Math 137 - Problem Set 5 Due Wednesday, Mar 4

All rings are commutative, and k is an algebraically closed field.

- 1. Let $X \subset \mathbb{A}^n$ be a nonempty linear subvariety (i.e. its corresponding ideal is generated by nonzero polynomials of degree 1).
 - (a) Show that there is some change of coordinates $T : \mathbb{A}^n \to \mathbb{A}^n$ such that $T(X) = V(x_{m+1}, \ldots, x_n)$, for some m < n.
 - (b) Conclude that X is isomorphic to \mathbb{A}^m .
- 2. Let $\mathcal{O}_P(V)$ be the local ring of a variety V at a point P. Show that there is a natural one-to-one correspondence between the prime ideals in $\mathcal{O}_P(V)$ and the subvarieties of V that pass through P.
- 3. Let $T : \mathbb{A}^n \to \mathbb{A}^n$ be an affine change of coordinates. Let V be a subvariety of \mathbb{A}^n , and $P \in V$ a point and Q = T(P).
 - (a) Show that the map $\mathcal{O}_Q(\mathbb{A}^n) \to \mathcal{O}_P(\mathbb{A}^n)$ induced by T^* is an isomorphism¹. [Hint: Use the fact that T is an isomorphism. Your solution should be pretty short.]
 - (b) Show that T(V) is a closed subvariety of \mathbb{A}^n .
 - (c) Show that the map $\mathcal{O}_Q(T(V)) \to \mathcal{O}_P(V)$ induced by T^* is an isomorphism.
- 4. Let f be a rational function on an affine variety V. Let

$$U = \{ P \in V \mid f \text{ is defined at } P \}.$$

Recall that U is open, since we showed in class that its complement is closed. Then f defines a function from U to k. Show that this function determines f uniquely.

- 5. Let $X \subset \mathbb{A}^n$ be a variety. You may (but don't need to) assume $\Gamma(X)$ is a UFD. Let $U \subset X$ be a Zariski open set in X (i.e. the complement of some algebraic subset of X). Define $\mathcal{O}_X(U) \subset k(X)$ to be the set of rational functions that are regular (i.e. defined) at every point of U.
 - (a) Show that $\mathcal{O}_X(U)$ is a ring (In fact, a k-algebra).
 - (b) For $f \in \Gamma(X)$, define the open set

$$U_f := X - V(f).$$

Describe explicitly the ring $\mathcal{O}_X(U_f)$.

(c) If $V \subset U$ is an open set contained in U, describe the natural ring homomorphism

$$\phi_{U,V}: \mathcal{O}_X(U) \to \mathcal{O}_X(V).$$

 $^{^{1}}$ We described this map in class.

- 6. Let $X = \mathbb{A}^2$.
 - (a) Describe the ring $\mathcal{O}_X(U)$, where $U \subset \mathbb{A}^2$ is the complement of the x-axis.
 - (b) Describe the ring $\mathcal{O}_X(V)$, where V is the complement of the origin. (Do you see why your answer makes sense?)

Bonus questions (Extra credit)

- 7. Look up the definition of a sheaf. Show that \mathcal{O}_X described in problem 5 is a sheaf of rings² (in fact, of k-algebras) on X. (You've already done a lot of the work above.)
- 8. Look up the definition of the stalk of a sheaf. Show that the stalk of \mathcal{O}_X at a point $P \in X$ is the local ring³ $\mathcal{O}_P(X)$. This gives X the structure of a *locally ringed space*.

²The sheaf \mathcal{O}_X is called the *structure sheaf* of X.

³The local ring is often denoted $\mathcal{O}_{P,X}$ to avoid notation confusion.