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Problem 1. Provide an example of a sequence of Riemann integrable functions fn : [a, b] → R which con-
verges pointwise but not uniformly to some function limn fn : [a, b] → R which is also Riemann integrable,
but such that

lim
n

ˆ
[a,b]

fn ̸=
ˆ
[a,b]

lim
n

fn

and even both quantities are finite. Conclude that

lim
n

ˆ
[a,b]

̸=
ˆ
[a,b]

lim
n

is violated not only because of a lack of Riemann integrability.

Solution. Consider [a, b] = [0, 1] and fn = n1(0,n−1], where 1A(x) = 1 if x ∈ A and = 0 if x ̸∈ A. Then, fn
converges to 0 on all x ∈ [0, 1], but

´
[0,1] fn = 1 for all n. Thus,

lim
n

ˆ
[0,1]

fn dx = 1 ̸= 0 =

ˆ
[0,1]

lim
n

fn.

Remark. There cannot be such an example if {fn} is uniformly bounded.

Problem 2. Provide a counter-example that shows a map f : X → Y and two sets A,B ⊆ X such that

f(A ∩B) ̸= f(A) ∩ f(B).

Solution. Let X = Y = {0, 1} and consider f : {0, 1} → {0, 1} that f(0) = f(1) = 1. Then, for A = {0}
and B = {1}, we get f(A ∩B) = f(∅) = ∅ but f(A) ∩ f(B) = {1}.

Problem 3. Determine whether the following collection of subsets on R defines a σ-algebra on it, and
prove your statements:

(a) F1 = {∅,R} ∪ {(−∞, a] : a ∈ R}.

(b) F2 = {∅,R, (0, 1) ∪ (2, 3)}.

(c) F3 = {A,R \A : A ⊂ R, |A| = ℵ0}.
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Solution. (a) No. R \ (−∞, a] = (a,∞) ̸∈ F1.

(b) No. R \ ((0, 1) ∪ (2, 3)) ̸∈ F2.

(c) No. (R \ {0, 1, 2, · · · }) ∪ (R \ {1, 2, · · · }) = R \ {0} ̸∈ F3; thanks to Lydia Boubendir .

Remark. F1 generates Borel σ-algebra on R, F2 = {∅,R, A} generates {∅,R, A,R \ A}, and F3 generates
{A,R \A : A ⊂ R, |A| ≤ ℵ0}.

Problem 4. Prove that the arbitrary intersection of σ-algebras is again a σ-algebra.

Solution. Suppose X is a non-empty set and {Mi}i∈I is a collection of σ-algebras on X. Let M = ∩i∈IMi.
We verify definition of M being σ-algebra as follows:

(X ∈ M) X ∈ Mi for all i ∈ I, so X ∈ M.

(closed under complement) A ∈ M =⇒ A ∈ Mi for all i ∈ I =⇒ X\A ∈ Mi for all i ∈ I =⇒ X\A ∈ M.

(closed under countable union) {An}n∈N ⊂ M =⇒ {An}n∈N ⊂ Mi for all i ∈ I =⇒ ∪n∈N ∈ Mi for all
i ∈ I =⇒ ∪n∈N ∈ M.

Problem 5. Find an example of a (finite or infinite) collection of σ-algebras such that their union is not
a σ-algebra.

Solution. Let X = {1, 2, 3}, M1 = {∅, {1}, {2, 3}, X}, and M2 = {∅, {2}, {1, 3}, X}. Then M1 and M2 are
σ-algebras on X, but M = M1 ∪M2 is not a σ-algebra since {1}, {2} ∈ M but {1} ∪ {2} ̸∈ M.

Problem 6. Prove that the collection of open balls,

Bϵ(x) ≡ {y ∈ Rn : ∥x− y∥ < ϵ}

is a basis for the standard topology on Rn, where ϵ ranges over (0,∞) and x ranges over Rn. To do that,
please state the definition of a basis for a topology.

Solution. Definition of a basis for a topology: Suppose X is a set and T is a topology on X. We say a
family B ⊆ T is a basis for the topology T if every open set can be represented as the union of elements
in B.

Proof that balls form a basis for the standard topology on Rn: Suppose an open set U ⊆ Rn is given. For
each x ∈ U , there exists ϵx > 0 such that Bϵx(x) ⊆ U . So,

U =
⋃
x∈X

Bϵx(x).

Therefore, every open set in Rn can be represented as the union of open balls.

Problem 7. Define the extended real line, initially as a set, via

R := R ∪ {±∞}.

Define a topology on it by providing a basis for its topology using the collection Bϵ(x) from above (as ϵ
ranges over (0,∞) and x ranges over R) together with two additional collections

{(a,∞] : a ∈ R}

and
{[−∞, a) : a ∈ R}.

Show that every open set in R thus defined is a countable union of these basis elements.
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Solution. Fix an open set U ⊊ R. Denote the collection of basis elements by B and let Q = Q ∪ {±∞}.
For each x ∈ U ∩ Q, there exists the maximal basis element Ax that contains x and Ax ⊆ U . Explicitly,
define

Ax =
⋃

A∈B, x∈A,A⊆U

A.

Since Ax is the union of intervals that contain x, it is again an interval that contains x. The endpoints are
open or ±∞. Thus, Ax ∈ B and Ax ⊆ U by definition. Let

V = ∪r∈U∩QAr.

It suffices to show that U = V . Since U ⊇ Ar for each r, we get U ⊇ V . Now, it is enough to prove that
x ∈ U implies x ∈ V .

For x ∈ U ∩Q, we know x ∈ Ax, so x ∈ V .
For x ∈ U \ Q, there exists an open interval B ⊆ U that contains x. Since Q is dense in R, B contains a
rational r. Then, B ⊆ Ar by maximality of Ar. Therefore, x ∈ Ar for some r and thus x ∈ V .

Problem 8. Does there exist an infinite σ-algebra which has only countably many elements?

Solution. No. For the sake of contradiction, suppose there is a σ-algebra M on a set X such that M is
countable.

For each x ∈ X, let Fx be the intersection of every element in M that contains x. Since M was countable,
there are at most countably many sets that contain Mx (Thanks to Olivia Kwon). Hence, Fx ∈ M because
a σ-algebra is closed under a countable intersection.

Claim 1. y ∈ Fx =⇒ Fx = Fy.
Proof of Claim. First, Fy ⊆ Fx by definition of Fy. If x ̸∈ Fy, then x ∈ Fx \ Fy but Fx \ Fy is a proper
subset of Fx. It contradicts the definition of Fx. Therefore, x ∈ Fy and thus Fx ⊆ Fy. Summing up with
the first line, we get Fx = Fy.

Let F = {Fx : x ∈ X}. Then, F is a subcollection of M. Due to Claim 1, two distinct elements in F are
necessarily disjoint.

Claim 2. A = ∪x∈AFx.
Proof of Claim. Since x ∈ Fx for each x ∈ A, we get A ⊆ ∪x∈AFx. On the other hand, from the definition
of Fx, we know Fx ⊆ A for all x ∈ A. Thus, A ⊇ ∪x∈AFx.

Since M is countable, F is at most countable. From Claim 2, every element in M is a union of elements
in F . Since F is at most countable, the union of any subcollection of elements in F is an element of
M. Therefore, |M| = |P(F)|. Since the cardinality of a power set cannot be countable, it deduces a
contradiction.

Remark (Proof that |P(N)| is uncountable). Suppose not. Then P(N) = {Ak : k ∈ N}. Define

B = {k ∈ N : k ̸∈ Ak}.

Since B ∈ P(N), it should be B = An for some n ∈ N. If n ∈ B, then n ̸∈ An and if n ̸∈ B, then n ∈ An.
In either case, we get a contradiction.

Problem 9. Show that if f : X → R with X a measurable space, and

f−1([r,∞)) ∈ (X) (r ∈ Q)

then f is in fact measurable.
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Solution. Consider F be a family of subsets in R defined as

F = {A ⊆ R : f−1(A) ∈ Measurable(X)}.

Then, F is a σ-algebra on R. First, since X is measurable in X, we get R ∈ F. Next, if A ∈ F, then
f−1(R \ A) = X \ f−1(A) is measurable in X, so R \ A ∈ F. Lastly, if {An} ⊂ F, then f−1(∪nAn) =
∪nf

−1(An) is measurable in X, so ∪nAn ∈ F.

From the given condition, we know that [r,∞) ∈ F for all r ∈ Q. Since {[r,∞) : r ∈ Q} generates the
Borel σ-algebra B(R), the σ-algebra F must contain every Borel set. Therefore, f−1(A) is measurable in
X for every A ∈ B(R) which means f : X → R is measurable.

Remark (Proof that {[r,∞) : r ∈ Q} generates B(R)). Let M be the smallest σ-algebra that contains [r,∞)
for all r ∈ Q.
i. (a,∞) = ∪r>a,r∈Q[r,∞) ∈ M for any a ∈ R.
ii. (a, b] = (a,∞) \ (b,∞) ∈ M for any a, b ∈ R.
iii. (a, b) = ∪n∈N(a, b− n−1] ∈ M for any a, b ∈ R.
iv. Since any open set in R is a countable union of open intervals, every open set is an element of M.
v. Therefore, M = σ(Open(X)) = B(R).

Problem 10. Let f, g : X → R be given measurable functions with X a measurable space. Show that

{x ∈ X : f(x) < g(x)}, {x ∈ X : f(x) = g(x)}

are measurable.

Solution. If f(x) < g(x), then there is a rational number between f(x) and g(x). Thus,

{x ∈ X : f(x) < g(x)} =
⋃
q∈Q

{x ∈ X : f(x) < q < g(x)} =
⋃
q∈Q

f−1([−∞, q)) ∩ g−1((q,∞]).

Since f and g are measurable functions, f−1([−∞, q)) and g−1((q,∞]) are measurable sets. Hence,
f−1([−∞, q)) ∩ g−1((q,∞]) is a measurable set of each q ∈ Q. Therefore, {x ∈ X : f(x) < g(x)} is
a measurable set as a countable union of measurable sets. And we know that the second set is also
measurable because

{x ∈ X : f(x) = g(x)} = X \ ({x ∈ X : f(x) < g(x)} ∪ {x ∈ X : f(x) > g(x)}).

4


