

Princeton University
 Spring 2025 MAT425: Measure Theory
 HW2
 Feb 9th 2025

February 17, 2025

1. Let X be countable. Show that if X is considered as a measurable space with the σ -algebra $\mathcal{P}(X)$, and $c : \mathcal{P}(X) \rightarrow [0, \infty]$ is the counting measure on it, then

$$\int_A f dc = \sum_{x \in A} f(x)$$

for any $A \subseteq X$ and $f : X \rightarrow \mathbb{C}$ measurable.

2. Let X be a measurable space and $x_0 \in X$. Show that if $\delta_{x_0} : \text{Msrbl}(X) \rightarrow [0, \infty]$ is the Dirac delta (unit mass) measure then

$$\int_A f d\delta_{x_0} = \chi_A(x_0) f(x_0)$$

for any $A \in \text{Msrbl}(X)$ and $f : X \rightarrow \mathbb{C}$ measurable.

3. Show that the inequality in Fatou's lemma may well be strict with the following sequence of functions

$$f_n := \begin{cases} \chi_E & n \in 2\mathbb{N} + 1 \\ \chi_{E^c} & n \in 2\mathbb{N} \end{cases}.$$

4. (*Continuity of the integral*) For any $f \in L^1(\mu)$ and $\varepsilon > 0$ there exists some $\delta > 0$ such that if $E \in \text{Msrbl}(X)$ is such that $\mu(E) < \delta$ then $\int_E |f| d\mu < \varepsilon$.

5. State and prove the reverse Fatou's lemma (involving \limsup instead of \liminf). What is the additional condition that one must assume compared to the original Fatou?

6. (*Cartesian product of measure spaces*) Let $\{X_\alpha\}_{\alpha \in A}$ be an indexed collection of non-empty sets and set $\prod_{\alpha \in A} X_\alpha$. Let

$$\pi_\alpha : \prod_{\alpha \in A} X_\alpha \rightarrow X_\alpha$$

be the canonical projections. If we furnish each X_α with a σ -algebra $\text{Msrbl}(X_\alpha)$ then

$$\{ \pi_\alpha^{-1}(E_\alpha) \mid E_\alpha \in \text{Msrbl}(X_\alpha), \alpha \in A \}$$

generates the σ -algebra $\text{Msrbl}(\prod_{\alpha \in A} X_\alpha)$ on $\prod_{\alpha \in A} X_\alpha$. Show that if A is countable then this σ -algebra equals that generated by

$$\left\{ \prod_{\alpha \in A} E_\alpha \mid E_\alpha \in \text{Msrbl}(X_\alpha) \right\}.$$

7. Show that $\mathcal{B}(\mathbb{R}^n)$ equals the above construction if we consider $\mathbb{R}^n = \prod_{\alpha \in \{1, \dots, n\}} \mathbb{R}$ and on each copy of \mathbb{R} we choose the σ -algebra $\mathcal{B}(\mathbb{R})$.

8. Let (X, \mathcal{M}, μ) be a measure space. Let

$$\mathcal{N} := \{ N \in \mathcal{M} \mid \mu(N) = 0 \}$$

and

$$\overline{\mathcal{M}} := \{ E \cup F \mid E \in \mathcal{M} \wedge F \subseteq N \exists N \in \mathcal{N} \}.$$

Then $\overline{\mathcal{M}}$ is a σ -algebra in X and $\exists!$ measure $\overline{\mu}$ which extends μ to $\overline{\mathcal{M}}$. It is called the *completion* of μ .

9. Show that if $a_1, \dots, a_n \in [0, \infty)$ and μ_1, \dots, μ_n are measures on (X, \mathcal{M}) then $\sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathcal{M}) too.