

Princeton University
 Spring 2025 MAT425: Measure Theory
 HW1
 Jan 31st 2025

February 2, 2025

1. Provide an example of a sequence of Riemann integrable functions $f_n : [a, b] \rightarrow \mathbb{R}$ which converges pointwise but not uniformly to some function $\lim_n f_n : [a, b] \rightarrow \mathbb{R}$ which is *also* Riemann integrable, but such that

$$\lim_n \int_{[a,b]} f_n \neq \int_{[a,b]} \lim_n f_n$$

and even both quantities are finite. Conclude that

$$\lim_n \int_{[a,b]} \neq \int_{[a,b]} \lim_n$$

is violated *not only* because of lack of Riemann integrability.

2. Provide a counter example that shows a map $f : X \rightarrow Y$ and two sets $A, B \subseteq X$ such that

$$f(A \cap B) \neq f(A) \cap f(B).$$

3. Determine whether the following collection of subsets of \mathbb{R} define a σ -algebra on it, and prove your statements:

- (a) $\mathcal{F}_1 := \{ \emptyset, \mathbb{R} \} \cup \{ (-\infty, a] \mid a \in \mathbb{R} \}.$
- (b) $\mathcal{F}_2 := \{ \emptyset, \mathbb{R}, (0, 1) \cup (2, 3) \}.$
- (c) $\mathcal{F}_3 := \{ A, \mathbb{R} \setminus A \mid A \subseteq \mathbb{R} : |A| = \aleph_0 \}.$

4. Prove that the arbitrary intersection of σ -algebras is again a σ -algebra.

5. Find an example of a (finite or infinite) collection of σ -algebras such that their union is *not* a σ -algebra.

6. Prove that the collection of open balls,

$$B_\varepsilon(x) \equiv \{ y \in \mathbb{R}^n \mid \|x - y\| < \varepsilon \}$$

is a *basis for the standard topology on \mathbb{R}^n* , where ε ranges over $(0, \infty)$ and x ranges over \mathbb{R}^n . To do that, please state the definition of a basis for a topology.

7. Define the extended real line, initially as a set, via

$$\bar{\mathbb{R}} := \mathbb{R} \cup \{ \pm\infty \}.$$

Define a topology on it *via providing a basis for its topology* using the collection $B_\varepsilon(x)$ from above (as ε ranges over $(0, \infty)$ and x ranges over \mathbb{R}) together with two additional collections

$$\{ (a, \infty] \mid a \in \mathbb{R} \}$$

and

$$\{ [-\infty, a) \mid a \in \mathbb{R} \}.$$

Show that every open set in $\bar{\mathbb{R}}$ thus defined is a countable union of these basis elements.

8. Does there exist an infinite σ -algebra which has only countably many elements?

9. Show that if $f : X \rightarrow \mathbb{R}$ with X a measurable space, and

$$f^{-1}([r, \infty)) \in (X) \quad (r \in \mathbb{Q})$$

then f is in fact measurable.

10. Let $f, g : X \rightarrow \overline{\mathbb{R}}$ be given measurable functions with X a measurable space. Show that

$$\{x \in X \mid f(x) < g(x)\}, \{x \in X \mid f(x) = g(x)\}$$

are measurable.