Math 137 - Problem Set 10 Due Friday, Apr 17

All rings are commutative, and k is an algebraically closed field.

- 1. (a) Let $P_1, \ldots, P_r \in \mathbb{P}^2$ and $d \ge 1$. Show that there is a plane curve of degree d that doesn't contain any of the P_i .
 - (b) Does (a) generalize to hypersurfaces of degree d in \mathbb{P}^n ?
- 2. (a) Let Y be a set of 5 distinct points in \mathbb{P}^2 . Let V be the linear system of conics that contain Y. Show that $\dim(V) > 0$ if and only if at least four of the points are collinear.¹
 - (b) Let Z be a set of 10 distinct points in \mathbb{P}^2 . Let W be the (possibly empty!) linear system of cubics that contain Z. Show that $\dim(W) > 0$ if and only if at least 6 of the points are collinear or at least 9 of the points lie on a conic.
- 3. Let F be an irreducible plane curve of degree d. Assume the partial derivative $F_x \neq 0$.
 - (a) If P is a point on F, show that $m_P(F_x) \ge m_P(F) 1$.
 - (b) Using part (a) along with Bézout's theorem, show that

$$\sum_{P \in V(F)} m_P(m_P - 1) \le d(d - 1).$$

- (c) Conclude that F has at most $\frac{1}{2}d(d-1)$ multiple points.
- (d) Give an example to show that the bound in (c) is not sharp. That is, show that there is some d such that F cannot have $\frac{1}{2}d(d-1)$ multiple points.
- 4. Let $n \geq 1$ and $d \geq 1$. Define a map $v_d : \mathbb{P}^n \to \mathbb{P}^N$ by

$$v_d([x_0:x_1:\ldots:x_n]) = [M_0:M_1:\ldots:M_N],$$

where the M_i are all the degree d monomials in n + 1 variables. That is,

$$M_0 = x_0^d, \ M_1 = x_0^{d-1} x_1, \ \dots, \ M_N = x_n^d.$$

This map is called the *degree* d *Veronese embedding* of \mathbb{P}^n .

- (a) What is N? Your answer should be in terms of d and n.
- (b) Show that v_d is well-defined and injective.²
- (c) Denote $V := v_d(\mathbb{P}^n)$, the image of $\mathbb{P}(n)$. You may assume V is Zariski closed. Let $H \subset \mathbb{P}^N$ be a hyperplane. Show that $H \cap V = v_d(W)$, where $W \subset \mathbb{P}^n$ is a hypersurface of degree d.³

¹Hint: Remember that $\dim(V) = 0$ if and only if there is *exactly* one conic through those points.

²In fact, it's an isomorphism onto its image. You don't need to prove this.

 $^{{}^{3}}H \cap V$ is called a *hyperplane section* of V.

- (d) Show that the converse of (c) holds. Specifically, let $W \subset \mathbb{P}^n$ be a hypersurface of degree d. Show that there is some hyperplane $H \subset \mathbb{P}^N$ such that $H \cap V = v_d(W)$. That is, the hyperplane sections of V are exactly the degree d hypersurfaces in \mathbb{P}^n .
- (e) Notice that the twisted cubic in \mathbb{P}^3 is the degree 3 Veronese embedding of $\mathbb{P}^{1,4}$. Apply the last sentence in (d) to the case of the twisted cubic. What does it say, concretely, in this case?

⁴The Veronese embeddings of \mathbb{P}^1 are called *rational normal curves*.