

Princeton University
 Spring 2025 MAT425: Measure Theory
 HW10
 Apr 25th 2025

April 25, 2025

1. Find an example of two probability measures $\mu, \nu : \mathfrak{B}(\mathbb{R}^2) \rightarrow [0, 1]$ such that

$$\mu(B_1 \times B_2) = \nu(B_2 \times B_1) \quad (B_1, B_2 \in \mathfrak{B}(\mathbb{R}^2))$$

fails.

2. Find an example of two probability measures $\mu : \mathfrak{B}(\mathbb{R}^2) \rightarrow [0, 1]$ and $\nu : \mathfrak{B}(\mathbb{R}) \rightarrow [0, 1]$ such that

$$\mu(B \times \mathbb{R}) = \nu(B) \quad (B \in \mathfrak{B}(\mathbb{R}))$$

fails.

3. Prove that the Kolmogorov consistency conditions hold for the SRW (recall the SRW $S_N := \sum_{n=1}^N X_n$ is defined indirectly by first defining its sequence of increments $\{X_n\}_n$) where the marginals are specified via

$$\mathbb{P}_{(X_{j_1}, \dots, X_{j_n})} := \prod_{k=1}^n \mu_0 \quad (j_1, \dots, j_n \in \mathbb{N})$$

for some a-priori probability measure $\mu_0 : \mathfrak{B}(\mathbb{R}) \rightarrow [0, 1]$.

4. Let $m : [0, T] \rightarrow \mathbb{R}$ be a given function and C some linear operator $L^2([0, T] \rightarrow \mathbb{R})$ which has an integral kernel $(C(t, s))_{(t,s)}$. As an operator, we consider C to be self-adjoint and positive ($C \geq 0$). A Gaussian stochastic process $(B_t)_{t \in [0, T]}$ associated to m and C is specified by specifying the finite marginals; for any $0 \leq t_1 < \dots < t_n$,

$$\frac{d\mathbb{P}_{(B_{t_1}, \dots, B_{t_n})}}{d\lambda}(x) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(K)}} \exp\left(-\frac{1}{2} \langle (x - \mu), K^{-1}(x - \mu) \rangle_{\mathbb{R}^n}\right) \quad (x \in \mathbb{R}^n)$$

where $K_{ij} := C(t_i, t_j)$ and $\mu_i := m(t_i)$.

(a) Show that any Gaussian process obeys the Kolmogorov consistency conditions.
 (b) Show that a Gaussian random vector X in \mathbb{R}^n is uniquely determined by its first two moments $\mathbb{E}[X_i]$ and $\mathbb{E}[X_i X_j]$. Conclude that $(B_t)_{t \in [0, T]}$ is uniquely characterized by saying it is Gaussian and specifying $t \mapsto \mathbb{E}[B_t]$ and $(s, t) \mapsto \mathbb{E}[B_t B_s]$. What are these two moments in terms of m and C ?
 5. What is the operator

$$C : L^2([0, T] \rightarrow \mathbb{R}) \rightarrow L^2([0, T] \rightarrow \mathbb{R})$$

so that

$$C(t, s) = \min(\{t, s\}) ?$$

Conclude a more “appealing” expression for

$$\frac{d\mathbb{P}_{(B_{t_1}, \dots, B_{t_n})}}{d\lambda}(x)$$

when $(B_t)_t$ is Brownian motion then.

6. Let $\{X_n : \Omega \rightarrow \mathbb{R}\}_{n \in \mathbb{N}}$ be an IID sequence of random variables. Let $A_N := \frac{1}{N} \sum_{n=1}^N X_n$.

- Prove that $\{\mathbb{P}_{A_N}\}_{N \in \mathbb{N}}$ obeys an LDP (with which rate function?).
- Calculate the rate function explicitly for the case that each X_n is a symmetric coin flip for ± 1 .
- Use this to calculate the asymptotics of the tail bound

$$\mathbb{P} \left[\sum_{n=1}^N X_n \geq Na \right]$$

for large N .

- Let $f : \mathbb{R} \rightarrow \mathbb{R}$ continuous and bounded, calculate asymptotics of

$$\mathbb{E}_{A_N} [\exp(Nf(A_N))].$$

7. Prove the scaling property of Brownian motion, i.e., that

$$B_t \stackrel{d}{=} \sqrt{c} B_{\frac{t}{c}} \quad (c > 0).$$

8. Assume that scaled Brownian motion obeys an LDP. That is, let $(B_t)_{t \in [0,1]}$ be standard Brownian motion (which is conditioned so that $B_0 = 0$). For any $\varepsilon > 0$, consider $B_t^{(\varepsilon)} := \sqrt{\varepsilon} B_t$, a new stochastic process. The stochastic process $(B_t^{(\varepsilon)})_{t \in [0,1]}$ obeys an LDP, in the following sense: Let $\Omega := C_0([0,1])$ be the space of continuous functions which are zero at zero (assume that B takes values in Ω almost-surely). Define $I : \Omega \rightarrow [0, \infty]$ via

$$I(\varphi) := \begin{cases} \frac{1}{2} \int_0^1 \varphi'(t)^2 d\lambda(t) & \varphi \text{ is abs. cont. with } \varphi(0) = 0 \text{ and } \varphi' \in L^2 \\ \infty & \text{else} \end{cases}.$$

Then we may consider the measure \mathbb{P}_B as a measure on Ω , and in that sense, $\{\mathbb{P}_{B^{(\varepsilon)}}\}_{\varepsilon > 0}$ obeys an LDP with the above rate function.

Use this assumption and Varadhan's lemma to calculate the asymptotics, as $\lambda \rightarrow \infty$, of

$$I_\lambda(x, y) := \mathbb{E} \left[\exp \left(-\lambda^2 \int_0^{\frac{T}{\lambda}} V \left(x + \lambda(y-x) \frac{t}{T} + B_t - \lambda \frac{t}{T} B_T \right) dt \right) \right]$$

where $(B_t)_{t \in [0,T]}$ is a standard Brownian motion with $B_0 = 0$. Here $V : \mathbb{R} \rightarrow \mathbb{R}$ is some function (potential) so that the whole integral is a continuous and bounded function of Ω .

- Step 1: Compare Brownian motion with *pinned Brownian motion*

$$B_t^{\text{pinned}} := x + (y-x) \frac{t}{T} + B_t - \frac{t}{T} B_T$$

which has the conditioning that $B_0 = x$ and $B_T = y$.

- Step 2: Show that $(B_t^{\text{pinned}})_t$ also obeys an LDP.
- Step 3: Rewrite $I_\lambda(x, y)$ in terms of the expectation on B_t^{pinned} .

9. Let $(B_t)_{t \geq 0}$ be standard Brownian motion with $B_0 = 0$ and $a > 0$. Define

$$\tau_a := \inf (\{t \geq 0 \mid B_t = a\}).$$

Define the process

$$\tilde{B}_t := \begin{cases} B_t & t \leq \tau_a \\ 2a - B_t & t > \tau_a \end{cases}.$$

- Show that $\mathbb{P}[\tau_a < \infty] = 1$. In fact calculate $\mathbb{P}[\tau_a \leq t]$.
- Show that $\tilde{B}_t \stackrel{d}{=} B_t$.

(c) Use this to calculate the tail bound that Brownian motion escapes a box:

$$\mathbb{P} \left[\max_{s \in [0,t]} B_s \geq a \right].$$

10. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous and bounded, and set

$$u(t, x) := \mathbb{E}[f(x + B_t)].$$

Show that u satisfies the heat equation

$$\partial_t u = \frac{1}{2} \partial_x^2 u$$

with initial data $u(0, \cdot) = f$.