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Problem 1.
Find probability measures u, v on R? such that

w(By x By) = v(By X By) (B1,Bs € B(R))
fails.

Solution. Let p = v be the measure defined by dy = dv = x(0,1)x(1,2) dA where A is the Lebesgue measure.
That is,
n(S) = v(S) = A(SN((0,1) x (1,2)))

for all S € B(R?). Let By :=(0,1) and By :=(1,2). Then

/L(31XBQ):1§£0:V(BQX31) O

Problem 2.
Find probability measures p on R? and v on R such that
(B xR) = v(B) (B e B(R)

fails.



Solution. Define p by dp = x(0,1)2 dA, and v by dv = x(1,2) dA. That is,
w(S):=ASN(0,1)%) and v(T):=A((1,2)NT)

Let B:=[0,1]. Then
wBxR)=1#0=v(B) O

Problem 3.

Let (Sy)nen be a simple random walk on R defined by IID increments (X, )nen with a priori probability
measure pg : B(R) — [0,1]. Show that these give rise to a system of probability measures satisfying the

Kolmogorov consistency conditions.

Solution. We show that the “joint probability distributions” of the increments satisfy the consistency con-
ditions. To see this, let By,..., B,, be Borel subsets of R and let ji,...,j, be pairwise distinct positive

integers. Then

Px, ..x;, (BiXx-xBpy)= (H Mo) (By x -+ X Bp,) = po(B1)po(B2) - - - po(Bn)
k=1

Note that the expression on the left is independent of the choice of ji,...,j, and of the order in which the
B;’s appear (since multiplication of real numbers is commutative and associative). In particular, this means
it remains invariant when we permute the X;,’s and the B;. The second consistency condition follows from
this.

For the third consistency condition, let ji,..., jm,1,...,% be pairwise distinct positive integers and let

Bi,...,B,, be Borel subsets of R. Then

PGy XX

X,il(B1><~~-><Bm><Rl)

it

Il
N
—
=
S

>(B1><---><Bm><Rl)

o(B1)po(Ba) - - pio(Bn) o (R)!
o(B1)po(Bz) - - - po(Br)
X, (By X -+ X By)

where we have used the fact that pi is a probability measure to conclude that po(R)! = 1. O

Problem 4.

Let m : [0,7] — R be a given function and C' a self-adjoint positive linear operator on L?([0,7] — R) induced

by a kernel (t,s) — C(t,s). We associate to m and C the Gaussian stochastic process (Bt):eo,) specified



by its finite marginals for 0 <t; < --- <t, < T via

dPg,,,..B,, B 1 1 . n
) = e (<3 (0w K@) R

where K is the n x n matrix given by K;; :=C(t;,t;) and p is the vector given by p; :=m/(t;).

(a) Show that this system satisfies the Kolmogorov consistency conditions.

Solution. We have only defined the joint marginals for strictly increasing sequences of ¢;’s. The defnition
in the other cases is determined in the unique way that makes the second Kolmogorov condition hold

true.
The first Kolmogorov condition holds because it follows from our calculation on HW9Q10(a) that

/ exp (—; ((x—p), K Yz — N)>> d\(z) = / exp <—; <x7K1m>> d\(z) = % = (2m)"V2Vdet K

and thus the functions above integrate to 1.

To see that the third Kolmogorov condition holds, let ti,...,%,,81,...,S,» be pairwise distinct real

numbers in [0,7] (not necessarily in increasing order).

The distribution P Biy s Bin Bey oo Bon, is a multivariate Gaussian distribution. It is possible but messy to
show directly that the marginal of this distribution with respect to the first n variables gives P By, Buy, -
Instead we appeal to properties of Gaussian distributions.

We appeal to the results in Chapter 1.2 of Bogachev’s Gaussian Measures. There it is shown that a
probability measure has the multivariate Gaussian form that our distributions do if and only if its 1-
dimensional marginals are ordinary Gaussians. This implies that marginals of Gaussians are Gaussian.

Two multivariate Gaussians with the same means and covariances are equal. (This also follows from

Bogachev’s results.)

More precisely, Bogachev showsﬂ that (in our notation) the vector p gives the means of the B-variables
and the matrix K gives all their covariances. More precisely, u(j) = m(t;) is the mean of B;; and

C(tj,tx) is the covariance of B;; and Btkﬂ

Since covariances are preserved upon taking marginals, we see that the means and covariances of

IPBH,_“, B,, agree with those of the marginal of IP’Bt17,__, Bi, B B.,, with respect to the first n vari-

ES R

ables. It follows that PBH,...,B% is the appropriate marginal of PBH,.»-,BM,B B. . O

s13 1 Dsyy

(b) Show that a Gaussian process is characterized by its first two moments by relating them to m and C.

IThis also follows from our work in HW9Q10.
20ne cannot yet talk of the random variable By ; since we do not yet know that a global probability space exists. However,

this concept does make sense with respect to any of our given distributions.



Solution. The function

dPp, Lo ) @ = m@))?

1
T) = ————=e€x
AN =o 0 p( 2 )
is visibly symmetric around the point m(t). It follows that E[B;] = m(t).

Our calculation in HW9Q10(c) (in the special case when v; and vy are standard basis vectors) gives
E[B;B.] = C(t,u)

Together, these facts show that m and C can be recovered from the first two moments of the Gaussian

process. O

Problem 5.

5. What is the operator
C:L*([0,1] = R) = L*([0,1] - R)
so that
C(t,s) =min({t,s})?
Conclude a more “appealing” expression for
dIP’(BtN__ B.,)

Y ()

when (By), is Brownian motion then.

Solution. We claim that that operator is the inverse of the 1D Laplacian on L?([0,1] — R) with certain
boundary conditions. Let us verify this. Consider then the operator K so that
1 1 s 1
(Kf)(s) = C(s,t)f(t)dt = min({ s,t })f(¢t)dt = / tf(t)dt + s/ f(t)de.
t=s

t=0 t=0 t=0

We calculate 92 of this to obtain
1
(") =0 (566 + [ 1oyt = s7) = ~105).
t=s
Moreover, (K f)(0) = 0 whereas (K f)'(1) = 0 too. Hence we identify
K=(-9%)"

on L%([0,1]). Note that while the first boundary condition (K f)(0) = 0 naturally corresponds to the con-
ditioning By = 0, (Kf)'(1) = 0 makes the operator K self-adjoint and corresponds to the fact that B



is unconstrained (this is vague handwaving but that part of the argument is not necessary to answer the
question).

In light of Q4, for any 0 < ¢y < --- <t, < 1, let k be the n X n matrix comprised via x;; := C(t;,t;).

Then x~! is clearly a finite mesh approximation (with mesh size n) of the Laplacian, i.e., (r,x 1z) =

>ict ﬁ(%ﬂ — ;)% Hence

dP(p,, - B.,) 1

1 2 n
7 0 Gy o (g (), @R

Problem 6.

Solution. a). The rate function is Cramer’s function, given as the Legendre transform of the cumulant
generating function. For an introduction to the problem and sketch of the proof of the first condition for
LDP see Example 7.47 in the lecture notes. For the full proof see Klenke - Probability Theory attached below.
One should first read the proof of Theorem 23.3 (pages 508-509), then Example 23.10 (pages 512-513).

b). Consider the case when each X, is a symmetric coin flip for £1. The cumulant generating function
is £(0) = log E[e?X] = log (1(e? + e7?)) = log cosh §. According to part a), the rate function is the Legendre
transform of logcosh@. To compute this, we denote by 6*(z) the value that realizes the supremum in the

definition of the Legendre transform, I(x) = x6*(x) — log cosh 8*(z). As a result, we get that:
z = (log cosh)’@*(z) = tanh 6" (x)

We can then compute the rate function:

(1+x)log(l+x)+ (1 —2)log(l — )

I(z) = ztanh ™' (z) — log cosh tanh ™! (z) = 5

¢). By Cramer’s theorem proved above we have that:
lim —logP[Ay > a] = —I(a)
i,y logPlAy 2 ol = ~Ila

As a result, we obtain that P[Ayx > a] is asymptotically e~ V(@)

d). By Varadhan’s lemma, we know that:

Jim g E s, fexp N f(Aw)] = sup (F() ~ 1)

weR
As a result, we obtain that E 4, [exp N f(Ay)] is asymptotically exp (N sup,er (f(w) — I(w))) O
Problem 7.
Solution. See Theorem 7.54 in the lecture notes for the proof of the scaling law. O



Problem 8.

Solution. Recall the Feynman-Kac formula: if V : R — R is a potential then we can rewrite a solution of the
Schroedinger-heat equation

O = —(=A+V(X))y

for the unknown v : [0,00) — L?(R — C) with initial condition ¢(0) = 1y € L?(R — C) using Brownian

motion .

(exp(—t(—A + V/(X)))bo)(@) = E [¢ho(z + By) expl(— /

[ Ve Bs)ds)]

where (By); is standard Brownian motion which is conditioned so that By = 0 almost-surely. Thus the

question is asking us to evaluate the asymptotics of the heat-kernel
T
L(@,y) = (exp(=1(=A + V(X)) (2, y)

for large \. Let us define pinned Brownian motion

. t t
Bpmned,(z@o,y@T) - _ — B, — =B
! rz+(y—x) T + B, 7B

. . . inned, (z@0,y@T inned,(z@0,y@T
where (B;); is standard Brownian motion. Then clearly we have By (2@0.yQT) _ o By (@@0.yal) _

)

hence the notation. W.r.t. that process, the heat kernel becomes, using the Feynman-Kac formula and

conditional expectation

T /A
exp(—X(—A + X V(X)(z,y) =E |[6(x + Br/x —v) exp(—\? /t:O V(x + By)dt)

/2
=FE exp(—)\z/ V(x+ By)dt) [ Br/y =y —x
t=0

P [Brjy =y — 7]

T/X )
=K exp(f)\z/ i V(x+Bflnned,(m@0,y@T/)\))dt)
t=

P [Br/p =y — ]

which is basically what originally appeared in the question (with the pinned process fully written out).
Let us make a change of variables in the integral within the exponent. We find it more convent to
actually use the first line of the above, so we have
T/ T
22 /t_o V(z+ By)dt = )\/ V(x+ Byy)ds

s=0

d T 1

=\ V(a: + 7Ba)d5
s=0 \/X

where we have used the scaling property of Brownian motion. We are being told in the question that the

family of measures {IP’B ﬁ} . obeys an LDP, so following Varadhan’s lemma we find
e>

/\11)1130 —ilog (exp(—z(—A + )\QV(X))(x,y)> = —igf (I('y) —l—/o V(*y(s))ds)



where I is the rate function given in the question (the kinetic energy) and in principle the infimum is over
all continuous functions [0, 7] — R which obey v(0) = z,v(T) = y, but actually by the definition of I we can
take the infimum over the smaller subsets of those functions which are absolutely continuous and whose first

derivative is in L2. O

Problem 9.

Solution. a). Using the reflection principle| we have:

P[Tagt]}P’[ sup Bsza] = 2P[B za]:2/ ——e 2dx
s€[0,t] ' a/Vi V2T

and we also obtain that P[r, < oo] = 1.

b). By the [strong Markov property, we have that both processes {B(t + 7,) — B(7,) : t > 0} and
{=B(t+ 1,) + B(7a) : t> 0} are Brownian motions and agree in distribution. As a result, we also get that
B, <8,

c¢). This was already computed in part a). O

Problem 10.

Solution. We compute that:

u(t,z) = E[f(z + By)]

2fdy—/f - dy

This is simply the convolution of f with the heat kernel, so we get that u solves the heat equation with initial

data given by f. See for example Section 3.2 in Chapter 5 of Stein, Shakarchi - Fourier Analysis. O


https://en.wikipedia.org/wiki/Reflection_principle_(Wiener_process)
https://en.wikipedia.org/wiki/Markov_property#Strong_Markov_property

http://dx.doi.org/10.1090/surv/062/01

CHAPTER 1

Finite Dimensional Gaussian Distributions

The connection of literature purposes with the purely scien-
tific ones, the desire to occupy imagination and at the same time
to enrich life with ideas and knowledge create considerable diffi-
culties in composing the different parts of the book and hamper
the unity of exposition.

Alexander von Humboldt. Views of Nature
1.1. Gaussian measures on the real line

We start our discussion of Gaussian measures by recalling the identity

i [ (5=

(1.1.1)

known for all real ¢ and ¢ > 0. A standard way of verifying this equality is

to evaluate the double integral / / exp(—z? — %) dz dy in polar coordinates and

apply Fubini’s theorem.

1.1.1. Definition. A Borel probability measure v on R} is called Gaussian if

it is either the Dirac measure 8, at a point a or has density

— )2
p('.\auaz): t— o_‘/l%e}(p(_%)

with respect to Lebesgue measure. In the latter case the measure v is called nonde-

generate.

The parameters a and o2 are called the mean and the variance of y, respectively.
The quantity o is called the mean-square deviation. For any Dirac measure (i.e.,
a probability measure concentrated at a point) we put ¢ = 0. The mean and the

variance of a Gaussian measure v admit the following representation:

+oc +oc
= [ertan, o*= [ (- araian.

The measure with density p(-,0,1) is called standard. A mean zero Gaussian

measure is called centered or symmetric.

1.1.2. Definition. A Gaussian random variable is a random variable with

Gaussian distribution.

A Gaussian random variable with a centered distribution is called centered

or symmetric. Clearly, an arbitrary Gaussian random variable with mean

1
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2 Chapter 1. Finite Dimensional Distributions

variance o2 can be represented as of + a, where £ is a random variable with the

standard Gaussian distribution. Gaussian distributions are often called normal.
Using equality {1.1.1) it is easy to find the Fourier transform (the characteristic
functional) of the Gaussian measure « with parameters (a,0?). We have

~ . . 1
Fy) = ] exp(iyz) y(dz) = exp (my - Eazyz)-
R!
The normal (standard Gaussian} distribution function ® is defined by the re-

lation
t

o(t) = / p(s,0,1)ds.
The inverse function ®~! is defined on (0, 1). It is convenient to employ the follow-
ing convention: ®~1(0) = —oc and ®71(1) = +o0.
The rate of decreasing of 1 — ® at infinity is estimated as follows.
1.1.3. Lemma. For anyt > 0, one has
1 41 1 1

L SN P 0 2 _l —t2/2
\/Ev?(t ts)e S1-0() < =g/ (1.1.2)

Proor. By virtue of the integration by parts formula, we get

¥ 1 t2/2 = 1 t2/2
2 e ¢/ 2 e "
se”S 12 ds = - | e 2ds < .
s t 52 t
¢ t
The lower bound is proved in a similar manner. O

The next classical result has a lot of applications in the theory of Gaussian
measures.

1.1.4. Theorem. Let &, be o sequence of independent centered Gaussian ran-
dom variables with variances o2. Then the following conditions are equivalent:
oC
(i) The series > &, converges almost everywhere,
n=1
(ii) The series in (i) converges in probability,
(iii) The series in (i) converges in L?;

oC
(iv) 3 02 < co.
n=1

Proor. According to the dominated convergence theorem and the indepen-
dence condition, either of conditions (i) — (iii) implies convergence of the product

1 [ xtiga) ap = ] expl-a2/2),
n=1 n=1

which yields condition (iv). Conversely, condition (iv) implies condition (iii), since
by virtue of independence and symmetry of the random variables in question, we

have o
/(‘Ek ot Epam)2dP = /Zg;§+j dP.
7=0

Hence (ii) is satisfied as well. Thus, the only non trivial implication in our claim
is (iv)=(i). In order to prove it, note that the conditional expectation of the

Licensed to Princeton Univ. Prepared on Sun May 4 18:22:35 EDT 2025for download from IP 128.112.200.107.



1.2. Multivariate distributions 3

square-integrable random variable ¢ = Yo7 | &, with respect to the o-field A,
generated by &1,... ,&n, coincides with "7 | &, since the random variables &, are
independent and have zero means. Therefore, the sequence of the partial sums of
the series defining ¢ is a martingale with respect to {4,}. Hence Theorem A.3.5
in Appendix applies and yields the almost sure convergence. O

One more classical result related to one dimensional Gaussian distributions is
the central limit theorem. We only give its special case that will be used below.

1.1.5. Theorem. Let{¢,} be a sequence of independent random variables with
one and the same distribution such that I8¢, = 0 and o? = IB&? < 0o0. Put S, =
&1+ ...+ & Then, for any x, we get

Sn
< e — 00.
P{aﬁ _:1:} o(x) asn — 0o

n

av/n

In addition, the distributions of
measure.

converge weakly to the standard Gaussian

PRrOOF. Since IEE? < oo, the function ¢(t) = IEe™: is twice differentiable. We
have

1
p(t)=1- Eaztz +o(t?), t—0.

n

t n
The characteristic functionals ¢, of are given by w(m) . Hence, for any

ovn
fixed t, we get
o2t? 17,17 .2
i = i —_— —_— =e /2
A () = D [1 20%n O(n)] ¢ '
Both claims follow from this equality (see [697, Chapter III]). O

1.2. Multivariate Gaussian distributions

1.2.1. Definition. A Borel probability measure v on R™ is called Gaussian if
for every linear functional f on R™, the induced measure v o f~1 is Gaussian.

We shall use the standard identification of the space of linear functions on R"
with IR". The inner product in IR™ is denoted by (-, -) or by (-, -).

Recall that the Fourier transform J of a finite Borel measure y on IR™ is defined
by the formula

B i) = [ explity,e)] ude).
IRTL
Recall that measures on IR” are uniquely determined by their Fourier transforms.

1.2.2. Proposition. A measurey onIR" is Gaussian if and only if its Fourier
transform has the form

F(y) = exp(i(y» a) - %(Ky,y)) (1.2.1)

Licensed to Princeton Univ. Prepared on Sun May 4 18:22:35 EDT 2025for download from IP 128.112.200.107.



4 Chapter 1. Finite Dimensional Distributions

where a is a vector in R" and K is a nonnegative matriz. The measure v has a
density if and only if the matriz K is nondegenerate. In this case, the density of
the measure vy is given by

1 1
T ——————expi —= (K Nz —a),z—a) }.
J@n)rdet K p{ 3 (K e—a) )}
PROOF. Let f be a linear function on IR". Using the change of variables

formula (see formula (A.3.1) in Appendix), one evaluates the Fourier transform of
the measure v = v o f~1 as follows:

v(t) = /exp(its) v(ds) = /exp(itf(a:)) +(dz).
R* R
Let us denote the vector representing the functional f by the same symbol. From
(1.2.1) we get

v(t) = exp(it(a, - %tz(Kf, f)),

which means that the measure v is Gaussian. Conversely, suppose that all such
measures are Gaussian. Denote their means and variances by a(f) and o(f)?,
respectively. Then the following equalities hold true:

aff) = / o f N dt) = / f(2)1(dz),
J

R

2 2
o1 = [ (t-al)) vor @ = [ (i) - o)) rtdo)
]RI R
Hence the function f — a(f) is linear, and the function f — o(f)? is a nonnegative
quadratic form. Therefore, there exist a vector a and a nonnegative symmetric
operator K such that a(f) = (f,a) and o(f)? = (K f, f). This yields (1.2.1). The
assertion about densities reduces to the one dimensional case, since we can use the
coordinates corresponding to the eigenvectors of the matrix /. O

1.2.3. Corollary. Let vy be ¢ Gaussian measure on IR™ with the Fourier trans-
form (1.2.1). Then

a= / xy(dzx), (1.2.2)
[R_'l
(Ku,v) = /(u,z —a)(v,z —a)y(dr), VYu,veR" (1.2.3)

Rn

The vector a given by equality (1.2.2} is called the mean of the Gaussian mea-
sure v, and the operator K defined by means of (1.2.3) is called its covariance
operator.

Clearly, Gaussian measures on IR" can be described as the images of the stan-
dard Gaussian measure on IR" (i.e., the product of n copies of the standard Gaussian
measure on ]Rl) under affine mappings z — VKz + a.

On the linear subspace v/K(IR") we define the inner product

(u,v)y = (ﬁ_lu, \/E_lv).

Licensed to Princeton Univ. Prepared on Sun May 4 18:22:35 EDT 2025for download from IP 128.112.200.107.



508 23 Large Deviations

Theorem 23.3 (Cramér (1938)). Let X1, Xo, ... be ii.d. real random variables
with finite logarithmic moment generating function

A(t) :==1ogE[e"*] <00 forall t €R. (23.9)

Let
A*(x) :=sup (tz — A(t)) for z €R,

teR

the Legendre transform of A. Then, for every x > E[X1],

lim llogP[Sn > an] = —I(z) == —A*(z). (23.10)

n—oo n

Proof. By passmg to X; — x if necessary, we may assume E[X;] < 0 and x = 0.
(In fact, if X; := X; — z, and A and A* are defined as A and A* above but for X;
instead of X, then A(t) = A(t) —t -z and thus A*(0) = sup,cp(—A(t)) = A*(x).)

Define ¢(t) := eA(®) and

S ORI
e tlgR()

By (23.9) and the differentiation lemma (Theorem 6.28), ¢ is differentiable infi-
nitely often and the first two derivatives are

¢(t)=E[X;e™] and ¢"(t) = E[X] M.

Hence ¢ is strictly convex and ¢’ (0) = E[X;] < 0.
First consider the case P[X; < 0] = 1. Then ¢'(¢) < 0 for every ¢t € R and
0= tlim ¢(t) = P[X; = 0]. Therefore,

—00

and thus the claim follows.

Now let P[X; < 0] > 0 and P[X; > 0] > 0. Then tlim o(t) = 0o = . lim (1)

As ¢ is strictly convex, there is a unique 7 € R at which ¢ assumes its minimum;
hence

o(t) =0 and ¢'(1)=0.

Since ¢'(0) < 0, we have 7 > 0. Using Markov’s inequality (Theorem 5.11), we
estimate

PIS, >0 = P > 1] < Bl = o) = 0"



23.1 Cramér’s Theorem 509

Thus we get the upper bound

The remaining part of the proof is dedicated to verifying the reverse inequality:
1
lim inf — log P[S,, > 0] > logo. (23.11)
n—oo N

We use the method of an exponential size-biasing of the distribution y := Px, of
X, which turns the atypical values that are of interest here into typical values. That
is, we define the Cramér transform /i € M, (R) of p by

f(dr) = o~ te™ u(dx) for x € R.

Let X1, Xs,... be independent and identically distributed with P = /i. Then

b0 =B = 2 [ e ) = 2 gt 7).

o
Hence 1
E[X1] = ¢(0) = - ¢'(1) =0,
Var[X,] = ¢"(0) = —¢" () € (0,00)

Defining Sn = Xl + ...+ Xn, we get
Pis, 20 = | u(dar) - pldan)
{z1+... 42, >0}
-/ (0™ idan) - (™) ld,)
{z1+...4+2,>0}
— O"E [e—fsn 11{&20}} .
Thus, in order to show (23.11), it is enough to show
1 N
lim inf = log E [e*TSn n{gnzo}] > 0. (23.12)

n—oo n

However, by the central limit theorem (Theorem 15.37), for every ¢ > 0,

1 s 1 3
~1 E[—Tsnm }>f1 E[_TS"]I ; }
~logB e {Sn20p| = 5, 1085 (€ {0<8, <cvm}

1 S
> 1 —Tevnp | 20
_nog<e ﬁG[O,C]D

— 1
= lim TC\/H—F lim — log (NO,Var[Xl]([O’C]))

n— o0 n n—oo n

= 0. o




512 23 Large Deviations

Proof. Assume that (p. ).~ satisfies an LDP with rate functions I and J. Then, for
every x € Fand § > 0,

I(z) > inf I(Bs(x))
> —liminf e log (11 (Bs(2)))
e—0
> —limsupelog (pe (Bs(z)))
e—0
> inf J(Bs(z)) =2 J(x).
Hence I(x) > J(x). Similarly, we get J(z) > I(x). a
Lemma 23.9. Let N € Nand letat, i = 1,..., N, € > 0, be nonnegative numbers.
Then
N
limsup €lo a! = max limsup elog(al).
nsup g al nax - Jimsup g(az)

i=1

Proof. The sum and maximum differ at most by a factor N:

N
_max elog(ay) < 5logZa; < elog(N) + max elog(ay).

i=1,..., Pt reees

The maximum and limit (superior) can be interchanged and hence

“max_limsup elog(a’) = limsup ¢log ( max ai)
=1, e—0 e—0 1=1,...,.N

N
< limsup ¢log (Z aé)

0 i=1
< limsup elog(N)+ max limsup ¢log(a’)
e—0 =1, e—0
= i:r?ﬁi{N hrsnjélp elog(al). O
Example 23.10. Let X1, X5, ... bei.i.d. real random variables that satisfy the con-
dition of Cramér’s theorem (Theorem 23.3); i.e., A(t) = log(E[e!*1]) < oo for
every t € R. Furthermore, let S,, = X; + ... + X,, for every n. We will show
that Cramér’s theorem implies that P, := Pg, /,, satisfies an LDP with rate n and
with good rate function I(z) = A*(z) := sup,cp(tz — A(t)). Without loss of
generality, we can assume that E[X;] = 0. The function I is everywhere finite,
continuous, strictly convex and has its unique minimum at 7(0) = 0. Cramér’s the-
orem says that lim,, ., < log(P,([x,0))) = —I(x) for z > 0 and (by symmetry)

n

lim, oo = log(P,((—00,2])) = —I(z) for z < 0. Clearly, for z > 0,

—I(z) > lim lloan((at,oo))

n—oo N

1
>sup lim —log P,([x +¢,00)) = —inf I(x +¢) = —I(z).
e>QN—OMN e>0
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1
Similarly, lim — log P,,((—o0,2)) = —I(z) for x < 0.
n—oo N

The main work has been done by showing that the family (P, ),ey satisfies condi-
tions (LDP 1) and (LDP 2) at least for unbounded intervals. It remains to show by
some standard arguments (LDP 1) and (LDP 2) for arbitrary open and closed sets,
respectively.

First assume that C' C R is closed. Define 2, := inf (C' N [0,00)) as well as
z_ := sup (C' N (—o0,0]). By monotonicity of I, on (—o0,0] and [0, 00), we get
inf I(C) = I(x_) A I(z4) (with the convention I(—o0) = I(00) = c0). If z_ =0
or zy = 0, then inf(I(C)) = 0, and (LDP 2) holds trivially. Now let z_ < 0 < x.
Using Lemma 23.9, we get

1
limsup — log P,,(C)

n—oo N

< limsup % log (Pn((_ooaxf]) + Pn([x+,oo)))

n—oo
= max{limsup log P, ((—o0,z_]), limsup — logP ([x+,oo))}
= max { — I(z_ +)} =—infI(C

This shows (LDP 2).

Now let U C R be open. Let x € U N (0, 00) (if such an x exists). Then there exists
ane > 0 with (x —e,24+¢) C UN(0,00). Now

lim lloan((xfs,oo)) =—I(zx—¢e)>—-I(z+e)

n—oo N

= lim L log P, ([z + €,00)).

n—oo M
Therefore,

1
lim inf flogP (U) > lim —log P,((z — e,z +¢))

n—00 n—oo N

= lim Llog (Pa((z — &,00)) — P + £,00))

n—oo N

= lim llog (Po((z—e,00))) =—I(z—¢) > —I(x).

n—oo N -
Similarly, this also holds for x € U N (—o0, 0); hence
1
liminf — log P, (U) > inf I(U \ {0}) = inf I(U).
n—oo M

Note that in the last step, we used the fact that U is open and that [ is continuous.
This shows the lower bound (LDP 1). &

In fact, the condition A(t) < oo for all ¢ € R can be dropped. Since A(0) = 0, we
have A*(x) > 0 for every € R. The map A* is a convex rate function but is, in



