

(2.33)

Combining (2.32) and (2.33), we observe that

p′ = p q ′ = q (2.34)

Therefore the allele frequencies remain unchanged from one generation to the

next. Moreover, combining (2.32) and (2.34), we observe

x′ = p′2

y ′ = 2p′q ′

z′ = q ′2

(2.35)
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From the first generation on, the genotype frequencies can be directly derived

from the allele frequencies. Note that equation (2.35) need not hold for the

initial genotype and allele frequencies. The Hardy-Weinberg law (expressed

by equations 2.34 and 2.35) can be generalized to n alleles.

In summary, the Hardy-Weinberg law states that particulate inheritence

preserves variation within a population under random mating.

SUMMARY

◆ Evolution requires populations of reproducing individuals.

◆ Asexual reproduction leads to exponential population growth (which will

eventually be checked by resource limitation).

◆ Simple models of population growth in discrete time can give rise to very

complicated dynamics.

◆ Selection arises when different types of individuals reproduce at different

rates.

◆ Normally, the faster-reproducing (fitter) individual outcompetes the

slower reproducing (less fit) individual.

◆ If there are many different types, then selection dynamics can lead to

“survival of the fittest.” All others become extinct.

◆ Sublinear growth rates lead to coexistence, “survival of all.”

◆ Superlinear growth rates prevent invasion of a new type and thereby lead

to “survival of the first.”

◆ Mutation arises when reproduction is not perfectly accurate.

◆ Mutation promotes coexistence of different types.

◆ Asymmetric mutation can lead to selection even if all individuals have the

same reproduction rate.

◆ The Hardy-Weinberg law states that random mating preserves genetic

variation within a population.
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3FITNESS LANDSCAPES AND

SEQUENCE SPACES

GENOMES ARE SEQUENCES of the four-letter alphabet A, T, C, G, de-

noting the nucleotides adenine, thymine, cytosine, and guanine. All living

cells use double-stranded DNA to carry their genomic information. Many

viruses also use DNA, but some viruses encode their genome in form of RNA.

The genome length of organisms varies greatly, ranging from about 104 nu-

cleotides for small viruses, to 106 for bacteria to 3 × 109 for humans. Cu-

riously, newts and lungfish “need” an even larger genome than do humans

(19 × 109 and 140 × 109, respectively). The evolutionary dynamics of genome

size and genome organization is a fascinating topic.

If a cell wants to produce a particular protein, then the DNA of the corre-

sponding gene is “transcribed” into messenger RNA (mRNA), which is in turn

“translated” into protein. The transcription is done by particular enzymes

called DNA-dependent RNA polymerases. The translation is performed by a

complicated arrangement of RNA and proteins called ribosomes. The words

“transcription” and “translation” were invented by the mathematician John

von Neumann when he calculated how to build a self-reproducing machine.

He came up with an architecture equivalent to the organization of cells some

decades before molecular biology had been invented.
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RNA also uses a four-letter alphabet, A, U, C, G. Thymine is replaced

by uracil. Furthermore, the sugar backbone of RNA has an additional -OH

(hydroxy) group, which makes the molecule less stable and more dynamic.

DNA is a stable carrier of information. RNA also carries information, but in

addition some RNAs have enzymatic activity.

Proteins consist of 20 amino acids. Each amino acid is encoded by a se-

quence of three letters of the RNA alphabet. This genetic code is essentially the

same for all living cells, ranging from bacteria to humans to newts. Hence the

genetic code is believed to have originated only once: in the first cell that is an-

cestor to all existing cells. A 4-letter alphabet generates 64 possible sequences

of length 3. Since there are only 20 amino acids, the genetic code is redundant:

some amino acids are encoded by more than one sequence. Some sequences

are used to signal the end of the transcription process. We see that molecu-

lar biology adds a precise information-theoretic perspective to evolutionary

dynamics.

3 . 1 SEQUENCE SPACE

In the green hills of Sussex lived an imaginative theoretical biologist, John

Maynard Smith, who once pictured all proteins (of a certain length) arranged

in such a way that nearest neighbors differed by a single amino acid. This was

the origin of what we call “sequence space” as a concept in the human mind.

Let us consider all proteins of the modest length 100. Each position of

the protein sequence is filled by one of 20 amino acids. Hence, this space

has 100 dimensions and in total 20100 points. This number corresponds to

10130 proteins. In contrast, there are only some 1080 estimated protons in our

universe. Nor is there any reason for us to consider only proteins of length 100;

some proteins are much longer. We conclude there are many more possible

proteins than available protons and hence evolution so far has and, for the

remaining 1030 years that constitute the lifetime of our protons, will only

explore a vanishingly small subset of all possible proteins.

What is true of proteins is also true of genes and genomes. We can imagine

all nucleotide sequences of a certain length arranged in a way that nearest

neighbors differ in one position. For sequence length L this generates a lattice
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Figure 3.1 Genomes live in sequence space. The number of dimensions is given by the
length of the genome. Small viruses live in 10,000 dimensions. Humans live in about 3
billion dimensions.

in an L-dimensional space. In each dimension there are 4 discrete possibilities.

Hence there are 4L possible sequences.

For writing computer programs, it is often convenient to use binary se-

quences, the fundamental strings of silicon thoughts. Moreover, everything

from Shakespeare to E. coli can be encoded in binary sequences. For length L

there are 2L possibilities. In Figure 3.1, the binary sequence space for L = 3 is

shown. The distance between 000 and 010 is one. The distance between 000

and 011 is 2 (and not
√

2). Hence sequence space is characterized not by a Eu-

clidean metric but by a so-called Hamming metric or Manhattan metric. In

Manhattan, if you are on 5th Avenue and 51st Street it takes 2 blocks to go to

6th Avenue and 52nd Street, not
√

2 blocks. This metric was introduced by

Richard Hamming in information theory.

Let us compare the binary sequence space of length L = 300 with a three-

dimensional cubic lattice containing the same number of points. There are
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Figure 3.2 The fitness landscape
is a high-dimensional mountain
range. Each genome (= each point
in sequence space) gets assigned a
fitness value.

2300 ≈ 1090 points. Imagine nearest neighbors are placed at a distance of 1 me-

ter. The diagonal of the three dimensional cubic lattice has a length of about

1030 meters, which corresponds to about 1014 light years. In contrast, the

longest distance in the L-dimensional hypercube is only 300 meters. Thus se-

quence space is characterized by short distances, but many dimensions. It is

not far to move from one sequence to another, but there are many possible

steps that lead in wrong directions. Evolution is a trajectory through sequence

space. This trajectory needs an efficient guide.

3 .2 F ITNESS LANDSCAPES

The American population geneticist Sewall Wright invented the concept of a

“fitness landscape” in the 1930s, but Manfred Eigen and Peter Schuster, collab-

orating in the 1970s, combined fitness landscape with sequence space. Con-

sider a function that assigns to each genomic sequence a fitness value. Hence

we build a mountain range on the foundation of an L-dimensional sequence

space (Figure 3.2). This mountain range has L + 1 dimensions. The evolu-

tionary process of mutation and selection explores this hyper-alpine mountain

range.

The genomic sequence represents the genotype of an organism. The pheno-

type of an organism is given by its shape, behavior, performance and any kind

of ecological interaction. The phenotype determines the fitness (reproduc-

tive rate) of the organism. There is a mapping from genotype to phenotype.
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Figure 3.3 The ensemble of genomes of a natural population form a quasispecies: the
genomes of different individuals are similar but not identical. Biology has chosen a four-
letter alphabet consisting of the nucleotides A, T, C, and G for its genes. Most in silico
evolution uses a binary alphabet for convenience. Sequence differences (mutations)
are shown in red.

There is another mapping from phenotype to fitness. The fitness landscape is

a convolution of these two mappings. It is a direct mapping from genotype to

fitness.

The fitness landscape of certain problems can be determined experimen-

tally. For example, HIV can generate point mutations that confer drug resis-

tance. The relative growth rate of such mutants can be determined by in-vitro

assays. In general, however, to understand the relationship between genotype,

phenotype, and fitness is an extremely complicated problem. Much of biol-

ogy, including developmental biology, molecular biology, post-genomics, and

proteomics, is devoted to this very task.

3 .3 THE QUASISPECIES EQUATION

A quasispecies is an ensemble of similar genomic sequences generated by

a mutation-selection process (Figure 3.3). The term was introduced by the

chemists Manfred Eigen and Peter Schuster. In chemistry the word “species”

refers to an ensemble of identical molecules, for example, the species of all

water molecules. But the species of all RNA molecules does not contain iden-

tical sequences, and therefore the term “quasispecies” was coined. Biologists
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are sometimes confused by this expression, because they relate it to the concept

of a biological species.

We stay with binary sequences for convenience. We note that any genomic

or other information can be encoded by binary sequences. Consider all binary

sequences of length L. Enumerate all those sequences by i = 0, 1, 2, . . . , n

where n = 2L − 1. A natural enumeration is obtained if the sequence repre-

sents the binary description of the corresponding integer. For example, let

L = 4. The sequence 0000 corresponds to i = 0, the sequence 0001 to i = 1,

the sequence 0010 to i = 2, . . . , the sequence 1111 to i = 15.

Imagine an infinitely large population of organisms, each carrying a

genome of length L. Denote by xi the relative abundance (= frequency) of

those organisms that contain genome i. We have
∑n

i=0 xi = 1. The genomic

structure of the population is given by the vector �x = (x0, x1, . . . , xn).

Denote by fi the fitness of genome i. It is a non-negative real number. Thus

genomes of type i are being reproduced at rate fi. The fitness landscape is

given by the vector �f = (f0, f1, . . . , fn). The average fitness of the popula-

tion, φ = ∑n
i=0 xifi, is the inner product of the vectors �x and �f . We have

φ = �x �f .

During replication of a genome, mistakes can happen. The probability that

replication of genome i results in genome j is given by qij . Here we again

meet the mutation matrix Q = [qij] of section 2.3. We remember that Q is a

stochastic matrix: it has as many rows as columns; each entry is a probability,

which means a number between 0 and 1; each row sums to one,
∑n

j=0 qij = 1.

The quasispecies equation (Figure 3.4) is given by

ẋi =
n∑

j=0

xjfjqji − φxi i = 0, . . . , n (3.1)

Sequence i is obtained by replicating any sequence j at rate fj times the

probability that replication of sequence j generates sequence i. Each sequence

is removed at rate φ to ensure that the total population size remains constant,∑n
i=0 xi = 1. Thus quasispecies dynamics are defined on the simplex, Sn.

In the limiting case of completely error-free replication, Q becomes the

identity matrix: all diagonal entries are one, all off-diagonal entries are zero.
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Figure 3.4 The quasispecies equa-
tion, formulated by Manfred Eigen
and Peter Schuster, is one of the
most important equations in the-
oretical biology. It describes the
mutation and selection of an
infinitely large population on a
constant fitness landscape.

Consider an initial condition in the interior of the simplex, defined by xi > 0

for all i. The quasispecies will converge to a homogeneous population that

consists only of the fittest sequence. If f0 > fi for all i �= 0, then the stable

equilibrium is given by x0 = 1 and xi = 0 for i �= 0. If there are no errors,

then the quasispecies equation (3.1) reduces to the selection equation (2.16)

of section 2.2.1.

Let us now assume that errors occur. This means that (at least some) off-

diagonal entries of Q are not zero. In many realistic contexts, the matrix Q is

irreducible, which means it is possible to find a sequence of mutations from

any one genome i to any other genome j . Furthermore, let fi > 0 for at least

some i. In this case, the quasispecies equation admits a single, globally stable

equilibrium, �x∗, in the simplex Sn.

The equilibrium quasispecies, �x∗, does not necessarily maximize the aver-

age fitness φ. Consider again a fitness landscape with the property f0 > fi for

all i �= 0. Then the population consisting only of sequence 0 will have a higher

fitness than the equilibrium population �x∗. Thus, mutations reduce the aver-

age fitness at equilibrium.

Observe that (3.1) is a nonlinear differential equation. The term −φxi is of

second order. Linear differential equations can always be solved, but nonlin-

ear differential equations normally cannot be solved. This means for nonlin-

ear differential equations the trajectories cannot always be written as explicit
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functions of time. The quadratically nonlinear quasispecies equation (3.1),

however, can be solved as follows. First, define

ψ(t) =
∫ t

0
φ(s)ds . (3.2)

Note that

ẋi + φxi = e−ψ d(xie
ψ)

dt
. (3.3)

Let us define

Xi(t) = xi(t)e
ψ(t). (3.4)

Now Xi(t) is given by the linear equation

Ẋi =
n∑

j=0

Xjfjqji i = 0, . . . , n (3.5)

This system of linear differential equations describes exponential growth of all

the members of the quasispecies. The linear system (3.5) can be solved using

standard techniques. Notice also that

X =
n∑

i=0

Xi =
(

n∑
i=0

xi

)
eψ = eψ . (3.6)

This means, from equation (3.4), that we can write xi = Xi/X, which in turn

means that Xi can be interpreted as the absolute abundance of individuals

with genome i. Also note that X, the total population size, grows as

Ẋ = ψ̇eψ = φX. (3.7)

Therefore the total population size grows exponentially at a rate that is given

by the average fitness, φ, of the population.

Let us combine the fitness landscape, �f , and the mutation matrix, Q, to

obtain the mutation-selection matrix,

W = [wji]= [fjqji]. (3.8)

3 4 EVOLUT IONARY DYNAMICS

 EBSCOhost - printed on 9/19/2023 12:55 PM via HARVARD UNIVERSITY LIBRARIES. All use subject to https://www.ebsco.com/terms-of-use



Quasispecies dynamics are determined by the properties of the matrix, W . In

vector notation the quasispecies equation can be written as

�̇x = �xW − φ�x . (3.9)

Hence the equilibrium of quasispecies dynamics is given by

�xW = φ�x . (3.10)

This is a standard eigenvalue problem. The average fitness, φ, is the largest

eigenvalue of the matrix W . The left-hand eigenvector associated with this

eigenvalue, with the proper normalization
∑n

i=1 xi = 1, provides the equilib-

rium structure of the quasispecies. Generically, there is a unique and globally

stable equilibrium.

3 .4 A MUTATION MATRIX FOR POINT MUTATIONS

During the replication of a DNA or RNA genome, many types of mutational

events can occur. “Point mutations” describe the change of one base for an-

other. “Insertions” denote the addition of a string of bases to the existing

sequence. “Deletions” characterize the reverse process, the loss of a string of

bases. “Recombination” means that genetic material can be exchanged be-

tween two sequences. Here we will only deal with point mutations of binary

sequences.

Let us consider the set of all sequences of a given length, L. The Hamming

distance, hij , counts the number of positions that differ between sequences i

and j . For example, the Hamming distance between the sequences 1010 and

1100 is two. Denote by u the probability that a mutation occurs in a specific

position. Thus 1 − u is the probability that the mutation is copied correctly.

We can write the probability that replication of sequence i results in sequence

j as

qij = uhij (1 − u)L−hij . (3.11)
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Hence a mutation has to occur in as many positions as differ between the

sequences i and j , which is precisely the Hamming distance, hij . No mutation

must occur in the remaining L − hij positions.

Equation (3.11) is an elegant description of a mutation matrix that allows

point mutations among binary sequences of constant length. It is assumed

that the point mutation rate, u, is the same for all positions. It is further

assumed that a mutation in one position is independent of a mutation in

another position. Hence one error does not increase the probability of another

error. There are no insertions and no deletions. All of these restrictions can be

relaxed in principle, but doing so will lead to considerable complexity.

Let us use mutation matrix (3.11) to describe the human immunodeficiency

virus as an example. The point mutation rate of HIV is approximately u =
3 × 10−5. The genome length of HIV is L = 104. Therefore the probability

that the whole HIV genome is replicated without mutation is given by (1 −
u)L ≈ 0.74. The probability that replication of the HIV genome results in a

sequence that differs in one arbitrary position is given by Lu(1 − u)L−1 =
0.22. The probability that a particular one-error mutant, for example one

that confers drug resistance or immune escape, is being produced is given

by u(1 − u)L−1 = 2.2 × 10−5. If 109 newly infected cells are being produced

each day, then any particular one-error mutant will arise 22,000 times each

day. This number signifies the enormous potential of HIV (or other viruses or

microbes) to escape from selection pressures that are meant to control them.

We will revisit this topic in Chapter 10.

3 .5 ADAPTATION IS LOCALIZATION IN SEQUENCE SPACE

The quasispecies equation (3.1) describes the movement of a population

through sequence space. The quasispecies “feels” gradients in the mountain

range of the fitness landscape. It attempts to climb uphill and reach local or

global peaks (Figure 3.5). What are the conditions that this evolutionary walk

will be successful? One such condition is the error threshold.

If the mutation rate u is too high, then the ability of the quasispecies to

climb uphill and to remain on top of a mountain peak is impaired. In fact,

we can show that for many natural fitness landscapes there is a maximum

mutation rate, uc, that is still compatible with adaptation. If the mutation rate

exceeds this value, u > uc, then adaptation is not possible.
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Figure 3.5 Quasispecies love to
climb mountains in high-dimensional
spaces. The higher they get, the fitter
they are. Adaptation means to go up.

Adaptation means that the quasispecies is able to find peaks in the fitness

landscape and stay there. Suppose the fitness landscape contains only one

peak. If the mutation rate is sufficiently low, then the equilibrium solution

of equation (3.1) describes a quasispecies that is centered on this peak. Most

sequences resemble the type with maximum fitness or nearby mutants. Se-

quences that are far away from the peak will have a very low frequency. (In

population genetics, frequency means relative abundance.) We say the qua-

sispecies is adapted to this peak. Similarly, we can say that the quasispecies

distribution is localized at this peak. Adaptation means localization in se-

quence space. When the mutation rate of a quasispecies is zero, it contains

only sequences with maximum fitness. When the mutation rate is very small,

the quasispecies distribution is very narrow. As the mutation rate increases,

the quasispecies distribution widens. There is a critical mutation rate, uc, be-

yond which the equilibrium quasispecies no longer “feels” the peak. The qua-

sispecies is no longer localized around the peak. Adaptation is lost. Strictly

speaking, a well-defined “phase transition” from a localized to a delocalized

state only occurs for infinite sequence length, but the phenomenon is striking

already for binary sequences of length L = 10.

The maximum mutation rate, uc, that is compatible with adaptation is

called the “error threshold.” Not all fitness landscapes have error thresholds.

Narrow peaks of finite height have error thresholds. If a peak is so broad that

most sequences in the sequence space are within the slopes of the peak, then

an error threshold need not occur.
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Quasispecies have a tendency to climb uphill. Starting from some random

initial condition, �x(0), the quasispecies equation (3.1) will tend to increase the

average fitness, φ. But it is also easy to construct a counterexample. Suppose a

certain sequence has maximum fitness, while all other sequences have lower

fitness. If we start with a population that contains only the sequence with

maximum fitness, then equation (3.1) will reduce the average fitness φ until an

equilibrium between mutation and selection, a so-called mutation-selection

balance has been reached.

Calculating the error threshold, uc, for complex fitness landscapes is diffi-

cult, but the following simple fitness landscape provides the crucial insight.

Consider all binary sequences of length L. The all-zero sequence, 00 . . . 0,

has the highest fitness given by f0 > 1. All other sequences have fitness 1. The

all-zero sequence is sometimes called the “master sequence” or the wild type,

while all other sequences are called “mutants.”

The probability that the master sequence produces an exact copy of itself

is given by q = (1 − u)L. The probability that the master sequence generates

any mutant is given by 1 − q. The trick is to neglect the back mutation from

the mutants to the master sequence. With this assumption the quasispecies

equation (3.1) becomes

ẋ0 = x0(f0q − φ)

ẋ1 = x0f0(1 − q) + x1 − φx1

(3.12)

Here x0 is the frequency of the master sequence, while x1 is the sum of the

frequencies of all the mutants. Clearly, x0 + x1 = 1. The average fitness is given

by φ = f0x0 + x1. System (3.8) collapses to a single equation

ẋ0 = x0[f0q − 1 − x0(f0 − 1)]. (3.13)

If f0q < 1, then x0 will converge to zero; the fittest sequence cannot be main-

tained in the population. If f0q > 1, then x0 will converge to

x∗
0 = f0q − 1

f0 − 1
. (3.14)

Hence, the error threshold is given by

f0q > 1. (3.15)
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Figure 3.6 Error threshold: a quasispecies can only maintain a peak in a fitness landscape
if the mutation rate is less than the inverse of the genome length. This is a very general
and beautiful result that must hold for any living organism. The beauty is not spoilt by
two qualifying remarks that are necessary: (i) the genome length, L, has to be defined
properly to include only those positions that affect fitness and (ii) there are some
pathological landscapes where a peak can be maintained beyond the error threshold,
for example if the peak is “infinitely” high or so wide that its presence can be felt by
the majority of all possible sequences.

This inequality can be rewritten as log f0 > −L log(1 − u). For small muta-

tion rates, u � 1, we have log(1− u) ≈ −u. Therefore we obtain the condition

u <
log f0

L
. (3.16)

If the fitness advantage of the master sequence is not too large and not too

small, then log f0 is approximately 1. Now the error-threshold condition re-

duces to

u < 1/L. (3.17)

Hence the maximum mutation rate that is still compatible with adaptation

has to be less than the inverse of the genome length (Figure 3.6). In other
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Table 3.1 Genome length (in bases), mutation rate per base, and mutation rate per
genome for organisms ranging from DNA viruses to humans

Genome length Mutation rate Mutation rate
Organism in bases per base per genome

RNA viruses
Lytic viruses
Qβ 4.2 × 103 1.5 × 10−3 6.5
Polio 7.4 × 103 1.1 × 10−4 0.84
VSV 1.1 × 104 3.2 × 10−4 3.5
Flu A 1.4 × 104 7.3 × 10−6 0.99
Retroviruses
SNV 7.8 × 103 2.0 × 10−5 0.16
MuLV 8.3 × 103 3.5 × 10−6 0.029
RSV 9.3 × 103 4.6 × 10−5 0.43

Bacteriophages
M13 6.4 × 103 7.2 × 10−7 0.0046
λ 4.9 × 104 7.7 × 10−8 0.0038
T2 and T4 1.7 × 105 2.4 × 10−8 0.0040

E. coli 4.6 × 106 5.4 × 10−10 0.0025

Yeast (S. cerevisiae) 1.2 × 107 2.2 × 10−10 0.0027

Drosophila 1.7 × 108 3.4 × 10−10 0.058

Mouse 2.7 × 109 1.8 × 10−10 0.49

Human (H. sapiens) 3.5 × 109 5.0 × 10−11 0.16

Sources: Drake (1991, 1993) and Drake et al. (1998).
Note: Most organisms have a mutation rate per genome which is less than one, as predicted by the

error threshold theory. Why Qβ and VSV have such a high mutation rate is at present unexplained.

words, the genomic mutation rate, uL, has to be less than one. In fact, this

condition holds for most living organisms for which mutation rates have been

measured (Table 3.1). For eukaryotes, the genome length L in this context

should actually be defined as the total number of bases in the coding and

regulatory regions of the DNA.

3 .6 SELECTION OF THE QUASISPECIES

The following remarkable observation was first made by Peter Schuster and

Jörg Swetina. Consider a fitness landscape that contains a high but narrow
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Figure 3.7 Consider a fitness landscape with two peaks. One is high but narrow, the
other low but wide. If the mutation rate, u, is less than a critical value, u1, then the
higher peak is selected, indicated in blue. If the mutation rate, u, is greater than u1, but
less than the error threshold, u2, then the lower peak is selected. If the mutation rate is
greater than the error threshold, u2, then neither peak can be maintained. For a given
mutation rate, selection chooses the equilibrium quasispecies with maximum average
fitness. “Survival of the fittest” is replaced by “survival of the quasispecies.”

peak and in some distance a lower but broader peak (Figure 3.7). If the muta-

tion rate is very small, the quasispecies at equilibrium will be centered around

the higher peak. As the mutation rate increases, there is a sharp transition,

and the quasispecies moves from the higher to the lower peak. The intuitive

explanation is the following: for very small mutation rates only the maxi-

mum fitness matters, but for somewhat higher mutation rates the fitness of the

neighboring sequences is also important. The second peak has a lower maxi-

mum fitness, but a broader ensemble of relatively good close-by neighbors.

The first peak is like a brilliant person working alone, the second peak consists

of a less brilliant person surrounded by a good team.
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If mutation rates are sufficiently small, the quasispecies centered around the

narrow peak has maximum fitness. But when mutation rates are higher, the

quasispecies centered around the broader peak has maximum fitness. Beyond

the error threshold neither peak can be maintained.

We conclude that selection does not always smile upon the fittest. For any

given mutation rate, however, selection chooses the equilibrium distribution

(the quasispecies) with maximum average fitness. “Selection of the fittest” is

replaced by “selection of the quasispecies.”

SUMMARY

◆ A quasispecies is a population of similar genomes.

◆ Quasispecies are formed by a mutation-selection process.

◆ In sequence space, all possible genomes of a certain length are ar-

ranged such that nearest neighbors differ by one point mutation. All

sequences of length, L, can be arranged in a lattice that is embedded

in an L-dimensional space.

◆ A fitness landscape is formed by assigning fitness values (reproductive

rates) to all sequences. A fitness landscape is a high-dimensional mountain

range over sequence space.

◆ Quasispecies live in sequence space and explore the fitness landscape.

◆ Quasispecies climb upward in the fitness landscape.

◆ The quasispecies equation describes deterministic evolutionary dynamics

in terms of mutation and constant selection acting on an infinitely large

population.

◆ Generically, the quasispecies equation has one globally stable equilibrium.

◆ At this equilibrium, the quasispecies consists not of solely the fittest

genome but instead of a distribution of genomes in a mutation-selection

balance.

◆ It is possible that this distribution does not contain the fittest genome

at all. Hence “survival of the fittest” is replaced by “survival of the

quasispecies.”
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◆ Adaptation is localization in sequence space. This is only possible if the

mutation rate is below the error threshold.

◆ The error threshold states that the maximum possible mutation rate (per

base) must be less than the inverse of the genome length (in bases).
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