Math 137 - Problem Set 3 Due Wednesday, Feb 19

All rings are commutative, and k is an algebraically closed field.

- 1. Let $R \subset S \subset T$ be integral domains.
 - (a) If S is module-finite over R and T is module-finite over S, prove that T is module-finite over R.
 - (b) If S is integral over R and T is integral over S, prove that T is integral over R.
- 2. Let X = V(f) be an irreducible hypersurface in \mathbb{A}^n . Show that if $Y \subset \mathbb{A}^n$ is an affine variety containing X, then $Y = \mathbb{A}^n$ or Y = X.
- 3. Let $R = \mathbb{C}[x, y]$. For each ideal $I \subset R$, find V(I), and compute $\dim_k(R/I)$.

(a)
$$I = (y^2 - x^3, y - x^2)$$

(b)
$$I = (y^2 - x^2, y^2 + x^2).$$

- 4. Let $V \subset \mathbb{A}^n$ be a nonempty variety. Recall that the *ring of regular functions* on V, denoted $\Gamma(V)$, is the set of functions $f: V \to k$ such that $f = F|_V$, where $F \in k[x_1, \ldots, x_n]$, and $F|_V$ denotes the restriction of F to V. Let $\phi: k[x_1, \ldots, x_n] \to \Gamma(V)$ be the restriction map $F \mapsto F|_V$.
 - (a) Check that ϕ is a k-algebra homomorphism (i.e. a ring homomorphism that acts as the identity on k).
 - (b) Show that $\ker(\phi) = I(V)$.
 - (c) Conclude that $\Gamma(V) \cong k[x_1, \dots, x_n]/I(V)$.
- 5. Let $V \subset \mathbb{A}^n$ be a nonempty variety. Show that the following are equivalent.
 - (i) V is a single point;
 - (ii) $\dim_k \Gamma(V) < \infty;$
 - (iii) $\Gamma(V) = k$.