Math 137 - Problem Set 9 Due Friday, Apr 10

All rings are commutative, and k is an algebraically closed field.

1. Let P be a nonsingular (simple) point on a plane curve F. Show that the tangent line to F at P is

$$F_x(P)x + F_y(P)y + F_z(P)z = 0.$$

(Recall that the tangent line at a point is the projective closure of a tangent line in an affine chart containing that point.)

- 2. For each of the following projective plane curves, find their multiple points and the multiplicities and tangent lines at the multiple points.
 - (a) $x^2y^3 + x^2z^3 + y^2z^3$
 - (b) $y^2 z x(x-z)(x-\lambda z), \lambda \in k$
 - (c) $x^n + y^n + z^n, n > 0$
- 3. Let F be an irreducible projective plane curve. Show that F has only finitely many singular points.
- 4. Let $V = V(y x^3)$ and W = V(x) in \mathbb{A}^2 .
 - (a) Show that V and W are isomorphic as affine algebraic sets.
 - (b) Show that the projective closures of V and W in \mathbb{P}^2 are not isomorphic. (Do you see what's going on geometrically?)
- 5. Find two projective plane curves in \mathbb{P}^2 that are isomorphic but have the property that when you dehomogenize with respect to z (i.e. intersect with U_3), the resulting affine plane curves are not isomorphic.
- 6. Let G be an irreducible cubic.
 - (a) Show that G has at most one singular point, and any such singular point must have multiplicity 2.
 - (b) Show that if G has a cusp (i.e., in this case, has a single tangent line of multiplicity 2 at the singular point), then it is projectively equivalent to the curve $y^2z x^3$. (Hint: Using a problem from the previous problem set, you can start with the singular point at [0:0:1] and the tangent line y.)
 - (c) Show that if G has a node (i.e. has two distinct tangent lines at the singular point), then it is projectively equivalent to the curve $xyz = x^3 + y^3$.
- 7. (Extra credit) Let H_1, H_2, \ldots, H_r be hyperplanes in \mathbb{P}^n . Show that the intersection $H_1 \cap \ldots \cap H_r$ is a linear space of dimension $\geq n r$.