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Problem 1. Let X be countable. Show that if X is considered as a measurable space with the σ-algebra

P(X), and c : P(X) → [0,∞] is the counting measure on it, then∫
A

fdc =
∑
x∈A

f(x)

for any A ⊆ X and f : X → C measurable.

Solution. See Example 2.32 of the lecture notes for the solution.

Problem 2. Let X be a measurable space and x0 ∈ X. Show that if δx0
: Msrbl(X) → [0,∞] is the Dirac

delta (unit mass) measure then ∫
A

fdδx0
= χA(x0)f(x0)

for any A ∈ Msrbl(X) and f : X → C measurable.

Solution. See Example 2.33 of the lecture notes for the solution.

Problem 3. Show that the inequality in Fatou’s lemma may well be strict with the following sequence of

functions

fn =

χE n ∈ 2N+ 1

χEc n ∈ 2N

Solution. According to Fatou’s lemma we have that:∫
X

(
lim inf

n
fn

)
dµ ≤ lim inf

n

∫
X

fndµ
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For the above sequence of functions we have that lim infn fn(x) = 0 for all x ∈ X, so the left hand side in

the above inequality is identically zero. On the other hand we see that:

∫
X

fndµ =

µ(E) n ∈ 2N+ 1

µ(Ec) n ∈ 2N

Thus, we have that lim infn
∫
X
fndµ = min

(
µ(E), µ(Ec)

)
, so the inequality in Fatou’s lemma is strict.

Problem 4. (Continuity of the integral) For any f ∈ L1(µ) and ϵ > 0 there exists some δ > 0 such that if

E ∈ Msrbl(X) is such that µ(E) < δ then
∫
E
|f |dµ < ϵ.

Solution. (see Proposition 1.12 in Chapter 2 of Stein and Shakarchi: Real analysis) By replacing f with |f |
we may assume without loss of generality that f ≥ 0. We define:

En =
{
x : f(x) ≤ n

}
, fn(x) = f(x)χEn

We have that fn ≥ 0 is measurable and fn(x) ≤ fn+1(x). By the monotone convergence theorem we have:

lim
n→∞

∫
fndµ =

∫
fdµ

For any ϵ > 0, there exists n > 0 large enough such that:∫
|f − fn|dµ <

ϵ

2

We also consider δ > 0 small enough such that 2nδ < ϵ. We conclude by:∫
E

fdµ ≤
∫

|f − fn|dµ+

∫
E

|fn|dµ <
ϵ

2
+ nδ < ϵ.

Problem 5. State and prove the reverse Fatou’s lemma (involving lim sup instead of lim inf). What is the

additional condition that one must assume compared to the original Fatou?

Solution. We first state the reverse Fatou’s lemma: Let {fn} be a sequence of non-negative measurable

functions on X. If there exists a non-negative integrable function such that fn ≤ g for all n, then:

lim sup
n

∫
X

fndµ ≤
∫
X

(
lim sup

n
fn

)
dµ

To prove this, we consider the sequence of non-negative functions gn = g − fn (here we used the additional

condition). According to Fatou’s lemma we have that:∫
X

(
lim inf

n
gn

)
dµ ≤ lim inf

n

∫
X

gndµ
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Also, we see that lim infn gn = g − lim supn fn ≥ 0 and
∫
X

(
lim infn gn

)
dµ =

∫
X
gdµ −

∫
X

(
lim supn fn

)
dµ.

Moreover, lim infn
∫
X
gndµ =

∫
X
gdµ− lim supn

∫
X
fndµ, which allows us to conclude.

The requirement that the sequence {fn} is bounded by an integrable function g is necessary. For example,

we can take fn(x) = nχ(0,1/n)(x), which has lim supn
∫
fndx = 1. However, lim supn fn is identically zero, so

the reverse Fatou’s lemma does not apply for this sequence.

Problem 6. (Cartesian product of measure spaces) Let {Xα}α∈A be an indexed collection of non-empty

sets and set X =
∏

α∈A Xα. Let πα : X → Xα be the canonical projections. If we furnish each Xα with the

σ-algebra Msrbl(Xα) then: {
π−1
α (Eα)| Eα ∈ Msrbl(Xα), α ∈ A

}
generates the σ-algebra Msrbl(X) on X. Show that if A is countable then this σ-algebra equals that generated

by { ∏
α∈A

Eα| Eα ∈ Msrbl(Xα)

}
Solution. One direction is immediate since we have the inclusion:{

π−1
α (Eα)| Eα ∈ Msrbl(Xα), α ∈ A

}
⊂

{ ∏
α∈A

Eα| Eα ∈ Msrbl(Xα)

}
For the other direction we use the fact that:∏

α∈A

Eα =
⋂
α∈A

π−1
α (Eα).

Problem 7. Show that B(Rn) equals the above construction if we consider Rn =
∏

α∈{1,...,n} R and on

each copy of R we choose the σ-algebra B(R).

Solution. From the previous exercise we know that the σ-algebra Msrbl
(∏

α∈{1,...,n} R
)
is generated by:{ ∏

α∈{1,...,n}

Eα| Eα ∈ B(R)
}

The key point is to show that both σ-algebras are generated by:{ ∏
α∈{1,...,n}

Iα| Iα open interval of R
}

In order to prove that Msrbl
(∏

α∈{1,...,n} R
)
is generated by the cartesian product of open intervals we use

the familiar fact that any open subset of R can be written (uniquely) as a countable union of disjoint open

intervals. This is the content of Theorem 1.3 in Chapter 1 of Stein and Shakarchi: Real analysis. Next, to

show that B(Rn) is generated by the cartesian product of open intervals, we use the fact that every open

subset of Rn can be written as a countable union of almost disjoint cubes. This is the content of Theorem

1.4 in Chapter 1 of Stein and Shakarchi: Real analysis.
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Problem 8. Let (X,M, µ) be a measure space. Let

N :=
{
N ∈ M| µ(N) = 0

}
and

M :=
{
E ∪ F | E ∈ M and ∃N ∈ N such that F ⊆ N

}
Then M is a σ-algebra in X and ∃! measure µ which extends µ to M. It is called the completion of µ.

Solution. (See Theorem 1.9 in Chapter 1 of Folland: Real Analysis) SinceM andN are closed under countable

unions, so is M. If E ∪ F ∈ M where E ∈ M and F ⊆ N ∈ N, we can assume that E ∩ N = (otherwise,

replace F and N by F\E and N\E). Then E ∪ F = (E ∪N) ∩ (N c ∪ F ), so (E ∪ F )c = (E ∪N)c ∪ (N\F ).

But (E ∪N)c ∈ M and N\F ⊂ N, so that (E ∪ F )c ∈ M. Thus, M is a σ-algebra.

If E ∪ F ∈ M as above, we define µ(E ∪ F ) = µ(E). This is well defined, since if E1 ∪ F1 = E2 ∪ F2,

then E1 ⊂ E2 ∪ N2, so µ(E1) ≤ µ(E2). Similarly, we also get µ(E2) ≤ µ(E1), showing that µ is well

defined. Showing countable additivity is immediate. Finally, we consider any other extension µ̃ of µ to M,

so µ̃(E) = µ(E) for any E ∈ M. In particular, for any N ∈ N we have µ̃(N) = 0. Thus, for any F ⊂ N ∈ N

we have µ̃(F ) = 0 and we conclude that µ̃ = µ.

Problem 9. Show that if a1, . . . , an ∈ [0,∞) and µ1, . . . , µn are measures on (X,M) then
∑n

j=1 ajµj is a

measure on (X,M) too.

Solution. We check that the new map is countable additive. For any pairwise disjoint measurable sets

A1, A2, . . . we have:

n∑
j=1

ajµj

( ∞⋃
i=1

Ai

)
=

n∑
j=1

aj

( ∞∑
i=1

µj(Ai)

)
=

∞∑
i=1

n∑
j=1

ajµj(Ai)
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