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(100 pTs.) CONTINUOUS AND DISCRETE TIME

A scientist grows bacteria that replicate at a positive net rate r and harvests the bacteria at a positive constant rate k. She conjectures
that the population size y(t) satisfies the equation

g(t) =ry(t) — k. (1)
1.A. |If there are y(to) bacteria now, how many bacteria will there be in one day, y(to +1)?

1.B. In part 1.A., you converted a continuous-time differential equation of the form §(¢) = f(y(t)) into an analogous discrete-time
difference equation that has the form y(t + 1) = g(y(t)). Calculate g(g(y(to))), simplifying fully, and explain why this must be
equal to y(tg + 2).

1.C. |If there are y(to) bacteria now, how many bacteria will there be in the long run, y(c0)?

Solution:

1.A. Separating the variables and integrating from tg to tg + 1 gives
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In addition to the above exact solution, there is a simpler approximate solution using Taylor's theorem.

1.B. In 1.A. we found that g(yo) = (yo — k/r)e” + k/r. Composing this function with itself gives
9(9(y0)) = (o — k/r)e" + k/r —k/rle" + k/r = (yo — k/r) > + k/r. (5)

Because g(y(t)) = y(t + 1), it then follows that g(g(y(t0))) = g(y(to + 1)) = y(to + 2).
1.C. Taking the limit of the solution y(t) to the ODE gives

+oo, y(tg) > k/r
Jim y(t) = lim [(y(to) —k/r) et p kel = S k/r, y(to) =k/r. (6)
—o0, y(ty) < k/r

Of course, there cannot be a negative number of bacteria. Instead, the harvesting term —k would vanish once y = 0, and so
the last case would realistically result in y(co0) = 0.

(100 PTS.) QUASISPECIES DYNAMICS

Continuing from Question , the scientist stops harvesting, and so the bacteria can grow exponentially with fitness fy = r. Suppose
there are two sites in the bacterial genome that can each independently mutate upon division with probability u. Bacteria with a
mutation at just one site have a fitness f; = r + s. Bacteria with a mutation at both of these sites have a fitness fo = r + 2s.
Back-mutation is also possible: each mutant site can return to wild type upon replication with probability v. We will refer to the
wild-type, single-mutant, and double-mutant bacteria as strains 0, 1, and 2, respectively.

2.A. Write down the 3 x 3 stochastic matrix () of mutation prbabilities g;; from strain ¢ to strain j. Then write down the 3 x 3
mutation-selection matrix W of rates w;; = fiqi;.
2.B. Let ¢ be the row vector of strain population sizes y;, with sum y. Let Z be the row vector of frequencies x; = y;/y. Explain

why .
y=yw. ()



2.C. Show
v =y (8)

where ¢ = fa’s’ denotes average fitness. Then derive the quasispecies equation
I =IW — ¢f. (9)
Now assume that there is no back-mutation (i.e. v = 0) and that time is re-scaled such that r = 1.

2.D. If the mutation confers a positive fitness advantage s > 0, calculate the expected strain frequencies Z and average fitness ¢ at
equilibrium, where ¥ = 0, in terms of s and .

2.E. Repeat part 2.D. for the case of a deleterious mutation with s < 0. For what range of s values is only one strain viable at
equilibrium? What about two strains? All three?

Solution:
2.A.
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2.B. The equation ﬁz yW can be rewritten as y; = Zj y; fi4;:, which is true because the y; cells of strain j each replicate at
rate f; and produce strain i cells with probability g;;.

2.C. Part 2.B. implies
y= Zzyjfj%i = Zyjsz%i = ij = nyjxj = y.

Finally, with the quotient rule, we obtain the result
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2.D. Since Z = 0 at equilibrium, then ZW = ¢Z. Hence ¢ is an eigenvalue of W (specifically the largest eigenvalue, as that mode
will grow to dominate all other modes), and & is the associated left-eigenvector.
The eigenvalues of W are 1+ 2s and (1 — u)(1 + s) and (1 — u)?. If s > 0, then the largest eigenvalue is ¢ = 1+ 2s. The
associated left-eigenvector is £ = (0,0, 1). This means that the frequency of double-mutants in the population will approach
100%.

2.E. If s <0, the largest eigenvalue depends on the magnitude of s:

1+ 2s, s> -1
p=q1-u)(1+s), —u<s<—3f- (13)
(1 —u)?, —1/2<s<—u
Defining 1 = —u/s and @« =1 — p - (1 — u/2), the associated left-eigenvectors are
(0,0,1), 5> -
Z=2<(0,1—p+u,pu—u), —u<s< gt (14)

(1 - pa,2ua,1l -1+ pa), -1/2<s<-—u

Note that these left-eigenvectors are normalized such that their entries sum to one.



