Math 137 - Problem Set 8 Due Friday, Apr 3

All rings are commutative, and k is an algebraically closed field.

- 1. Let $f \in k[x_1, \ldots, x_n]$ and I = (f). Let $F \in k[x_1, \ldots, x_{n+1}]$ be the homogenization of f with respect to x_{n+1} , and let J be the homogenization of I (i.e. the ideal generated by the homogenization of elements of I). Show that J = (F).
- 2. Let $V \subset \mathbb{A}^n$ be an affine algebraic set, and $I = I_a(V)$. Let $J \subset k[x_1, \ldots, x_{n+1}]$ be the homogenization of I. Define $\overline{V} \subset \mathbb{P}^n$ to be $V_p(J)$.
 - (a) (Extra credit) Show that J is radical.
 - (b) Show that $\overline{V} \cap U_{n+1} = V$ (where we've identified U_{n+1} and \mathbb{A}^n in the natural way).
 - (c) Show that \overline{V} is equal to the Zariski closure of V in \mathbb{P}^n . That is, \overline{V} is the smallest projective algebraic set containing V.
- 3. The *twisted cubic* $C \subset \mathbb{P}^3$ is the image of the map $\phi : \mathbb{P}^1 \to \mathbb{P}^3$ defined

$$\phi([s:t]) = [s^3: s^2t: st^2: t^3].$$

(a) Show that C is the locus of points [x : y : z : w] in \mathbb{P}^3 such that the rank of the matrix

$$\begin{pmatrix} x & y & z \\ y & z & w \end{pmatrix}$$

is 1. (Varieties described as the vanishing of minors of a matrix are called *determinantal varieties*.)

- (b) Show that no two of the minors in part (a) determine C. That is, all three are necessary.
- 4. Let $H = V(\sum a_i x_i)$ be a hyperplane in \mathbb{P}^n .
 - (a) Show that assigning $[a_1 : \ldots : a_{n+1}] \in \mathbb{P}^n$ to H gives a one-to-one correspondence between hyperplanes in \mathbb{P}^n and points in \mathbb{P}^n . This is called the **dual projective space**. If $P \in \mathbb{P}^n$, let P^* be the corresponding hyperplane; if H is a hyperplane, let H^* be the corresponding point.
 - (b) Show that $P \in H$ if and only if $H^* \in P^*$.
- 5. (a) Let $P_1, P_2, P_3 \in \mathbb{P}^2$ be three distinct points not lying on a line. Show that if $Q_1, Q_2, Q_3 \in \mathbb{P}^2$ are distinct points not lying on a line, there is a projective change of coordinates $T : \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(P_i) = Q_i$. (Hint: Show there's a projective change of coordinates sending them to [0:0:1], [0:1:0], and [1:0:0].)
 - (b) State and prove an analogous result for two sets of three lines in \mathbb{P}^2 . (What conditions do you need to impose on the three lines?)