
7GAMES IN FINITE POPULATIONS

IN CHAPTER 4, we discussed the traditional approach to evolutionary game

dynamics via the replicator equation, which describes deterministic evolu-

tion in infinitely large populations. All of our understanding of frequency-

dependent selection comes from this approach. We will now develop a frame-

work for studying evolutionary game dynamics in finite populations. Finite-

ness requires stochasticity. The interplay of random drift and frequency-

dependent selection will determine the outcome of evolutionary games. We

will calculate fixation probabilities to decide whether selection favors one

strategy over another. In a game between two strategies, A and B, the fixa-

tion probability of A is given by the probability that a single A player in a

population of N − 1 B players generates a lineage of A that does not become

extinct but instead takes over the whole population. If the fixation probability

of A is greater than 1/N , then selection favors A replacing B.

The intensity of selection plays an important role for game dynamics in fi-

nite populations. The game under consideration can have a strong or weak

influence on the overall fitness of an individual. If the payoff makes a small

contribution to fitness, then selection is weak. If the payoff makes a large con-

tribution to fitness, then selection is strong. Some of our results only hold in
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the limit of weak selection. In the traditional replicator equation, in contrast,

any parameter that describes the intensity of selection cancels out.

Biologists are interested in the concepts of a strict Nash equilibrium or an

evolutionarily stable strategy, because natural selection protects populations

of such strategies against invasion by mutants. We will see, however, that this

implication only holds for deterministic dynamics of infinite populations. For

stochastic dynamics of finite populations, we have to derive new conditions

for evolutionary stability.

Risk dominance is an important concept in game theory, defined as fol-

lows: if two strategies, A and B, are best replies to themselves, then the risk-

dominant strategy has the larger basin of attraction. We will see that in finite

populations, however, the risk-dominant strategy need not have the larger fix-

ation probability. Instead, we will encounter a 1/3 law. If the basin of attraction

of strategy B is less than 1/3, then selection will favor the fixation of strategy

A for sufficiently large N and weak selection.

7 . 1 ONE BASIC MODEL AND ONE-THIRD

Consider a game between two strategies, A and B, with payoff matrix

⎛
⎜⎝

A B

A a b

B c d

⎞
⎟⎠ (7.1)

The total population size is N . The number of A individuals is i. The num-

ber of B individuals is N − i. For each individual, there are N − 1 other

individuals. For each A individual, there are i − 1 other A individuals. For

each B individual, there are N − i − 1 other B individuals. The probability

that an A individual interacts (plays the game) with another A individual is

given by (i − 1)/(N − 1). The probability that an A individual interacts with

a B individual is given by (N − i)/(N − 1). The probability that a B indi-

vidual interacts with another B individual is given by (N − i − 1)/(N − 1).

The probability that a B individual interacts with an A individual is given by

i/(N − 1). Hence, the expected payoff for A and B is, respectively, given by
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Fi = a(i − 1) + b(N − i)

N − 1

Gi = ci + d(N − i − 1)

N − 1

(7.2)

The index i indicates that these quantities represent the expected payoff in a

population that contains i many A individuals.

In the traditional framework of evolutionary game dynamics, the expected

payoff is interpreted as fitness. Individuals reproduce, either genetically or

culturally, with a rate that is proportional to their payoff. Let us introduce a

parameter w that measures the intensity of selection. The fitness of A and B

is given by

fi = 1 − w + wFi

gi = 1 − w + wGi

(7.3)

The intensity of selection, w, is a number between 0 and 1. If w = 0, the game

does not contribute to fitness. Strategies A and B are neutral variants. If w = 1,

selection is strong; the fitness is entirely determined by the expected payoff.

The limit w → 0 characterizes the case of weak selection, where the payoff

provides only a small contribution to fitness. Figure 7.1 illustrates the basic

model of evolutionary game dynamics in finite populations.

It is important to note that the parameter w, which quantifies the inten-

sity of selection, cancels out in deterministic replicator dynamics of infinite

populations, but plays a crucial role in the stochastic process describing finite

populations. We will obtain elegant results in the limit of weak selection.

Consider a Moran process between A and B. The frequency-dependent

fitness values are given by equation (7.3). The state variable, i, denotes the

number of A individuals. The probability to move from i to i + 1 is given by

pi , i+1 = ifi

ifi + (N − i)gi

N − i

N
. (7.4)

The probability to move from i to i − 1 is given by

pi , i−1 = (N − i)gi

ifi + (N − i)gi

i

N
. (7.5)
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Figure 7.1 We can study evolutionary game dynamics in finite populations of size N .
Each individual can interact with N − 1 other individuals. The expected payoff for
each individual is determined from these interactions. The parameters a , b, c, and d

represent the entries of the payoff matrix. The parameter w, a number between 0
and 1, denotes the intensity of selection. If w = 1, then the fitness of an individual is
identical to its payoff. Ifw = 0, all individuals have the same fitness. Smallw denotes the
case of weak selection: the game under consideration makes only a small contribution
to the total fitness of an individual. In any one time step, one individual is chosen for
reproduction proportional to fitness, while a second individual is chosen for elimination
at random. The total population size is constant.

The probability that the process remains in state i is simply

pi , i = 1 − pi , i+1 − pi , i−1. (7.6)

All other transitions have zero probability.

Note that p0, 0 = 1 and pN , N = 1. Therefore the process has two absorbing

states, i = 0 and i = N . If the population has reached either one of these states,

then it will stay there forever. Any mixed population of A and B will eventually

end up in either all-A or all-B. We want to calculate the fixation probabilities

of A and B (Figure 7.2).
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Figure 7.2 The fixation probability, ρ , of a strategy under frequency-dependent
selection can be calculated. For a neutral mutant, ρ = 1/N . Selection favors the
fixation of the invading strategy if ρ > 1/N . Selection opposes the fixation of the
invading strategy if ρ < 1/N .

For the backward to forward transition ratio, we obtain

pi , i−1

pi , i+1

= gi

fi

. (7.7)

Using equation (6.13) of Chapter 6, the fixation probability of A is given by

ρA = 1/

(
1 +

N−1∑
k=1

k∏
i=1

gi

fi

)
. (7.8)

The ratio of the fixation probabilities is

ρB

ρA

=
k∏

i=1

gi

fi

. (7.9)
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Figure 7.3 In the limit of
weak selection, w → 0, the
condition ρ > 1/N is equiv-
alent to a simple inequal-
ity that is linear in N . For
any given population size,
therefore, a simple condi-
tion determines whether
or not selection favors the
fixation of a strategy.

Let us consider the limit of weak selection. A Taylor expansion of equation

(7.8) for w → 0 leads to

ρA ≈ 1

N

1

1 − (αN − β)w/6
. (7.10)

Here α = a + 2b − c − 2d and β = 2a + b + c − 4d .

If ρA > 1/N , then selection favors the fixation of A. From equation (7.10),

we see that ρA > 1/N is equivalent to αN > β. This condition can be writ-

ten as

a(N − 2) + b(2N − 1) > c(N + 1) + d(2N − 4). (7.11)

For a population of only two individuals, N = 2, we have

b > c. (7.12)

This result makes sense: in a mixed population of one A and one B individual,

the former has payoff b and the latter has payoff c; hence if b > c, then A is

more likely to become fixed than B (Figure 7.3).

For large population size, inequality (7.11) leads to

a + 2b > c + 2d . (7.13)
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Figure 7.4 There is a surprising 1/3 law
for evolutionary games in finite popula-
tions. Consider two strategies A and B in
a bistable relationship, a > c and b < d .
The unstable equilibrium (of the replicator
equation) occurs at a frequency ofA given
by x∗ = (d − b)/(a − b − c + d). For fi-
nite population dynamics, we find that
selection favors strategy A, which means
ρA > 1/N , if x∗ < 1/3. In other words, a
strategy has a fixation probability greater
than 1/N , if it has a higher fitness at fre-
quency 1/3. This simple condition holds for
weak selection and large population size.

How can we interpret this condition?

Consider a game with a > c and b < d . Both A and B are best replies to

themselves. Consider the limit of large population size. If the frequency of A is

high, then A has a larger fitness than B. If the frequency of B is high, then B

has a larger fitness than A. There is a point where the two fitnesses are equal.

This point can be calculated by setting Fi = Gi in equation (7.2). For large N ,

this equilibrium point is reached at a frequency of A given by

x∗ = d − b

a − b − c + d
. (7.14)

In the replicator equation, this expression denotes the unstable equilibrium

between A and B.

Inequality (7.13) leads to

x∗ < 1/3. (7.15)

Therefore, if the unstable equilibrium occurs at a frequency of A which is less

than 1/3, then in a large finite population of size N , in the limit of weak selec-

tion, the probability that a single A mutant takes over the whole population

is greater than 1/N . In this case, selection favors the fixation of A in B. The

condition x∗ < 1/3 also means that the basin of attraction of B is less than 1/3

(Figure 7.4).

GAMES IN F IN I T E POPULAT IONS 1 1 3

 EBSCOhost - printed on 11/14/2023 12:26 PM via HARVARD UNIVERSITY LIBRARIES. All use subject to https://www.ebsco.com/terms-of-use



If A dominates B, then a > c and b > d . In this case, x∗ < 0 and inequality

(7.13) always holds. Therefore, if A dominates B, then selection will favor the

fixation of A and oppose the fixation of B in a sufficiently large population.

But the dominated strategy, B, can still be favored in a small population if

b < c. In this case, there will be a critical population size, Nc. If N < Nc, then

selection might favor the dominated strategy B. If N > Nc, selection will favor

the dominant strategy A.

7 .2 EVOLUTIONARY STABILITY IN FINITE POPULATIONS

These results have immediate consequences for the concept of evolutionary

stability. The well-known definition of an evolutionarily stable strategy is mo-

tivated by selection dynamics in infinite populations. For payoff matrix 7.1,

strategy B is ESS if either (i) d > b or (ii) both d = b and a < c. These condi-

tions imply that selection opposes the spread of infinitesimally small fractions

of A in infinitely large populations of B.

strategy, ESSN , if two conditions hold: (i) selection opposes A invading B,

which means that a single mutant A in a population of B has a lower fitness;

and (ii) selection opposes A replacing B, which means ρA < 1/N , for any

w > 0 (Figure 7.5).

The first condition is equivalent to

b(N − 1) < c + d(N − 2). (7.16)

The second condition, for small w, is equivalent to

a(N − 2) + b(2N − 1) < c(N + 1) + d(2N − 4). (7.17)

For N = 2, both conditions reduce to b < c. For large populations, the two

conditions lead to b < d and x∗ > 1/3, respectively. Hence for small popula-

tions the traditional ESS concept is neither necessary nor sufficient; for large

populations, it is necessary but not sufficient (Figure 7.6). If we consider a

game with many different strategies, then the two conditions must hold in

pairwise comparison with every other strategy.

1 1 4 EVOLUT IONARY DYNAMICS
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Figure 7.5 There are two logical requirements for evolutionary stability in finite
populations. Selection has to protect an evolutionarily stable strategy (ESS) against
the invasion and fixation of a mutant strategy. If the fitness of a single mutant is
less than the fitness of the resident, then selection opposes invasion. If the fixation
probability of the mutant is less than 1/N , then selection opposes fixation. The first
condition is always a simple linear inequality in N . The second condition is a simple
linear inequality in N for weak selection.

Figure 7.6 The smallest possible population size for an evolutionary game is N = 2.
In this case, both conditions for evolutionary stability reduce to b < c. For large N ,
the invasion condition is b < d and the fixation condition is x∗ < 1/3. Hence for small
finite populations, the traditional ESS concept is neither necessary nor sufficient to
confer protection by selection. For large finite populations, the traditional ESS concept
is necessary but not sufficient.
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Figure 7.7 Whether one or the other strategy is ESSN depends on the population size.
Two interesting examples are shown. In the first case, both A and B are strict Nash
equilibria. In finite populations, however, B is the only ESSN forN = 2, 3, . . . , 12, both
strategies are ESSN for N = 13, . . . , 52, and A is the only ESSN for N ≥ 53. In the
second example, B dominates A. In finite populations, however, A is the only ESSN for
B ≥ 2, 3, . . . , 17, both strategies are ESSN for N = 18, . . . , 21, and only B is ESSN for
N ≥ 22.

The motivation of the ESSN concept is as follows. If a strategy is ESSN , then

a single mutant of any other strategy must have a lower fitness. Therefore

selection opposes the initial spread of any other strategy. As we have seen,

however, in a finite population it is possible that the fixation of a strategy

is favored by selection although its initial increase is opposed by selection.

Thus the second condition demands that a strategy is only ESSN if the fixation

probability of every other strategy is less than the neutral threshold, 1/N .

In summary, we simply require that a homogeneous ESSN population be

protected by selection against invasion and replacement. These requirements

represent a natural extension of the original ESS concept formulated by John

Maynard Smith for infinitely large populations and deterministic evolutionary

dynamics. Two specific examples are discussed in Figure 7.7.

If d > b, then B is both a strict Nash equilibrium and an ESS in com-

parison with A. A strict Nash equilibrium implies protection by selection

against replacement in the following sense: for a given payoff matrix (7.1), with

d > b and for any given intensity of selection, 0 < w ≤ 1, we have ρA → 0 as
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N → ∞. For every finite population size, N , however, selection can favor the

fixation of strategy A.

7 .3 RISK DOMINANCE

Sometimes it is of interest to ask whether A is more likely to replace B than

vice versa. Let ρA and ρB denote the respective fixation probabilities. In the

case where both A and B are best replies to themselves and in the limit of

weak selection and large population size, we find that ρA > ρB is equivalent to

a + b > c + d . (7.18)

This condition means that A is risk dominant. If both A and B are best replies

to themselves, a > c and b < d , then the risk-dominant strategy has the larger

basin of attraction. Inequality (7.18) can be written as x∗ < 1/2.

Let ρA denote the probability that a single A player reaches fixation in a

population of B. Let ρB denote the probability that a single B player reaches

fixation in a population of A. We have

ρA

ρB

=
N−1∏
i=1

fi

gi

. (7.19)

For weak selection (small w) we find

ρA

ρB

= 1 + w

[
N

2
(a + b − c − d) + d − a

]
. (7.20)

This equation can also be obtained from equation (7.10) and its symmetric

counterpart, ρB = (1/N)/[1 − (α′N − β ′)w/6], where α′ = −2a − b + 2c +
d and β ′ = −4a + b = c + 2d .

It follows that ρA > ρB is equivalent to

(N − 2)(a − d) > N(c − b). (7.21)

For large N , this means a − c > d − b. Hence if both A and B are strict

Nash equilibria, then the risk-dominant equilibrium has a higher fixation

probability. For general N and w, however, risk dominance does not decide
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Figure 7.8 The figure illustrates the relationship between the 1/3 law and risk dominance.
The fixation probabilities of strategies A and B are given by ρA and ρB . The unstable
equilibrium, x∗, is illustrated by the red circle. If x∗ < 1/3, then NρA > 1 > NρB ;
selection favors A and opposes B . If x∗ > 2/3, then NρB > 1 > NρA; selection favors
B and opposes A. If 1/3 < x∗ < 2/3, then both NρA and NρB are less than one;
selection opposes the fixation of both strategies. Risk dominance is determined by x∗
being greater or less than 1/2. If x∗ < 1/2, then strategy A is risk-dominant; it has the
larger basin of attraction. If x∗ > 1/2, then strategyB is risk-dominant. For evolutionary
game dynamics in finite populations, we find that x∗ < 1/2 is equivalent to ρA > ρB ,
while x∗ > 1/2 is equivalent to ρA < ρB . All these relationships hold in the limit of
large population size and weak selection. In general, however, risk dominance does not
determine the ranking of the fixation probabilities.

whether ρA is greater than ρB . Figure 7.8 shows the relationship between risk

dominance and the 1/3 law.

Note that both ρA and ρB can be less than 1/N . In this case, selection

opposes replacement in either direction. It is also possible to find conditions

where both ρA and ρB are greater than 1/N . In this case, selection favors

replacement in either direction.

7 .4 TIT-FOR-TAT CAN INVADE “ALWAYS DEFECT”

In the nonrepeated Prisoner’s Dilemma, cooperators are dominated by defec-

tors. In the repeated PD, the same two players meet more than once, and there

are many conceivable strategies that allow cooperative behavior which can-
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not be invaded by defectors (see Chapter 5). One such strategy is Tit-for-tat,

which cooperates in the first round and then does whatever the opponent did

in the previous round. If the number of rounds is greater than a critical value,

then neither “Always defect” (ALLD) nor TFT can be invaded by the other. If

everybody plays ALLD, then TFT has a lower fitness. If everybody plays TFT,

then ALLD has a lower fitness. Thus TFT can maintain cooperation, but like-

wise ALLD can maintain defection. The question is, How can cooperation get

established?

The notion that ALLD resists invasion by TFT is derived from concepts of

evolutionary stability and game dynamics of infinite populations. If everybody

in an infinitely large population uses ALLD, then a small fraction of TFT play-

ers have a lower payoff. Therefore every invasion attempt by TFT is eliminated

by natural selection.

The payoff matrix for TFT and ALLD in a Prisoner’s Dilemma that is re-

peated for m rounds, on average, is given by

⎛
⎜⎜⎝

TFT ALLD

TFT mR S + (m − 1)P

ALLD T + (m − 1)P mP

⎞
⎟⎟⎠ (7.22)

Recall that the Prisoner’s Dilemma is defined by T > R > P > S. If the average

number of rounds, m, exceeds a critical value,

m >
T − P

R − P
, (7.23)

then ALLD does not dominate TFT. Each strategy is stable against invasion by

the other strategy.

Let us now study the evolutionary game dynamics of TFT and ALLD in

finite populations. We can use the payoff matrix (7.22) together with equa-

tion (7.8) to calculate the fixation probability, ρ, of a lineage starting from

a single TFT player in a population of ALLD. Figure 7.9 shows that Nρ is a

one-humped function of N . For a wide choice of parameter values, there is an

intermediate range of population sizes, N , where selection favors TFT. Thus
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Figure 7.9 Selection can favor the replacement of ALLD by TFT in finite populations.
(a) The rate of evolution, NρTFT, is a one-humped function of population size N .
There is an intermediate range of N that leads to positive selection of TFT, NρTFT > 1.
(b) NρTFT is shown as function of w, the intensity of selection. For small N , we
have NρTFT < 1 for all w. For larger N we have NρTFT > 1 for all w. For even larger
N we have NρTFT > 1 as long as w is below a certain threshold. (c, d) The blue-
shaded region indicates the parameter region where NρTFT > 1. The light blue line
shows the optimum value of N for given w maximizing NρTFT. The broken red
line indicates Nmin = (2a + b + c − 4d)/(a + 2b − c − 2d), which is the predicted
minimum population size required for positive selection of TFT in the limit of weak
selection. Parameter choices: R = 3, T = 5, P = 1, S = 0; n = 10 rounds for (a–c) and
n = 4 rounds for (d).
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Figure 7.10 In a finite population, the fixa-
tion probability of a single TFT mutant in
a population of ALLD can be greater than
1/N . This is the case if the unstable equilib-
rium (the invasion barrier) is less than 1/3, a
condition that can be easily fulfilled in the
repeated Prisoner’s Dilemma.

the invasion and replacement of ALLD by TFT, starting from a single individ-

ual of TFT, can be favored by natural selection. Interestingly, there are critical

minimum and maximum population sizes that allow positive selection of TFT.

In very small populations, there is a strong effect of spite: helping another in-

dividual leads to a significant disadvantage; in a population of size N = 2, TFT

always has a lower fitness than ALLD. In very large populations, it is too un-

likely that TFT will reach the invasion barrier, x∗, when starting with a single

player. Thus neither small nor large but intermediate population sizes are op-

timum for initiating cooperation.

Combining the payoff matrix (7.22) and condition (7.11) we obtain

m >
T (N + 1) + P(N − 2) − S(2N − 1)

(R − P)(N − 2)
. (7.24)

This inequality determines the minimum number of rounds required for se-

lection to favor TFT replacing ALLD for a given population size N . Note that

we need at least a population size of N = 3. For a large population size, we

obtain the condition

m >
T + P − S

R − P
. (7.25)

This inequality ensures that the basin of attraction of ALLD is less than 1/3.

Let us consider the payoff values R = 3, T = 5, P = 1, and S = 0 as a

numerical example. For N = 3, we need m > 10.5 rounds. For N = 4, we need

m > 6.75 rounds. For large N , we only need m > 3 rounds.
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SUMMARY

◆ The Moran process can be extended to study evolutionary game dynamics

in populations of finite size.

◆ The intensity of selection is of crucial importance. The game’s payoff

can make a large contribution to fitness (strong selection) or a small

contribution (weak selection).

◆ The fixation probabilities determine whether selection favors the replace-

ment of an existing strategy by an incoming mutant.

◆ Natural selection favors A replacing B in a sufficiently small population

provided b > c.

◆ Natural selection favors A replacing B in a sufficiently large population

and for weak selection (small w) provided a + 2b > c + 2d . If A and B

are best replies to themselves, then this inequality means that the basin of

attraction of B is less than 1/3.

◆ The analysis leads to natural conditions for evolutionary stability in finite

populations. These conditions specify whether a given resident strategy

is protected by selection against invasion and replacement by any mutant

strategy.

◆ The traditional ESS and Nash conditions are neither necessary nor

sufficient to imply protection by selection in finite populations.

◆ Even if A is risk dominant over B, then B can have a greater fixation prob-

ability than A. Only in the limit of weak selection and large population size

does risk dominance determine the ranking of the fixation probabilities.

◆ In a finite population, natural selection can favor the replacement of

“Always defect” by a cooperative strategy (such as Tit-for-tat), when

starting from a single individual using that strategy.
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