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Problem 1.

Find probability measures µ, ν on R2 such that

µ(B1 ×B2) = ν(B2 ×B1) (B1, B2 ∈ B(R))

fails.

Solution. Let µ = ν be the measure defined by dµ = dν = χ(0,1)×(1,2) dλ where λ is the Lebesgue measure.

That is,

µ(S) = ν(S) = λ(S ∩ ((0, 1)× (1, 2)))

for all S ∈ B(R2). Let B1 :=(0, 1) and B2 :=(1, 2). Then

µ(B1 ×B2) = 1 ̸= 0 = ν(B2 ×B1)

Problem 2.

Find probability measures µ on R2 and ν on R such that

µ(B × R) = ν(B) (B ∈ B(R))

fails.
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Solution. Define µ by dµ = χ(0,1)2 dλ, and ν by dν = χ(1,2) dλ. That is,

µ(S) :=λ(S ∩ (0, 1)2) and ν(T ) :=λ((1, 2) ∩ T )

Let B :=[0, 1]. Then

µ(B × R) = 1 ̸= 0 = ν(B)

Problem 3.

Let (SN )N∈N be a simple random walk on R defined by IID increments (Xn)n∈N with a priori probability

measure µ0 : B(R) → [0, 1]. Show that these give rise to a system of probability measures satisfying the

Kolmogorov consistency conditions.

Solution. We show that the “joint probability distributions” of the increments satisfy the consistency con-

ditions. To see this, let B1, . . . , Bm be Borel subsets of R and let j1, . . . , jm be pairwise distinct positive

integers. Then

PXj1
,...,Xjm

(B1 × · · · ×Bm) ≡

(
m∏

k=1

µ0

)
(B1 × · · · ×Bm) ≡ µ0(B1)µ0(B2) · · ·µ0(Bn)

Note that the expression on the left is independent of the choice of j1, . . . , jm and of the order in which the

Bi’s appear (since multiplication of real numbers is commutative and associative). In particular, this means

it remains invariant when we permute the Xji ’s and the Bi. The second consistency condition follows from

this.

For the third consistency condition, let j1, . . . , jm, i1, . . . , il be pairwise distinct positive integers and let

B1, . . . , Bm be Borel subsets of R. Then

PXj1
,...,Xjm ,Xi1

,...,Xil
(B1 × · · · ×Bm × Rl) ≡

(
m∏

k=1

µ0

)
(B1 × · · · ×Bm × Rl)

≡ µ0(B1)µ0(B2) · · ·µ0(Bn)µ0(R)l

= µ0(B1)µ0(B2) · · ·µ0(Bn)

≡ PXj1
,...,Xjm

(B1 × · · · ×Bn)

where we have used the fact that µ0 is a probability measure to conclude that µ0(R)l = 1.

Problem 4.

Let m : [0, T ] → R be a given function and C a self-adjoint positive linear operator on L2([0, T ] → R) induced

by a kernel (t, s) 7→ C(t, s). We associate to m and C the Gaussian stochastic process (Bt)t∈[0,T ] specified
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by its finite marginals for 0 ≤ t1 < · · · < tn ≤ T via

dPBt1
,...,Btn

dλ
(x) =

1

(2π)n/2
√
detK

exp

(
−1

2

〈
(x− µ),K−1(x− µ)

〉)
(x ∈ Rn)

where K is the n× n matrix given by Kij :=C(ti, tj) and µ is the vector given by µi :=m(ti).

(a) Show that this system satisfies the Kolmogorov consistency conditions.

Solution. We have only defined the joint marginals for strictly increasing sequences of tj ’s. The defnition

in the other cases is determined in the unique way that makes the second Kolmogorov condition hold

true.

The first Kolmogorov condition holds because it follows from our calculation on HW9Q10(a) that∫
Rn

exp

(
−1

2

〈
(x− µ),K−1(x− µ)

〉)
dλ(x) =

∫
Rn

exp

(
−1

2

〈
x,K−1x

〉)
dλ(x) =

(2π)n/2

(detK−1)1/2
= (2π)n/2

√
detK

and thus the functions above integrate to 1.

To see that the third Kolmogorov condition holds, let t1, . . . , tn, s1, . . . , sm be pairwise distinct real

numbers in [0, T ] (not necessarily in increasing order).

The distribution PBt1
,...,Btn ,Bs1

,...,Bsm
is a multivariate Gaussian distribution. It is possible but messy to

show directly that the marginal of this distribution with respect to the first n variables gives PBt1
,...,Btn

.

Instead we appeal to properties of Gaussian distributions.

We appeal to the results in Chapter 1.2 of Bogachev’s Gaussian Measures. There it is shown that a

probability measure has the multivariate Gaussian form that our distributions do if and only if its 1-

dimensional marginals are ordinary Gaussians. This implies that marginals of Gaussians are Gaussian.

Two multivariate Gaussians with the same means and covariances are equal. (This also follows from

Bogachev’s results.)

More precisely, Bogachev shows1 that (in our notation) the vector µ gives the means of the B-variables

and the matrix K gives all their covariances. More precisely, µ(j) = m(tj) is the mean of Btj and

C(tj , tk) is the covariance of Btj and Btk .
2

Since covariances are preserved upon taking marginals, we see that the means and covariances of

PBt1
,...,Btn

agree with those of the marginal of PBt1
,...,Btn ,Bs1

,...,Bsm
with respect to the first n vari-

ables. It follows that PBt1
,...,Btn

is the appropriate marginal of PBt1
,...,Btn ,Bs1

,...,Bsm
.

(b) Show that a Gaussian process is characterized by its first two moments by relating them to m and C.

1This also follows from our work in HW9Q10.
2One cannot yet talk of the random variable Btj since we do not yet know that a global probability space exists. However,

this concept does make sense with respect to any of our given distributions.
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Solution. The function

dPBt

dλ
(x) =

1√
2πC(t)

exp

(
−1

2
C(t, t)−1(x−m(t))2

)
is visibly symmetric around the point m(t). It follows that E[Bt] = m(t).

Our calculation in HW9Q10(c) (in the special case when v1 and v2 are standard basis vectors) gives

E[BtBu] = C(t, u)

Together, these facts show that m and C can be recovered from the first two moments of the Gaussian

process.

Problem 5.

5. What is the operator

C : L2 ([0, 1] → R) → L2 ([0, 1] → R)

so that

C (t, s) = min ({ t, s }) ?

Conclude a more “appealing” expression for

dP(Bt1
,··· ,Btn)

dλ
(x)

when (Bt)t is Brownian motion then.

Solution. We claim that that operator is the inverse of the 1D Laplacian on L2([0, 1] → R) with certain

boundary conditions. Let us verify this. Consider then the operator K so that

(Kf)(s) :=

∫ 1

t=0

C(s, t)f(t)dt =

∫ 1

t=0

min({ s, t })f(t)dt =
∫ s

t=0

tf(t)dt+ s

∫ 1

t=s

f(t)dt .

We calculate ∂2s of this to obtain

(Kf)′′(s) = ∂s

(
sf(s) +

∫ 1

t=s

f(t)dt− sf(s)

)
= −f(s) .

Moreover, (Kf)(0) = 0 whereas (Kf)′(1) = 0 too. Hence we identify

K =
(
−∂2

)−1

on L2([0, 1]). Note that while the first boundary condition (Kf)(0) = 0 naturally corresponds to the con-

ditioning B0 = 0, (Kf)′(1) = 0 makes the operator K self-adjoint and corresponds to the fact that B1
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is unconstrained (this is vague handwaving but that part of the argument is not necessary to answer the

question).

In light of Q4, for any 0 ≤ t1 < · · · < tn ≤ 1, let κ be the n × n matrix comprised via κij := C(ti, tj).

Then κ−1 is clearly a finite mesh approximation (with mesh size n) of the Laplacian, i.e., ⟨x, κ−1x⟩ =∑n
i=1

1
ti+1−ti

(xi+1 − xi)
2. Hence

dP(Bt1
,··· ,Btn)

dλ
(x) ≈ 1

(2π)
n
2
√

det ((−∂−2)n)
exp

(
−1

2

〈
x,
(
−∂2

)
n
x
〉
Rn

)
(x ∈ Rn) .

Problem 6.

Solution. a). The rate function is Cramer’s function, given as the Legendre transform of the cumulant

generating function. For an introduction to the problem and sketch of the proof of the first condition for

LDP see Example 7.47 in the lecture notes. For the full proof see Klenke - Probability Theory attached below.

One should first read the proof of Theorem 23.3 (pages 508-509), then Example 23.10 (pages 512-513).

b). Consider the case when each Xn is a symmetric coin flip for ±1. The cumulant generating function

is κ(θ) = logE[eθX ] = log
(
1
2 (e

θ + e−θ)
)
= log cosh θ. According to part a), the rate function is the Legendre

transform of log cosh θ. To compute this, we denote by θ∗(x) the value that realizes the supremum in the

definition of the Legendre transform, I(x) = xθ∗(x)− log cosh θ∗(x). As a result, we get that:

x =
(
log cosh

)′
θ∗(x) = tanh θ∗(x)

We can then compute the rate function:

I(x) = x tanh−1(x)− log cosh tanh−1(x) =
(1 + x) log(1 + x) + (1− x) log(1− x)

2

c). By Cramer’s theorem proved above we have that:

lim
N→∞

1

N
logP[AN ≥ a] = −I(a)

As a result, we obtain that P[AN ≥ a] is asymptotically e−NI(a).

d). By Varadhan’s lemma, we know that:

lim
N→∞

1

N
logEAN

[expNf(AN )] = sup
ω∈R

(
f(ω)− I(ω)

)
As a result, we obtain that EAN

[expNf(AN )] is asymptotically exp
(
N supω∈R

(
f(ω)− I(ω)

))
.

Problem 7.

Solution. See Theorem 7.54 in the lecture notes for the proof of the scaling law.
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Problem 8.

Solution. Recall the Feynman-Kac formula: if V : R → R is a potential then we can rewrite a solution of the

Schroedinger-heat equation

∂tψ = −(−∆+ V (X))ψ

for the unknown ψ : [0,∞) → L2(R → C) with initial condition ψ(0) = ψ0 ∈ L2(R → C) using Brownian

motion

(exp(−t(−∆+ V (X)))ψ0)(x) = E
[
ψ0(x+Bt) exp(−

∫ t

s=0

V (x+Bs)ds)

]
where (Bt)t is standard Brownian motion which is conditioned so that B0 = 0 almost-surely. Thus the

question is asking us to evaluate the asymptotics of the heat-kernel

Iλ(x, y) := (exp(−T
λ
(−∆+ λ2V (X))))(x, y)

for large λ. Let us define pinned Brownian motion

B
pinned,(x@0,y@T )
t := x+ (y − x)

t

T
+Bt −

t

T
BT

where (Bt)t is standard Brownian motion. Then clearly we have B
pinned,(x@0,y@T )
0 = x,B

pinned,(x@0,y@T )
T = y,

hence the notation. W.r.t. that process, the heat kernel becomes, using the Feynman-Kac formula and

conditional expectation

exp(−T
λ
(−∆+ λ2V (X))(x, y) = E

[
δ(x+BT/λ − y) exp(−λ2

∫ T/λ

t=0

V (x+Bt)dt)

]

= E

[
exp(−λ2

∫ T/λ

t=0

V (x+Bt)dt) |BT/λ = y − x

]
P
[
BT/λ = y − x

]
= E

[
exp(−λ2

∫ T/λ

t=0

V (x+B
pinned,(x@0,y@T/λ)
t )dt)

]
P
[
BT/λ = y − x

]
which is basically what originally appeared in the question (with the pinned process fully written out).

Let us make a change of variables in the integral within the exponent. We find it more convent to

actually use the first line of the above, so we have

λ2
∫ T/λ

t=0

V (x+Bt)dt = λ

∫ T

s=0

V (x+Bs/λ)ds

d
= λ

∫ T

s=0

V (x+
1√
λ
Bs)ds

where we have used the scaling property of Brownian motion. We are being told in the question that the

family of measures
{
PB√

εt

}
ε>0

obeys an LDP, so following Varadhan’s lemma we find

lim
λ→∞

− 1

λ
log

(
exp(−T

λ
(−∆+ λ2V (X))(x, y)

)
= − inf

γ

(
I(γ) +

∫ T

0

V (γ(s))ds

)
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where I is the rate function given in the question (the kinetic energy) and in principle the infimum is over

all continuous functions [0, T ] → R which obey γ(0) = x, γ(T ) = y, but actually by the definition of I we can

take the infimum over the smaller subsets of those functions which are absolutely continuous and whose first

derivative is in L2.

Problem 9.

Solution. a). Using the reflection principle we have:

P[τa ≤ t] = P
[

sup
s∈[0,t]

Bs ≥ a

]
= 2P[Bt ≥ a] = 2

∫ ∞

a/
√
t

1√
2π
e−

x2

2 dx

and we also obtain that P[τa <∞] = 1.

b). By the strong Markov property, we have that both processes {B(t + τa) − B(τa) : t ≥ 0} and

{−B(t+ τa) +B(τa) : t ≥ 0} are Brownian motions and agree in distribution. As a result, we also get that

Bt
d
= B̃t.

c). This was already computed in part a).

Problem 10.

Solution. We compute that:

u(t, x) = E[f(x+Bt)] =

∫
R
f(x+ y)

1√
2πt

e−
y2

2t dy =

∫
R
f(y)

1√
2πt

e−
(x−y)2

2t dy

This is simply the convolution of f with the heat kernel, so we get that u solves the heat equation with initial

data given by f. See for example Section 3.2 in Chapter 5 of Stein, Shakarchi - Fourier Analysis.
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508 23 Large Deviations

Theorem 23.3 (Cramér (1938)). Let X1, X2, . . . be i.i.d. real random variables
with finite logarithmic moment generating function

Λ(t) := log E
[
etX1

]
<∞ for all t ∈ R. (23.9)

Let
Λ∗(x) := sup

t∈R

(
tx− Λ(t)

)
for x ∈ R,

the Legendre transform of Λ. Then, for every x > E[X1],

lim
n→∞

1
n

log P
[
Sn ≥ xn

]
= −I(x) := −Λ∗(x). (23.10)

Proof. By passing to Xi − x if necessary, we may assume E[Xi] < 0 and x = 0.
(In fact, if X̃i := Xi − x, and Λ̃ and Λ̃∗ are defined as Λ and Λ∗ above but for X̃i

instead ofXi, then Λ̃(t) = Λ(t)− t ·x and thus Λ̃∗(0) = supt∈R(−Λ̃(t)) = Λ∗(x).)

Define ϕ(t) := eΛ(t) and

� := e−Λ∗(0) = inf
t∈R

ϕ(t).

By (23.9) and the differentiation lemma (Theorem 6.28), ϕ is differentiable infi-
nitely often and the first two derivatives are

ϕ′(t) = E
[
X1 e

tX1
]

and ϕ′′(t) = E
[
X2

1 e
tX1
]
.

Hence ϕ is strictly convex and ϕ′(0) = E[X1] < 0.

First consider the case P[X1 ≤ 0] = 1. Then ϕ′(t) < 0 for every t ∈ R and
� = lim

t→∞ϕ(t) = P[X1 = 0]. Therefore,

P[Sn ≥ 0] = P[X1 = . . . = Xn = 0] = �n

and thus the claim follows.

Now let P[X1 < 0] > 0 and P[X1 > 0] > 0. Then lim
t→∞ϕ(t) = ∞ = lim

t→−∞ϕ(t).

As ϕ is strictly convex, there is a unique τ ∈ R at which ϕ assumes its minimum;
hence

ϕ(τ) = � and ϕ′(τ) = 0.

Since ϕ′(0) < 0, we have τ > 0. Using Markov’s inequality (Theorem 5.11), we
estimate

P[Sn ≥ 0] = P
[
eτSn ≥ 1

]
≤ E

[
eτSn

]
= ϕ(τ)n = �n.
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Thus we get the upper bound

lim sup
n→∞

1
n

log P[Sn ≥ 0] ≤ log � = −Λ∗(0).

The remaining part of the proof is dedicated to verifying the reverse inequality:

lim inf
n→∞

1
n

log P[Sn ≥ 0] ≥ log �. (23.11)

We use the method of an exponential size-biasing of the distribution µ := PX1 of
X1, which turns the atypical values that are of interest here into typical values. That
is, we define the Cramér transform µ̂ ∈ M1(R) of µ by

µ̂(dx) = �−1eτxµ(dx) for x ∈ R.

Let X̂1, X̂2, . . . be independent and identically distributed with PX̂i
= µ̂. Then

ϕ̂(t) := E
[
etX̂1

]
=

1
�

∫
R

etxeτx µ(dx) =
1
�
ϕ(t+ τ).

Hence

E
[
X̂1] = ϕ̂′(0) =

1
�
ϕ′(τ) = 0,

Var
[
X̂1] = ϕ̂′′(0) =

1
�
ϕ′′(τ) ∈ (0,∞).

Defining Ŝn = X̂1 + . . .+ X̂n, we get

P[Sn ≥ 0] =
∫
{x1+...+xn≥0}

µ(dx1) · · ·µ(dxn)

=
∫
{x1+...+xn≥0}

(
� e−τx1

)
µ̂(dx1) · · ·

(
� e−τxn

)
µ̂(dxn)

= �n E
[
e−τŜn 1{Ŝn≥0}

]
.

Thus, in order to show (23.11), it is enough to show

lim inf
n→∞

1
n

log E
[
e−τŜn 1{Ŝn≥0}

]
≥ 0. (23.12)

However, by the central limit theorem (Theorem 15.37), for every c > 0,

1
n

log E
[
e−τŜn 1{Ŝn≥0}

]
≥ 1
n

log E
[
e−τŜn 1{0≤Ŝn≤c

√
n }
]

≥ 1
n

log

(
e−τc

√
n P

[
Ŝn√
n

∈ [0, c]

])
n→∞−→ lim

n→∞
−τc

√
n

n
+ lim

n→∞
1
n

log
(
N0,Var[X̂1]

([0, c])
)

= 0. �
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Proof. Assume that (µε)ε>0 satisfies an LDP with rate functions I and J . Then, for
every x ∈ E and δ > 0,

I(x) ≥ inf I(Bδ(x))

≥ − lim inf
ε→0

ε log
(
µε(Bδ(x))

)
≥ − lim sup

ε→0
ε log

(
µε

(
Bδ(x)

))
≥ inf J

(
Bδ(x)

) δ→0−→ J(x).

Hence I(x) ≥ J(x). Similarly, we get J(x) ≥ I(x). �

Lemma 23.9. Let N ∈ N and let ai
ε, i = 1, . . . , N , ε > 0, be nonnegative numbers.

Then

lim sup
ε→0

ε log
N∑

i=1

ai
ε = max

i=1,...,N
lim sup

ε→0
ε log(ai

ε).

Proof. The sum and maximum differ at most by a factor N :

max
i=1,...,N

ε log(ai
ε) ≤ ε log

N∑
i=1

ai
ε ≤ ε log(N) + max

i=1,...,N
ε log(ai

ε).

The maximum and limit (superior) can be interchanged and hence

max
i=1,...,N

lim sup
ε→0

ε log(ai
ε) = lim sup

ε→0
ε log

(
max

i=1,...,N
ai

ε

)
≤ lim sup

ε→0
ε log

( N∑
i=1

ai
ε

)
≤ lim sup

ε→0
ε log(N) + max

i=1,...,N
lim sup

ε→0
ε log(ai

ε)

= max
i=1,...,N

lim sup
ε→0

ε log(ai
ε). �

Example 23.10. Let X1, X2, . . . be i.i.d. real random variables that satisfy the con-
dition of Cramér’s theorem (Theorem 23.3); i.e., Λ(t) = log(E[etX1 ]) < ∞ for
every t ∈ R. Furthermore, let Sn = X1 + . . . + Xn for every n. We will show
that Cramér’s theorem implies that Pn := PSn/n satisfies an LDP with rate n and
with good rate function I(x) = Λ∗(x) := supt∈R(tx − Λ(t)). Without loss of
generality, we can assume that E[X1] = 0. The function I is everywhere finite,
continuous, strictly convex and has its unique minimum at I(0) = 0. Cramér’s the-
orem says that limn→∞ 1

n log(Pn([x,∞))) = −I(x) for x > 0 and (by symmetry)

limn→∞ 1
n log(Pn((−∞, x])) = −I(x) for x < 0. Clearly, for x > 0,

−I(x) ≥ lim
n→∞

1
n

logPn((x,∞))

≥ sup
ε>0

lim
n→∞

1
n

logPn([x+ ε,∞)) = − inf
ε>0

I(x+ ε) = −I(x).
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Similarly, lim
n→∞

1
n

logPn((−∞, x)) = −I(x) for x < 0.

The main work has been done by showing that the family (Pn)n∈N satisfies condi-
tions (LDP 1) and (LDP 2) at least for unbounded intervals. It remains to show by
some standard arguments (LDP 1) and (LDP 2) for arbitrary open and closed sets,
respectively.

First assume that C ⊂ R is closed. Define x+ := inf
(
C ∩ [0,∞)

)
as well as

x− := sup
(
C ∩ (−∞, 0]

)
. By monotonicity of I , on (−∞, 0] and [0,∞), we get

inf I(C) = I(x−) ∧ I(x+) (with the convention I(−∞) = I(∞) = ∞). If x− = 0
or x+ = 0, then inf(I(C)) = 0, and (LDP 2) holds trivially. Now let x− < 0 < x+.
Using Lemma 23.9, we get

lim sup
n→∞

1
n

logPn(C)

≤ lim sup
n→∞

1
n

log
(
Pn

(
(−∞, x−]

)
+ Pn

(
[x+,∞)

))
= max

{
lim sup

n→∞
1
n

logPn

(
(−∞, x−]

)
, lim sup

n→∞
1
n

logPn

(
[x+,∞)

)}
= max

{
− I(x−),−I(x+)

}
= − inf I(C).

This shows (LDP 2).

Now let U ⊂ R be open. Let x ∈ U ∩ (0,∞) (if such an x exists). Then there exists
an ε > 0 with (x− ε, x+ ε) ⊂ U ∩ (0,∞). Now

lim
n→∞

1
n

logPn

(
(x− ε,∞)

)
= −I(x− ε) > −I(x+ ε)

= lim
n→∞

1
n

logPn

(
[x+ ε,∞)

)
.

Therefore,

lim inf
n→∞

1
n

logPn(U) ≥ lim
n→∞

1
n

logPn((x− ε, x+ ε))

= lim
n→∞

1
n

log
(
Pn

(
(x− ε,∞)

)
− Pn

(
[x+ ε,∞)

))
= lim

n→∞
1
n

log
(
Pn

(
(x− ε,∞)

))
= −I(x− ε) ≥ −I(x).

Similarly, this also holds for x ∈ U ∩ (−∞, 0); hence

lim inf
n→∞

1
n

logPn(U) ≥ inf I(U \ {0}) = inf I(U).

Note that in the last step, we used the fact that U is open and that I is continuous.
This shows the lower bound (LDP 1). �

In fact, the condition Λ(t) < ∞ for all t ∈ R can be dropped. Since Λ(0) = 0, we
have Λ∗(x) ≥ 0 for every x ∈ R. The map Λ∗ is a convex rate function but is, in


