Math 137 - Problem Set 11 Due Wednesday, Apr 29

All rings are commutative, and k is an algebraically closed field.

- 1. Show that $V = \mathbb{A}^n \{0\}$ is an affine variety if and only if n = 1.
- 2. Let C be the affine plane curve $V(x^3 + x^2 y^2) \subset \mathbb{A}^2$.
 - (a) Show that C is rational by explicitly describing a birational map $f : \mathbb{A}^1 \dashrightarrow C$ and checking that it induces an isomorphism of fields $f^* : k(C) \to k(\mathbb{A}^1) = k(t)$
 - (b) Which DVR(s) in k(t) dominate the local ring $f^*(\mathcal{O}_{(0,0)}(C))$?
- 3. Let X and Y be varieties, and let $f: X \to Y$ be a function. Suppose $X = \bigcup_{\alpha} U_{\alpha}$ and $Y = \bigcup_{\alpha} V_{\alpha}$, where $U_{\alpha} \subset X$ and $V_{\alpha} \subset Y$ are open, and $f(U_{\alpha}) \subset V_{\alpha}$ for each α .
 - (a) Show that f is a morphism if and only if each restriction $f_{\alpha}: U_{\alpha} \to V_{\alpha}$ of f is a morphism.²
 - (b) If each U_{α} and V_{α} is an affine variety, show that f is a morphism if and only if each $f^*(\Gamma(V_{\alpha})) \subset \Gamma(U_{\alpha})$.
- 4. Define a morphism $f : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ by $f([x_0 : x_1], [y_0 : y_1]) = [x_0y_0 : x_0y_1 : x_1y_0 : x_1y_1]$. This map is called the **Segre embedding** of $\mathbb{P}^1 \times \mathbb{P}^1$ into \mathbb{P}^3 .
 - (a) Check that this map is well-defined and injective.
 - (b) (Extra credit) Show that f is a morphism.
 - (c) Let the homogeneous coordinates of \mathbb{P}^3 be t_{00}, t_{01}, t_{10} , and t_{11} . Define the ideal

$$I = (t_{01}t_{10} - t_{00}t_{11}) \subset k[t_{00}, t_{01}, t_{10}, t_{11}].$$

Show that the image of f is V(I).

(d) **(Extra credit)** Generalize the above to $\mathbb{P}^n \times \mathbb{P}^m$. What is the ideal of the image of the map in this case?

¹Hint: what is $\Gamma(V)$?

²Your answer here should not be super technical and complicated. The crux of this problem is just parsing definitions.