
6FINITE POPULATIONS

WE WILL NOW BEGIN to analyze evolutionary dynamics in finite popula-

tions. The abundance of individuals is given by integers rather than by contin-

uous variables. The resulting evolutionary dynamics are no longer described

by deterministic differential equations, but require a stochastic formulation.

The best approach for studying a biological problem is to try a deterministic

description first and then move to a stochastic analysis only when the deter-

ministic one misses relevant aspects. Usually differential equations are easier

to analyze and interpret than stochastic processes, but many important biolog-

ical effects only arise in a stochastic context. One such effect is neutral drift. In

this chapter, we will study neutral drift and constant selection in populations

of finite size.

6. 1 NEUTRAL DRIFT

Consider a population of fixed size N . There are two types of individuals,

A and B. They reproduce at the same rate. Therefore A and B are neutral

variants with respect to selection. In any one time step, a random individual

is chosen for reproduction and a random individual is chosen for elimination.
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Figure 6.1 The Moran process
represents the simplest possible
stochastic model to study selec-
tion in a finite population. In each
time step, two individuals are cho-
sen: one for reproduction and one
for elimination. The offspring of
the first individual will replace the
second. Note that the two random
choices could fall on the same indi-
vidual; in this case, an individual will
be replaced by its own offspring.
The total population size is strictly
constant.

We use sampling with replacement: the same individual could be chosen for

reproduction and death. Reproduction occurs without mutation: A produces

A and B produces B.

This stochastic process is named after the Australian population geneticist

P. A. P. Moran, who invented it in 1958. The feature that in each time step there

is always one birth and one death event ensures that the total population size

is strictly constant (Figure 6.1). The only stochastic variable is the number of

A individuals denoted by i. The number of B individuals is N − i. Stochas-

tic processes with one variable are much easier to investigate than stochastic

processes with two or more variables.

The Moran process is defined on the state space i = 0, . . . , N . The prob-

ability of choosing an A individual (for birth or death) is given by i/N . The

probability of choosing a B individual is given by (N − i)/N . There are four

possibilities of what could happen in any one time step.

(i) An A individual could be chosen for reproduction and death. This event

has probability (i/N)2. After the event the number of A individuals is the same

as before; the variable i has not changed.

(ii) A B individual could be chosen for reproduction and death. This event

has probability [(N − i)/N]2. After the event the number of B individuals is

the same as before; the variable i has not changed.
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(iii) An A individual could be chosen for reproduction and a B individual

for death. This event has probability i(N − i)/N2. After the event there is one

more A individual than before; the variable i has changed to i + 1.

(iv) A B individual could be chosen for reproduction and an A individual

for death. This event also has probability i(N − i)/N2. After the event there is

one less A individual than before; the variable i has changed to i − 1.

The transition matrix, P = [pij], determines the probabilities of moving

from any one state i to any other state j . P is an (N + 1) × (N + 1) stochastic

matrix. All entries are probabilities. The sum over each row is one. For our

stochastic process, the transition matrix is given by

pi , i−1 = i(N − i)/N2

pi , i = 1 − pi , i+1 − pi , i+1

pi , i+1 = i(N − i)/N2

(6.1)

All other entries are zero. Therefore the transition matrix is tri-diagonal. This

is the defining property of “birth-death” processes. In any elementary stochas-

tic step, the state variable i can only change by at most one (Figure 6.2).

For our particular birth-death process, we note that

p0, 0 = 1 p0, i = 0 ∀i > 0 (6.2)

and

pN , N = 1 pN , i = 0 ∀i < N (6.3)

The states i = 0 and i = N are “absorbing states”: once the process has reached

such a state, it will stay there forever. The states i = 1, . . . , N − 1 are called

transient. The process stays in the set of transient states only for some limited

time. Eventually the population will consist of either all A or all B individuals.

Although there is no selection, one of the two types will replace the other.

Coexistence is not possible.

Since our stochastic process has two absorbing states, we can ask: starting in

state i, what is the probability of reaching state N? In other words, given that
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Figure 6.2 The Moran process is a birth-death process. In each time step, the number,
i , of blue individuals can only change by one at most. There are two absorbing states,
i = 0 and i = N . In both cases, one type has taken over the entire population. No
further change can occur (unless there is a new mutation).

we start with i many A individuals, what is the probability that eventually the

whole population will consist of A individuals?

Let us do a formal calculation, which will be generalized in the next section.

Denote by xi the probability of ending up in state N when starting from state

i. The probability of ending up in state 0 when starting from state i is given by

1 − xi, because there are no other absorbing states. We have

x0 = 0

xi = pi , i−1xi−1 + pi , ixi + pi , i+1xi+1 ∀i = 1, . . . , N − 1

xN = 1

(6.4)

The probability of being absorbed in state N starting from i is given by the

sum of the following three terms: (i) the probability of going from i to i − 1
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Figure 6.3 In a finite population, if we
wait long enough, the descendants of
one particular individual will take over
the entire population. If all individuals
have the same fitness, then all individu-
als currently present in the population
must have the same chance. Hence
under neutral drift, the fixation prob-
ability (of the lineage) of any one
individual is 1/N .

multiplied by the probability of being absorbed from i − 1; (ii) the probability

of staying in i multiplied by the probability of being absorbed from i; (iii)

the probability of going from i to i + 1 multiplied by the probability of being

absorbed from i + 1. Thus we have a recursive equation for xi. Note that

x0 = 0; from state 0 we can never reach state N . Moreover, we have xN = 1;

from state N , we will certainly reach state N , because we are already there.

Since pi , i−1 = pi , i+1 and pi , i = 1 − 2pi , i+1, the solution of the linear sys-

tem (6.4) is

xi = i/N ∀i = 0, . . . , N (6.5)

The result is obvious. Since all individuals reproduce and die at the same

rate, the chance that a particular individual will generate a lineage that will

inherit the whole population must be 1/N (Figure 6.3). If there are i many A

individuals, then the chance that one of them will make it (as opposed to one

of the N − i many B individuals) is simply i/N .

For each trajectory of our stochastic process, there are only two final possi-

bilities: the trajectory reaches either state 0 or state N . The probability of being

absorbed in 0 is one minus the probability of being absorbed in N . The prob-

ability of ending up in all-B when starting with N − i many B individuals is

given by (N − i)/N .
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6.2 BIRTH-DEATH PROCESSES

Let us now perform the same calculation for a general birth-death process. A

birth-death process is a one-dimensional stochastic process on a discrete state

space, i = 0, . . . , N . In each stochastic event, the state variable i can either

remain unchanged or move to i − 1 or i + 1.

Denote by αi the probability of a transition from i to i + 1. Denote by βi the

probability of a transition from i to i − 1. We have αi + βi ≤ 1. The probability

of remaining in state i is given by 1 − αi − βi. Consider a birth-death process

where i = 0 and i = N are absorbing states. Therefore, we have α0 = 0 and

βN = 0. The transition matrix is of the form

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0

β1 1 − α1 − β1 α1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . βN−1 1 − αN−1 − βN−1 αN−1

0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.6)

Denote by xi the probability of reaching state N when starting from i.

Clearly, 1 − xi denotes the probability of reaching state 0 when starting from

state i. In analogy to (6.4) we have

x0 = 0

xi = βixi−1 + (1 − αi − βi)xi + αixi+1 i = 1, . . . , N − 1

xN = 1

(6.7)

In vector notation, we can write

�x = P �x (6.8)

The absorption probabilities are given by the right-hand eigenvector associ-

ated with the largest eigenvalue, which is one, because P is a stochastic matrix.

Let us introduce the variables
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yi = xi − xi−1 i = 1, . . . , N (6.9)

Note that
∑N

i=1 yi = x1 − x0 + x2 − x1 + . . . xN − xN−1 = xN − x0 = 1. Let

γi = βi/αi. From equation (6.7) we find yi+1 = γiyi. Therefore we have y1 =
x1, y2 = γ1x1, y3 = γ1γ2x1, and so on. If we sum all these expressions we get

x1 = 1

1 + ∑N−1
j=1

∏j

k=1 γk

. (6.10)

From

xi = x1

⎛
⎝1 +

i−1∑
j=1

j∏
k=1

γk

⎞
⎠ , (6.11)

we obtain

xi = 1 + ∑i−1
j=1

∏j

k=1 γk

1 + ∑N−1
j=1

∏j

k=1 γk

. (6.12)

Consider a population of one A individual and N − 1 B individuals. The

probability that A takes over the whole population is called the fixation prob-

ability of A. We denote this probability by ρA. The idea is that a homogeneous

population of B has produced a mutant of type A. We are interested in the

probability of this mutant becoming fixed in the population, which means that

it generates a lineage that takes over the whole population. Similarly, we de-

note by ρB the probability that a single B individual takes over a population

that contains N − 1 A individuals. The fixation probabilities of A and B are

respectively given by ρA = x1 and ρB = 1 − xN−1. Therefore, we have

ρA = 1

1 + ∑N−1
j=1

∏j

k=1 γk

ρB =
∏N−1

k=1 γk

1 + ∑N−1
j=1

∏j

k=1 γk

(6.13)
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Note that the ratio of the fixation probabilities is simply given by the product

over all γi

ρB

ρA

=
N−1∏
k=1

γk . (6.14)

If ρB/ρA > 1, then it is more likely that a single B mutant becomes fixed in an

A population than the other way round.

The fixation probabilities that we have derived in this section hold for any

selection scenario between A and B, including neutral drift, constant selec-

tion, and frequency-dependent selection.

6.3 RANDOM DRIFT WITH CONSTANT SELECTION

Let us now study the same process as before, but assume that A has fitness r

while B has fitness 1. If r > 1, then selection favors A. If r < 1, then selection

favors B. If r = 1, we are back to neutral drift. The fitness difference can be

included in our process by modifying the probabilities of choosing A or B for

reproduction.

The probability that A is chosen for reproduction is given by ri/(ri +
N − i). The probability that B is chosen for reproduction is given by (N −
i)/(ri + N − i). The probability that A is chosen for elimination is i/N . The

probability that B is chosen for elimination is (N − i)/N . For the transition

matrix, we obtain

pi , i−1 = N − i

ri + N − i

i

N

pi , i = 1 − pi , i+1 − pi , i+1

pi , i+1 = ri

ri + N − i

N − i

N

(6.15)

All other elements of the matrix are zero. Again we want to calculate the

fixation probability, xi, to reach state N starting from state i. Note that

γi = pi , i−1

pi , i+1

= 1

r
. (6.16)
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Figure 6.4 Suppose that a new mutant (blue) arises in a population and has relative
fitness r . The lineage starting from this mutant can either become extinct or take over
the whole population. The probability that the mutants will take over the population
is given by the “fixation probability” ρ = (1 − 1/r)/(1 − 1/rN).

Therefore the probability of being absorbed in state N when starting in state i

is given by

xi = 1 − 1/ri

1 − 1/rN
. (6.17)

The fixation probability of a single A individual in a population of N − 1 B

individuals (Figure 6.4) is

ρA = x1 = 1 − 1/r

1 − 1/rN
. (6.18)

The fixation probability of a single B individual in a population of N − 1 A

individuals is

ρB = 1 − xN−1 = 1 − r

1 − rN
. (6.19)
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The ratio of the two fixation probabilities is given by

ρB

ρA

= r1−N . (6.20)

For the fixation probability of an advantageous A mutant, r > 1, in a large

population, N � 1, we have the useful approximation

ρA = 1 − 1/r . (6.21)

Even in the limit of an infinitely large population, N → ∞, there is no guaran-

tee that an advantageous mutant will take over. This is an important difference

between deterministic and stochastic models of evolution. In a deterministic

setting, an advantageous mutant is certain of victory regardless of how small

r is as long as r > 1. In a stochastic setting, the chance of extinction always

remains, no matter how large the population size N .

Let us consider some numerical examples for a population of size N = 100:

A 100% selective advantage, r = 2, leads to ρ = 0.5.

A 10% selective advantage, r = 1.1, leads to ρ = 0.09.

A 1% selective advantage, r = 1.01, leads to ρ = 0.016.

For a neutral mutant, r = 1, we have ρ = 1/N = 0.01.

A 1% selective disadvantage, r = 0.99, leads to ρ = 0.0058.

A 10% selective disadvantage, r = 0.9, leads to ρ = 0.000003.

We can also ask how often must a mutant with relative fitness r arise, before

it has a probability 1/2 of taking over the population. The answer is m =
− log 2/ log(1 − ρ). Again we consider a population of size 100. A mutant

with r = 2 must arise once. A mutant with r = 1.1 must arise 7 times, while a

mutant with r = 1.01 must arise 44 times. A neutral mutant, r = 1, must arise

69 times. Disadvantageous mutants with r = 0.99 or r = 0.9 must arise 119

times and about 234,861 times, respectively.

1 0 2 EVOLUT IONARY DYNAMICS

 EBSCOhost - printed on 10/17/2023 12:30 PM via HARVARD UNIVERSITY LIBRARIES. All use subject to https://www.ebsco.com/terms-of-use



6.4 THE RATE OF EVOLUTION

Imagine a population of N reproducing individuals. All individuals are of the

same type, A. Very rarely a mutation occurs which produces an individual

of type B. Assume that mutation happens during reproduction. The muta-

tion rate u represents the probability that the reproduction of A results in B.

Thus 1 − u is the probability that reproduction of A occurs without muta-

tion. For how long do we have to wait until a population of N A individuals

will produce a B mutant? The rate at which a B mutant is being produced

by the population is Nu. The time until the B mutant arises is exponentially

distributed with mean 1/(Nu).

Suppose type B has a relative fitness r compared to fitness 1 of type A. Thus

the probability that the new B mutant will take over the population is given by

ρ = 1 − 1/r

1 − 1/rN
. (6.22)

The rate of evolution from all-A to all-B is given by

R = Nuρ . (6.23)

The rate at which a B mutant is being produced is Nu. The probability that a

B mutant reaches fixation is ρ. Hence the rate of transition from all-A to all-B

is the product of these two terms.

If B is neutral, then ρ = 1/N and the rate of neutral evolution is given by

R = u. (6.24)

The rate of neutral evolution is independent of the population size and simply

equals the mutation rate. This important result was derived by Motoo Kimura.

This insight is at the center of the so-called neutral theory of evolution.

According to the neutral theory, the majority of mutations that can be

observed—for example, when comparing genetic sequences of humans and

chimpanzees—should be neutral. Advantageous mutations are extremely un-

likely to occur in genes that have been optimized for millions of generations

in the ancestors of these species. Deleterious mutations cannot be observed
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Figure 6.5 The rate of producing neutral mutants is Nu, where N is the population
size and u is the mutation rate. The fixation probability of a neutral mutant is 1/N .
Therefore the rate of neutral evolution is R = Nu/N = u: the rate of evolution equals
the mutation rate. The population size cancels out. This relationship holds even if the
total population size is changing over time. If the mutation rate is constant, then neutral
mutants accumulate at a constant rate, giving rise to a “molecular clock.” The figure
shows three mutations that succeed in taking over the population. For each mutation
that becomes fixed there are on average N unsuccessful attempts.

because they would be eliminated with high probability. Hence the majority

of observed mutations in any phylogeny should be neutral (or nearly neutral).

The rate of accumulating neutral mutations is simply given by the muta-

tion rate and is independent of the population size and fluctuations in the

population size. If the mutation rate depends mostly on the accuracy of DNA

replication, which in turn is performed by a well-optimized system of enzymes

that has not changed much in all eukaryotes, then the rate of evolution is con-

stant. The neutral theory provides a “molecular clock” (Figure 6.5).

There was once a heated controversy between the supporters and the op-

ponents of the neutral theory of evolution. The extreme neutralist would say:

all observable mutations, say between human and chimp, are neutral; hence

neutral variation alone can explain the evolutionary divergence between these

two species; adaptation is unimportant. The extreme adaptationist would say:

neutral evolution is unimportant; it is not even evolution, because it represents

random variation without adaptation; evolution always requires adaptation.

The resolution of the controversy is obvious for those who were never in-

volved. Most molecular variation is neutral. Therefore neutrality is an excel-

lent model for studying genetic variation. Neutrality is often a good assump-

tion for building mathematical tools that help to calculate phylogenetic rela-
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tionships among species. Certainly the overwhelming majority of mutations

that have been fixed in populations since the origin of life have been neutral.

Very occasionally, however, advantageous mutations come into play. These

mutations are extremely important for determining the trajectory of evolu-

tion.

SUMMARY

◆ Evolutionary dynamics in populations of finite size require a stochastic

theory.

◆ The Moran process is a birth-death process, which describes evolution in

finite populations.

◆ If a finite population contains several different types, then without

mutation eventually all but one type will be extinct. This is the case even

if all types have the same fitness. This principle is called “neutral drift.”

◆ In a population of size N , a neutral mutant will reach fixation with

probability 1/N .

◆ A mutant with relative fitness, r , will reach fixation with probability

ρ = (1 − 1/r)/(1 − 1/rN).

◆ The rate of evolution is given by the product of the population size, N , the

mutation rate, u, and the probability of fixation ρ.

◆ The rate of neutral evolution is given by the mutation rate, u, and is

independent of the population size (because ρ = 1/N).

◆ If the mutation rate is constant, then neutral mutations accumulate in

genomes at a constant rate. This effect is called the “molecular clock.”

◆ The neutral theory of evolution recognizes the fact that the majority of

mutations that become fixed in genomes are neutral.
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