
8EVOLUTIONARY GRAPH THEORY

UP TO NOW we have studied evolutionary dynamics in homogeneous pop-

ulations, where all individuals are in equivalent positions. Let me now in-

troduce a general framework to analyze the effect of population structure on

evolutionary dynamics. We will do this by placing the individuals on the ver-

tices of a graph. The edges of the graph determine competitive interaction. If

there is an edge from vertex i to j , then in a genetic setting the offspring of

i can replace j . In a cultural setting, some information (an idea) can spread

from i to j .

The graph can represent spatial structure among plants or animals in an

ecosystem. The graph can also describe the architecture of cells in a multicel-

lular organism, including the cellular differentiation hierarchy. For example,

stem cells divide into progenitors, which divide into differentiated cells. The

organs of many multicellular animals have such a design, which can delay the

onset of cancer (as we shall see in Chapter 12). The graph might also represent

relationships in a social network of humans. In this context, the dynamics on

the graph describe cultural evolution and the spread of new inventions and

ideas. Obviously, human societies are never homogeneous. Individuals in cen-

tral positions may be more influential than others.
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We will ask whether, on the one hand, particular graphs can accelerate

the rate of evolution by increasing the fixation probabilities of advantageous

mutants. On the other hand, can we find graphs that reduce the fixation

probabilities of such mutants? Can certain graphs completely eliminate the

effect of selection? Is it possible to characterize all those graphs that have the

same evolutionary dynamics (in terms of fixation probability) as unstructured

populations? We will assume that the graph does not change on the time scale

under consideration. The extension to graphs that change over time is an

important task that lies ahead.

This chapter describes first steps into a largely unexplored territory. I have

included it in this book because I think that many investigations will follow

based on those first steps. The general question of how population struc-

ture affects evolutionary dynamics is hugely important and has been a long-

standing topic in population genetics. A deeper, mathematical understanding

of cultural evolution in human society requires the study of evolutionary dy-

namics on social networks. Although the main part of this chapter deals with

constant selection, the final section looks ahead to games on graphs and states

a fascinating result for the evolution of cooperation on graphs.

8. 1 THE BASIC IDEA

Label all individuals in the population with i = 1, 2, . . . , N . At each time

step, a random individual is chosen for reproduction. The probability that the

offspring of i replaces j is given by wij . Hence the process is determined by an

N × N matrix, W = [wij]. Note that all entries of W are probabilities, which

means they are numbers between 0 and 1. Moreover, the offspring of any one

individual has to go somewhere. Therefore the sum
∑N

j=1 wij must be equal

to one. The matrix W is stochastic.

We can imagine all individuals occupying the vertices of a graph. If wij > 0,

there is an edge from vertex i to j . If wij = 0, there is no edge leading from

vertex i to j . The matrix W defines a weighted digraph. Digraphs can have

two edges between vertices i and j : one going from i to j ; the other one going

from j to i (Figure 8.1).

The idea that the offspring of one individual replaces another individual is

taken from the Moran process. This process is recovered as the special case
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Figure 8.1 Evolutionary graph theory is a powerful approach to study the effect
of population structure on evolution. The individuals occupy the vertices of the
graph. The edges denote reproduction. In each time step, an individual is chosen
for reproduction at random but proportional to its fitness. The offspring replaces an
adjacent individual with a probability that is proportional to the weight of the edge.
We can interpret evolutionary graph theory as describing either genetic reproduction
or cultural imitation.

Figure 8.2 An unstructured popula-
tion is given by a complete graph:
there is an edge between any two
vertices. All edges have the same
weight. The evolutionary process is
equivalent to theMoranprocesswith
its well-known fixation probability.

of the complete graph with identical weights, wij = 1/N for all i and j . The

complete graph is defined by the property that all possible edges exist: the

offspring of any one individual can replace any other individual (Figure 8.2).
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Figure 8.3 If the graph is a di-
rected cycle, then each individual
can place its offspring into the
one adjacent place. It is easy to
show that the fixationprobability
of a single mutant with relative
fitness r is the same as in the
Moran process.

8.2 F IRST OBSERVATIONS

The first question we ask is the following: what is the fixation probability of a

new mutant that arises at a random position on a graph?

8.2.1 The Directed Cycle
As a first example, we consider a directed cycle of size N (Figure 8.3). The W

matrix is given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

1 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.1)

Initially all individuals are of type A. After some time, a mutant B is generated

that has relative fitness r . This B individual gives rise to a lineage, which will

eventually die out or take over the whole population. Starting from one B

mutant, only one cluster of B individuals can emerge. It is not possible for this

cluster to break into two or more fragments. This fact makes the calculation

of the fixation probability straightforward.
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Let m denote the number of B individuals. In order to reduce m by one, the

A individual immediately preceding the B cluster in the directed cycle must be

chosen for reproduction. Thus the probability to go from m to m − 1 is given

by

pm, m−1 = 1

N − m + rm
. (8.2)

In order to increase m by one, the B individual at the end of the cluster has

to be chosen for reproduction. Therefore the probability of going from m to

m + 1 is given by

pm, m+1 = r

N − m + rm
. (8.3)

The ratio of these two probabilities is

γm = pm, m−1

pm, m+1

= 1

r
. (8.4)

This quantity is independent of m and identical to what is obtained in the

Moran process with constant selection.

From equation (6.13), the fixation probability of a birth-death process is

given by

ρ = 1

1 + ∑N−1
k=1

∏k
m=1 γm

. (8.5)

Therefore we obtain here

ρ = 1 − 1/r

1 − 1/rN
. (8.6)

The fixation probability on a directed cycle is identical to the fixation proba-

bility in the Moran process.
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Figure 8.4 If the graph is a cycle, then
each individual can place its offspring
into any one of the two adjacent places.
Again the fixation probability of a single
mutant with relative fitness r is the
same as in the Moran process.

8.2.2 The Cycle
As a second example, we consider the (bidirected) cycle shown in Figure 8.4.

Any two neighbors are connected by two edges: one going in one direction,

the other going in the opposite direction. All edges have the same weight. We

have

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 0 . . . 0 1/2

1/2 0 1/2 . . . 0 0

0 1/2 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1/2

1/2 0 0 . . . 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.7)

As before, starting from a single B mutant, there can only be one cluster of

B. Again it is easy to confirm that

pm, m−1 = 1

N − m + rm
and pm, m+1 = r

N − m + rm
(8.8)

Thus the birth-death process on the cycle is described by the same transition

matrix as the process on a directed cycle. Hence we obtain the same fixation

probability as before.
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8.2.3 The Line and the Burst
Let us now consider a linear array as shown in Figure 8.5. From vertex i the

offspring can be placed into vertex i + 1. Vertex N places its offspring onto

itself. No edge leads to vertex 1. We have

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0

0 0 1 . . . 0 0

0 0 0 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.9)

What is the fixation probability of a randomly placed mutant? The answer is

very simple. It is

ρ = 1/N . (8.10)

With probability (N − 1)/N the mutant arises in positions i = 2, . . . , N ,

and its lineage will be eliminated eventually. With probability 1/N , however,

the mutant arises in position i = 1, and its offspring lineage will take over

the population. The fixation probability is totally independent of the relative

fitness, r , of the mutant. Thus the line has a fixation probability that differs

from the Moran process.

Another graph that has a different fixation behavior as the Moran process

is the “burst,” which is also shown in Figure 8.5. There is one central vertex

and N − 1 peripheral vertices. Edges lead from the center to the periphery. We

have

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/(N − 1) 1/(N − 1) . . . 1/(N − 1) 1/(N − 1)

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.11)
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Figure 8.5 Here are two graphs that do
not have the same fixation probability
as in the Moran process. Both for the
“line” and for the “burst,” the fixation
probability of a randomly placed mutant
is ρ = 1/N , independent of the fitness
of this mutant. In the line, a mutant
can only take over the population if
it arises in the left-most position. In
the burst, the mutant must arise in the
central position. These two graphs are
suppressors of selection, because all
mutants—irrespective of their fitness—
have the same fixation probability as a
neutral mutant in the Moran process.

A new mutant can only reach fixation if it arises in the center. The chance that

a randomly placed mutant originates in the center is 1/N . Hence the fixation

probability is again independent of the relative fitness, r , of the new mutant.

The burst and the line have the same fixation probability.

8.2.4 Balancing Drift and Selection
The fixation probability of the Moran process,

ρM = 1 − 1/r

1 − 1/rN
, (8.12)

defines a particular balance between natural selection and random drift. If a

graph, G, has the same fixation probability as the Moran process, then we say

that this graph is ρ-equivalent to the Moran process; it has the same balance

of selection and drift.

If, for an advantageous mutant, r > 1, the fixation probability on G is

greater than the fixation probability in the Moran process, ρG > ρM , then the

graph G favors selection over drift. It increases the fixation probability of an

advantageous mutant. Therefore graph G is an amplifier of selection.
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If, for an advantageous mutant, the fixation probability on G is less than the

fixation probability in the Moran process, ρG < ρM , then the graph G favors

drift over selection. It reduces the fixation probability of an advantageous

mutant. Therefore graph G is a suppressor of selection.

Similarly if, for a disadvantageous mutant, r < 1, the fixation probability on

G is greater (less) than the fixation probability in the Moran process, then the

graph G is a suppressor (amplifier) of selection.

If ρG = 1/N for any r , then the graph G is the strongest possible suppressor

of selection; it completely eliminates the effect of selection.

We have seen that the cycle and the directed cycle are both ρ-equivalent

to the Moran process, whereas the line and the burst completely eliminate

selection.

8.3 THE ISOTHERMAL THEOREM

The temperature of a vertex is defined as the sum of all weights that lead into

that vertex. The temperature of vertex j is given by

Tj =
N∑

i=1

wij . (8.13)

A vertex with a high temperature will change more often than a vertex with a

low temperature. If all the vertices have the same temperature, then a graph

is isothermal. We have the following “isothermal theorem”: a graph is ρ-

equivalent to the Moran process if and only if it is isothermal (Figure 8.6).

For an isothermal graph we have
∑N

i=1 wij = constant. Since
∑N

j=1 wij = 1,

it follows that
∑N

i=1 wij = 1. Therefore a graph is ρ-equivalent to the Moran

process if and only if W is a doubly stochastic matrix, which means that all

rows and all columns sum to one.

Let us prove the isothermal theorem. The configuration of a population on

a graph can be described by a binary vector, �v = (v1, . . . , vN). If the vertex i

is occupied by type A, then vi = 0. If the vertex i is occupied by type B, then

vi = 1. Therefore the vector �v describes a two-coloring of the graph. Denote

by m the total number of B individuals. Thus m = ∑
i vi. The probability that
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Figure 8.6 The isothermal theorem characterizes all those graphs that have the same
fixation probability as the unstructured population (described by the Moran process).
The temperature of a vertex determines how often the individual in this vertex will
be replaced. A hot vertex changes more often than a cold vertex. If all vertices have
the same temperature, then the matrix W = [wij] is doubly stochastic and the graph is
isothermal.

m increases by one is given by

pm, m+1 = r
∑

i

∑
j wijvi(1 − vj)

rm + N − m
. (8.14)

The probability that m decreases by one is given by

pm, m−1 =
∑

i

∑
j wij(1 − vi)vj

rm + N − m
. (8.15)

The fixation probability is the same as in the Moran process if for any coloring

�v we have

pm, m−1

pm, m+1

= 1

r
. (8.16)

This is the case if∑
i

∑
j

wij(1 − vi)vj =
∑

i

∑
j

wijvi(1 − vj). (8.17)
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Figure 8.7 A symmetric
graph is defined by the prop-
erty wij = wji for all i and
j . This means the weight of
the connection from vertex
i to j is the same as from
vertex j to i . It turns out
that all symmetric graphs
have the same fixation prob-
ability as the Moran process.
All spatial lattices (square,
hexagonal, triangular) are
symmetric graphs.

This equality must hold for any vector �v. In particular, it must hold for all

vectors of the form vk = 1 and vi = 0 for all i �= k. In this case equation (8.17)

reduces to

∑
j

wkj =
∑

j

wjk ∀k (8.18)

Since
∑

j wkj = 1, we have

∑
j

wjk = 1 (8.19)

and therefore equation (8.18) means that the matrix W is doubly stochastic

and the corresponding graph is isothermal.

The cycle and the directed cycle are both isothermal. All symmetric graphs,

wij = wji, are isothermal (Figure 8.7). The cycle is symmetric. Most spatial

lattices that have been investigated in evolutionary dynamics are symmetric.

But many asymmetric graphs are also isothermal. The directed cycle, for ex-

ample, is asymmetric but isothermal.
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Figure 8.8 It is easy to see that all one-
rooted graphs have fixation probability
1/N regardless of the fitness of the
mutant. Only a mutant that arises in the
root generates a lineage that will take
over the population. The probability that
a randomly placed mutant arises in the
root is 1/N .

The line, however, is not isothermal. The i = 1 vertex has temperature 0.

The vertices i = 2, . . . , N − 1 have temperature 1. The vertex N has temper-

ature 2. Therefore the line is not ρ-equivalent to the Moran process. The burst

is also not isothermal; the central vertex has temperature 0 while all other ver-

tices have temperature 2.

8.4 SUPPRESSING SELECTION

A root is a vertex that has no edge leading into it. A root has zero temperature.

If a graph is one-rooted, then it has fixation probability 1/N . The new mutant

must arise at the root, otherwise it cannot take over the whole population.

A randomly placed mutant arises at the root with probability 1/N . Therefore

every one-rooted graph completely eliminates selection (Figure 8.8).

If a graph has multiple roots, then any lineage arising from a single mutant

can never take over the whole population. If a mutant arises in one of the roots,

then it will give rise to a lineage that will never become extinct. Thus, graphs

with multiple roots allow the coexistence of different lineages (Figure 8.9).

It is easy to construct suppressors of selection that have a fixation probabil-

ity of advantageous mutants that is somewhere between 1/N and ρM . Subdi-
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Figure 8.9 If a graph has multiple
roots, then the lineage arising from
a single mutant can never take
over the entire graph. If a mutant
arises in a vertex that is not a
root, then it can only generate a
transient lineage. If a mutant arises
in a root, then it will generate a
lineage that cannot become extinct.
Graphs withmultiple roots promote
diversity.

vide the population into two compartments with population sizes N1 and N2.

The total population size is N = N1 + N2. The first compartment is placed

on a complete graph. Edges lead from the first compartment into the sec-

ond compartment, but not the other way around. The second compartment

is on an arbitrary graph with the only constraint that all vertices of the sec-

ond compartment must be reachable from the first compartment. Thus the

first compartment is a source; the second compartment is a sink. The fixation

probability of this graph is

ρG = 1 − 1/r

1 − 1/rN1
. (8.20)

For advantageous mutants, r > 1, we have

1/N < ρG < ρM(N). (8.21)

In general, graphs that have small upstream and large downstream popula-

tions tend to be suppressors of selection.

8.5 AMPLIFYING SELECTION

The balance between drift and selection, as determined by the fixation proba-

bility of the complete graph, can also be tilted toward selection. Consider the
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Figure 8.10 It is possible to find graphs
that amplify selection over drift.
The “star” is a good example. For
large N , a mutant with relative fit-
ness r has a fixation probability ρ =
(1 − 1/r2)/(1 − 1/r2N). Therefore a
relative fitness r on a star is equivalent
to a relative fitness r2 in the Moran
process. The star is an amplifier of
selection.

star structure shown in Figure 8.10. As the population size, N , becomes large,

the fixation probability of a randomly placed mutant approaches

ρM = 1 − 1/r2

1 − 1/r2N
. (8.22)

Hence the star is an amplifier of selection. An advantageous mutant with

relative fitness r > 1 behaves like an advantageous mutant with fitness r2 in

a standard Moran process. A disadvantageous mutant, r < 1, has a probability

of fixation that is equivalent to an even greater fitness disadvantage, r2, in the

Moran process.

Can we construct even more powerful amplifiers? The superstar shown in

Figure 8.11 amplifies a selective difference r to rk, where k is the length of each

loop in the graph. As the number of leaves and vertices within each leaf grows,

the fixation probability becomes

ρM = 1 − 1/rk

1 − 1/r2k
. (8.23)

By increasing k, we can guarantee the fixation of any advantageous mutant,

ρ → 1 if r > 1, and guarantee the extinction of any disadvantageous mutant,

ρ → 0 if r < 1.

The funnel, shown in Figure 8.12, is another potent amplifier. There are

k + 1 layers, labeled j = 0, . . . , k. Layer 0 contains only a single vertex. Layer
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Figure 8.11 A “superstar” amplifies selection from r to rk. The parameters l and m

denote the number of leaves and the number of loops in a leaf, respectively. The
parameter k denotes the length of each loop. The amplification from r to rk holds in
the limit of large l andm. In the limit of large k, the superstar guarantees fixation of any
advantageous mutant and elimination of any disadvantageous mutant. The coloring
indicates hot vertices (red) and cold vertices (blue).

j contains mj vertices. All edges that originate from vertices in layer j lead

into j − 1. All edges that originate from the single vertex in layer 0 lead into

layer k. As k increases, the fixation probability of any advantageous mutant

converges to 1.

Computer simulations show that scale-free networks are mild amplifiers.

This is of particular interest because scale-free networks, including small-

world networks, have been observed in various circumstances. Scale-free net-
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Figure 8.12 The “funnel” is another potent amplifier of selection. There is a single
vertex in one layer. All edges leading into that vertex come from a preceding layer
with m vertices. All edges leading into that layer come from a preceding layer with m2

vertices, and so on. All outgoing edges of the single vertex wrap around to lead into the
largest layer. In the limit of large m and many layers, the fixation probability converges
to one for any advantageous mutant and to zero for any disadvantageous mutant.
Again the coloring indicates hot vertices (red) and cold vertices (blue). The superstar
and the funnel were invented by Erez Lieberman.

works are defined by the property that they have a degree distribution which

is a straight line in a log-log plot. The degree of a vertex is the number of edges

connected to this vertex.

8.6 CIRCULATIONS

We can also design a more elegant version of evolutionary dynamics on

graphs. Instead of first choosing a vertex for reproduction and then choos-

ing again where to place its offspring, we can simply choose an edge. In this

case wij can be any non-negative number, and W need not be a stochastic

matrix. Edge ij is chosen with a probability proportional to wij multiplied by

the fitness of its tail, which is the fitness of the individual at vertex i.
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Figure 8.13 In an extended approach to evolutionary graph theory, the matrix W is no
longer stochastic; instead, the weights wij are arbitrary non-negative numbers. In each
time step, an edge is chosen with a probability proportional to its weight multiplied
by the fitness of the individual at its tail. If edge ij is chosen, then the offspring of i

will replace j . In this framework, a graph has the same fixation behavior as the Moran
process if and only if it is a circulation. A graph is a circulation, if for each vertex the
sum of incoming weights equals the sum of outgoing weights. Circulations constitute
an important set of graphs that arise in many different contexts.

In this framework, a graph G is ρ-equivalent to the Moran process if and

only if it is a circulation (Figure 8.13). A circulation is defined by the property

N∑
j=1

wkj =
N∑

j=1

wjk ∀k = 1, . . . , N (8.24)

This means that for each vertex k, the sum over all weights entering it must

equal the sum over all weights leaving it. The proof of this “circulation theo-

rem” is equivalent to that of the “isothermal theorem.” Note that every isother-

mal graph is a circulation, but not every circulation is isothermal.

8.7 GAMES ON GRAPHS

The next step is to study evolutionary game dynamics on graphs. The general

task would be to calculate the fixation probability of a certain strategy, A,

competing with another strategy, B. In principle, there can be two different

graphs: the interaction graph, H , determines who plays with whom, while
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the replacement graph, G, specifies the reproductive events (who learns from

whom or who is replaced by whose offspring). Classifying all games on all

combinations of graphs is a vast (and perhaps even impossible) undertaking.

Here I can mention only one specific, though most illuminating, example.

Let us suppose that the replacement graph and the interaction graph are

the same, H = G, and study the interaction between cooperators, C, and

defectors, D. A cooperator helps all of its neighbors. For each neighbor, the

cooperator pays a cost, c, and the neighbor receives a benefit, b. Defectors do

not provide any help. They have no costs, but they can benefit by receiving help

from adjacent cooperators. Each individual occupies the vertex of a graph.

The payoffs from all interactions are summed. At first, let us consider regular

graphs of degree k: each individual has exactly k neighbors. We consider the

case of weak selection: the fitness of an individual is a constant plus w times

the payoff. Weak selection means that w is small.

Consider three different update rules for the game dynamics.

1. “Birth-death” process: In each time step, an individual is selected for

reproduction proportional to its fitness. The offspring replaces a random

neighbor. It turns out that for any choice of the parameter values, b and c,

the fixation probability of cooperators, ρC, is always less than 1/N , while

the fixation probability of defectors, ρD, is always greater than 1/N :

ρC < 1/N < ρD . (8.25)

In this “birth-death” process, selection always favors defectors.

2. “Death-birth” process: In each time step, a random individual is chosen to

die. The neighbors compete for the empty site proportional to their fitness.

In this case, we find that cooperators are advantageous and defectors are

disadvantageous, ρC > 1/N > ρD, if

b/c > k . (8.26)

This surprisingly simple rule is the crucial condition for the evolution of

cooperation on regular graphs given the “death-birth” update rule.
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3. Imitation process: In each time step, a random individual is chosen to

update its strategy. It will either stay with its own strategy or imitate a

neighbor’s strategy proportional to fitness. Therefore the focal individual’s

own payoff also affects the update dynamics. In this case we find that

cooperators are advantageous and defectors are disadvantageous, ρC >

1/N > ρD, if

b/c > k + 2. (8.27)

For k = 2, a regular graph is a cycle. In this case the three results can be

obtained from direct calculations. All that is required is to check whether the

boundary between a cluster of cooperators moves in favor of the cooperators

or the defectors (Figure 8.14). For the “birth-death” process, only the payoff

of the two individuals right at the boundary matters. Clearly the defector has

a higher payoff than the cooperator. The boundary always moves in favor of

the defectors. Selection promotes defection, in this case. For the other two

update rules, the payoff of the four individuals that are closest to the boundary

determines the outcome. There are always two cooperators and two defectors.

Again the defector at the boundary has a higher payoff than the cooperator at

the boundary. But the second cooperator has a higher payoff than the second

defector. Therefore cooperation could be favored. A simple calculation shows

that this is precisely the case, if b/c > 2 for the “birth-death” rule and b/c > 4

for the imitation rule.

For k > 2, the three findings can be obtained via a complicated calculation

that uses “pair-approximation.” In this technique, one keeps track of the aver-

age frequency of cooperators and defectors as well as the average frequency of

all pairs, CC, CD, DC, and DD. Strictly speaking, pair approximation is for-

mulated for Bethe lattices (or Cailey trees), where every individual has exactly

k neighbors and there are no loops.

The findings were confirmed by computer simulations for lattices and ran-

dom regular graphs. There is excellent agreement between the simulation re-

sults and the calculation that uses pair approximation. Moreover, the simple

rules b/c > k and b/c > k + 2 also hold for random graphs and scale-free

networks.
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Figure 8.14 Games on graphs can be studied by assuming that individuals interact
with their nearest neighbors and thereby accumulate payoff. This figure illustrates the
evolution of cooperation on a one-dimensional graph, a cycle. Cooperators pay a cost c
for each neighbor. Each neighbor of a cooperator receives benefit b. In the “birth-death”
update rule, selection always favors defectors, because only the payoffs of the two
individuals at the boundarymatter. For the “death-birth” process, the payoff of the next
two individuals is also important; in this case, selection favors cooperators provided
b/c > 2. For the “imitation” process, cooperators win if b/c > 4. All calculations are
performed in the limit of weak selection and large population size. To calculate the
fixation probability of either cooperators or defectors, we only have to analyzewhether
the boundary between a large cluster of cooperators and a large cluster of defectors
moves in one direction or the other, because the lineage arising from one individual
always forms a single cluster. A cluster of cooperators (or defectors) cannot break into
pieces.

SUMMARY

◆ Evolutionary graph theory is a powerful approach to study the effect of

population structure on evolution.

◆ The graph can represent the spatial configuration of a population, the

differentiation hierarchy of cells in a multicellular organism, or a social

network.

◆ The vertices of the graph are individuals. The (weighted) edges denote

reproduction.
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◆ Reproduction can be genetic or cultural. In the first case, the offspring of

one individual replaces another individual in an adjacent vertex. In the

second case, cultural information spreads from one vertex to the next.

◆ We study the fixation probability of a randomly placed mutant with

relative fitness r .

◆ If a graph is isothermal, then it has the same fixation behavior as the

unstructured population.

◆ Graphs that are not isothermal can change the balance between drift and

selection.

◆ Amplifiers of selection increase the probability of fixation of advanta-

geous mutants and reduce the probability of fixation of disadvantageous

mutants. Suppressors of selection work in the opposite direction.

◆ The star, superstar, and funnel are amplifiers of selection.

◆ Scale-free graphs are amplifiers of selection.

◆ In an extended framework, all graphs that are circulations have the same

fixation behavior as the unstructured population.

◆ We can also study games on graphs. A simple rule for the evolution of

cooperation on graphs is b/c > k: selection favors cooperation if the

benefit-to-cost ratio exceeds the number of neighbors.
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