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Problem 1

(Claim 2.67) Suppose we are given a set X, a collection & C P(X) and a function
p: & — [0,00] satisfying @, X € & and p(&) = 0. Proposition 2.6@ provides a
construction of a corresponding outer measure ¢, on X. We are asked to show
that ¢, can fail to coincide with p when restricted to € in general.

Solution 1. Let X = {x1,22} be a set of size 2. Set & = P(X) and define the
function p : § — [0, 00] by

p(S):{1 ifS=X

0 otherwise

Then setting F1 = {z1}, Fa = {22} and F; = @ for ¢ > 2 in the definition of
¢, found in Proposition 2.65, we get

ep(X) = @p({w1,22}) < p({z1}) + p({z2}) = 0
In particular, ¢,(X) # p(X). O

Solution 2. As suggested in the notes, we set X = N,

E={ACN | |4l <0 V |A"] < oo}

1 |A9 < o0
A) =
Pl {o A < 00

and

LAll unspecified references refer to the lecture notes.



It is clear that @, X € &€ and that p(@) = 0, so ¢, is well-defined. Note that
since every set forms a cover of itself, we have ¢,(S) < p(S) for all § C X E|
Since ¢, is an outer measure, it is countably subadditive. Hence

©p(N) =, (U{Z}> Z ({7}) SZ ZOZO
Thus ,(X) = 0 £ 1 = p(X)f] -

2This holds in complete generality.
3Since ¢, is an outer measure, it will follow that ¢, = 0.



Problem 2

(Claim 2.71) With notation as in the previous exercise, we let 4, be the o,-
measurable subsets of X (c.f. Definition 2.68). Then it need not be the case
that A, = o(8).

Solution 1. Consider any set X of cardinality > 2 and set & = {&, X} and
p(@) = p(X) =0. Then ¢, = 0; so all subsets of X are gap—measurableﬂ Thus
Ay, = P(X) # & =0(6). O

Solution 2. The previous example shows that A, may strictly contain o(§).
However, even the inclusion & C A, may fail. To see this, suppose X =
{zo, 21}, § = P(X) and p: & — [0, 00] is defined by

0 fS=0
p(S):=4q2 if|S| =1
3 if|S|=2

Then p is subadditive, hence countably subadditive—since X is finite. It follows
that ¢, = p. On the other hand, {x¢} is not ¢, ,-measurable since

eo({2o}NX)+0, ({20} NX) = p({zo})+p({71}) = 242 =4 # 3 = p(X) = ¢,(X)

Thus A,, = {2, X} # P(X) = o(8). O

4The condition of Carathéodory reads 0 = 0 4 0 in all cases.



Problem 3.

Suppose X is a set and F C P(X) a collection of subsets of X. If |F| < 2%
then either o(F) is finite or |o(F)| = 2o,

Solution. We split the proof into two lemmas and three propositions.

Lemma 1. Suppose f: Y — X is a map of sets and X is equipped with a o-
algebra generated by a collection F € P(X). Then in the notation of Definition
2.11,

o(f)=c({f7(S)15€F})

Proof. Clearly the right-hand-side is contained in the left-hand-side. Conversely,
let M:=0 ({f71(S) | S € F}) and consider the o-algebra M on X defined by

M:={SCX|f 1S en
Then clearly F C 9. Since M is a o-algebra, it follows that o(f) C M. O

Lemma 2. Let X be a set and MM a o-algebra on X. For A C X we define
Ma:=0(r) ={SNA|SecM}ePPA))

where v : A < X s the inclusion map and o(z) is in the sense of Definition
2.11. Then
MC{UUV | UeMa ANV EMa}

with equality if and only if A € 9.

Proof. Take S € 9. We have SN A € M|4 and SN A € M| 4. Hence
S=(SNAUBNA)e{UUV|UeMa ANV €M}

The desired inclusion follows. We leave the equality case to the reader. O

Proposition 1. If F is finite then so is o(F).

Proof. We prove the result by induction on |¥|. If |¥| = 0, then o(¥) = {0, X }.
In general, write ¥ = F' U {A} so that |F'| < |F|. Let M = o(F). It follows
from Lemma [1| that 9|4 and 91| 4c are generated by F’'|4 and 9”|ACE| By the
induction hypothesis, |4 and M| 4 must be finite o-algebras. Using Lemma

2
MC{UUV UM AV €M}

Since the right-hand-side is finite, so is 9. O

Proposition 2. If F is infinite then |o(F)| > 2%o.

5This is obtained by applying Lemma to the inclusion maps 2: A — X and j3: A — X
and noting that the generators 1~ 1(A) = A and 37'(A) = @ are redundant.



Proof. Let 9 :=c(F). Note that M is infinite as F C M. We will construct a
sequence Sy 2 S1 2 Sz 2 ... of sets in o(F) such that M|g, is infinite for each i.
We start by choosing a Sp = X. Having chosen S;, we pick T € M|g, — {2, S;}.
Lemma [2| tells us that either 9|7 or M|s, _r must be inﬁniteﬂ Without loss of
generality, we are in the former case and we define S;11:=T.

We now define A; :=.5;_1—.5; for i > 1. Note that Ay, A,, ... are countably
many non-empty pairwise-disjoint subsets of X lying in o (). Henceﬂ

o(F)| = |2({A: | i € N})| = |P(N)| = 2%

Proposition 3. If |F| < 2% then |o(F)| < 2%o.

Proof. We will employ transfinite induction to show that & is contained in some
o-algebra of cardinality at most 2%° E| We begin by defining an augment function
N :PP(X)) = P(P(X)) by

N(ﬂ):ﬂu{SﬂSeﬂ}u{G&

i=1

517527“-6%}

Observe that A satisfies
1. A CN(A) for all A C P(X) with equality if and only if A is a o-algebra.
2. f A CBCP(X) then N(A) C N(B).
3. If | A| < 2% then |N(A)| < 2% [
Let wy be the first uncountable ordinal. Define &, C P(X) for a < w; induc-
tively:
FU{X} ifa=0
Foi={N(Fs) ifa=p+1
Ups<a Fs  if a is a limit ordinal

We claim that F,, is a o-algebra. To see this, note that ., = J F,. Hence

a<wi

« XEFHCF,.
o If S €, then S € F, for some a < w;y. So S¢ € N(F,) = For1 € F,-

Sby imitating the argument in the induction step of Proposition 1

7c.f. Problem 8 on Homework 1

8For a quick introduction to transfinite induction, consult Chapter 0.4 in Folland or read
https://ericmoorhouse.org/handouts/transfinite.pdf.

YThe only tricky part of this estimate is bounding the size of { |J;2, S; | S1,S2,--- € A}.
An upper bound is given by the size of the indexing set, which is the set of all infinite sequences
with terms in A. This is by definition AV, so has cardinality ||N < (2“0)“0 = 2% Ro —
2o,


https://ericmoorhouse.org/handouts/transfinite.pdf

o If 51,5,,... is a sequence in F,, then we can find oy, ag, -+ < w; such
that S; € F,, for each i. Let o = sup,; ov;. Since « is a countable limit of
countable ordinals, it is countable. I.e. & < wy. Now S; € F, for all i, so

U Si e N(Fo) = Fais € Fo,

i=1

Thus we see that 7, is a o-algebra. It contains Fy, so contains F. To bound
the cardinality of 7, , we prove |7, | < 2% by induction on o < w;. For o = 0,
this is true by hypothesis. For a a successor ordinal, it follows from property
(3) above. For « a limit ordinal, it follows from the induction hypothesis using

U Fs| < D" 2% =Jaf - 2% < 2% . g% =%
B<a B<a

O

Now consider & as in the hypothesis of the original problem. If & is finite
then we apply Proposition 1. Otherwise, we apply Proposition 2 to get |o(F)| >
2% and Proposition 3 to get |o(F)| < 2%. Combining the two, we conclude[lY]

O

10Here we are implicitly using the Cantor-Schréder-Berstein Theorem (see https://en.
wikipedia.org/wiki/SchrYC3%B6der%E2%80%93Bernstein_theorem ).


https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem
https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem

Problem 4.
Let C C R be the standard (i.e. one-third) Cantor set.
Proposition 4 (Problem 4(a)). Let A be the Lebesque measure. Then A(C) = 0.

Solution 1. Note that the Cantor set is contained in the set of real numbers that
have a ternaryE representation that does not contain the digit 1. The proof of
Problem 8 shows that such sets have measure 0[] O

Solution 2. The Lebesgue measure of an interval is given by the difference of its
endpointsE The set C' is the decreasing intersection of sets Cy, C1,... where
Co = [0,1] and C, 41 is is obtained from C; by replacing each of its interval
components by the disjoint union of two subintervals, each half the length of the
original. Tt follows that A\(C},) = %: and thus A(C) = 0 by Theorem 2.29(4). O

Proposition 5 (Problem 4(b)). The cardinality of C is |C| = 2% = |R|.

Solution 1. Ignoring the point 1, the set C consists of those real numbers in
[0,1) that admit a ternary representation consisting only of the digits 0 and
2. These are in bijection with the set of all infinite sequences in the alphabet
{0,2}, which has cardinality

1{0,2}"] = {0, 2} = 2™
O

Solution 2. We will prove in Problem 11 that C' + C' = [0,2]. This means in
particular that there is a surjection C' x C' — [0, 2]. Cardinality-wise we get

‘ClQ Z 2}20

But |S|? = |S| whenever S is inﬁnite@ So we get |C| > 2%0. On the other hand
C CR,so
C] < IR = 2%

11 e. base 3

12Though the proof provided for that problem is a specific case, the method of proof is
completely general.

13This is by definition for intervals of the form (a, b] and follows in general because singletons
have Lebesgue measure 0.

14This fact requires the axiom of choice.



Problem 5.

(Part 1) Let ' : R — R be increasingiﬂ and right-continuous. Let A be the
algebra defined in Claim 4.4. For S € A deﬁnﬂ

n

pr(S):=Y (F(b;) — F(a;)) where S =| |(ay,b;]

j=1 j=1
In particular pp(@) = OE Then pr is a premeasure on A.

Solution. The first step is showing that pp is well-defined (c.f. the proof of
Theorem 4.5). Note that by assumption F(b) > F(a) whenever b > a, so
pr(S) >0 for all S € A. Now we show that pp(S) is independent of the choice
of representation of S as a finite union of right-closed intervals. Suppose

m

S = U(aj,bj} = | |(a},b]]

j=1

Without loss of generality, we have a1 < ag < -+ < an and a} < ah < --- < a,.
Since the intervals are disjoint, we must have a; < b; < a;41 and aj < b; < aj,
for each i. Let ¢; < cg < --- < ¢; be such that

{c1,...,eny={ar,...,an} U{b1,...,b} U{a),...,a,, yU{bl,....0.}
For each j, we can find s < ¢ such that a; = ¢, and b; = ¢;. Then
pr((aj, b)) = —F(a;) + F(b))
= (=F(cs) + Fles41)) + (—F(cs+1) + Fest2)) + -+ (= F(ct—1) + Fcr))
= pF((CS, cs+1]) + pF((Cs+17 cs+2]) +e pF((Ct*b ct])

We can write this as

prl(ap b= > prllecinl)

(cireit1]C(aj,by]

By construction, (¢;, ¢;41] C S if and only if (¢;, ¢i+1] € (aj, b;] for some j, and
this j is uniquely determined if it exists. Hence

> reag,b]) = > pr((cicimal) = Y pr((cicipl)

Jj=1 J=1 (ci,ci+1]C(ay,b;] (ci,ci+1]CS

By symmetry, we also have 37, pr((a}, b)) = > (eseniajcs PR((cis ci1]) Hence
the two sums defining pr(S) are equal and S is well-defined.

15Here we do not mean strictly increasing.

16The rectangular union symbol means we are requiring the union to be disjoint. Implicitly,
we are also requiring a; < b;.

17 An empty sum has value 0.



Observe that the well-definedness of S gives us finite additivity of pg on
A. It remains to show that pp is countably additive in the restricted sense
of Definition 2.72. That is, given S1,S52,--- € A pairwise disjoint such that
S:=[], S; is in A, we need to show that pp(S) =Y o, pr(S;). Without loss
of generality we may suppose that each \S; is an interval, i.e. S; = (a;, bz”ﬁ We
may further suppose that S is also an interval (a, ], for if not then it is a finite
disjoint union of such intervals on which we may argue separately and then use
finite additivity.

Let B:={b; | i € N}U{a}. Note that a; € B for each i since if a; > a then it
must be contained in some interval SJ'H Note also that B is a closed set since

oo

B=la,b] - | |(ai,b:)

i=1

Define

Gi=qzeB|pp((x,b) =Y pr(S)

a;>x

When = = bﬂ the condition a; > x is false for all ¢. So we get b € G from

Z pr(Si) =0=pp(@) = pr((b,b])

a,Zb

Let y:=inf G. Clearly a < 2y < b. We first show that y € G. If not then we can
find a sequence y; > y2 > ... of elements in G such that lim, y, = y. It follows
that y € B since this set is closed. By right-continuity of F,

pr((y,t]) = lim pr((yn,b]) = lim Py pr(Si) = z;r pr(S:)
We cannot have x = a; for i € N since then y,, > b; > a; for all n. Hence the
sum on the very right is the same as ), -, pr(S;), and it follows that y € G.
If y = a, then we are done, since the statement a € G is equivalent to the
additivity condition we are seeking. Otherwise y = b; for some j € N. Now for
any ¢, the condition a; > a; holds if and only if either ¢ = j or a; > b;. So we
get

> pr(Si) = pr(S) + Y pr(S;) = pr((a;,y]) + pr((y,b]) = pr(a;, b))

a;>aj a2y

Since a; € B it follows that a; € G. This contradicts the definition of y as
the infimum of G. This contradiction allows us to conclude that pp is well-
defined. O

18We simply expand each S; into its finitely many constituent components to obtain a wider
(but still countable) union.

191n contrast, it is very far from true that each b; must coincide with some aj.

20Note that b must be contained in some interval (a;, b;], and since b is the maximum of S
we are forced to then have b = b;. So indeed b € B.




Problem 5

(Part 2) With notation as in the first part, let yp:=p,, = be the induced mea-
sure. Then the following hold:

L. pr({a}) = F(a) - F(a-)
2. up(la,b)) = F(b-) — F(a-)
3. up(la,b)) = F(b) - F(a-)
4. pp((a,b)) = F(b-) — F(a)

Here F(z—) = lim;_,,- F(t) = lim._ o+ F(t — €). Note that this limit always
exists for increasing functions R — R.

Solution. It is easy to see that o(A) = B(R). So all these sets are pp-
measurable.

1. By Theorem 2.29(4),

pr({a}) = pr (ﬂ (a— 1/n7a]>

n=1
= lim pp((a—1/n,a)

= lim (F(a) - F(a—1/n))

= F(a) — F(a—)
2.
pr([a,b)) = pr({a} U (a,b] — {b})
= pr({a}) + pr((a,b]) — pr({b})
= F(a) — F(a—) + F(b) — F(a) — (F(b) — F(b—))
= F(b—) — F(a—)
3.
pr(la,b]) = pr({a} U (a,b])
= pr({a}) + pr((a,b])
= F(a) — F(a—) + F(b) — F(a)
= F(b) — F(a—)
4.
pr((a,0)) = pr((a,b] — {b})
= pr((a,b]) — pr({b})
= F(b) — F(a) — (F(b) — F(b—))
= F(b—) — F(a)

10



Problem 6.
There exists a Borel set A C [0, 1] such that

0<XMANI) <) ()
for all subintervals I C [0, 1]. (Here A is the Lebesgue measure.)

Solution. First note that (%) holds for I (and fixed A) if and only if it holds
for I. Next observe that if () fails for some interval I C [0, 1] then it fails for
all subintervals I’ C I. Tt therefore suffices (given A) to prove (k) for closed
intervals I with rational endpoints.

There are only countably many closed subintervals of [0, 1] whose endpoints

are rational. Let I, I, I3,... be an enumeration of all of them. Write I; =
[aj,b;] with aj,b; € Q and £; :=b; —a;. Let €1,€2,... be a sequence of positive
reals rapidly converging to 0, by which we intend that €; < £;/2ande; > >, ;€
for each jE

We define sets A; C [0,1] for j € N inductively as follows
Ao =[0,1],  Ajur = (4;U a5, a5+ ]) = [bj — €;,b5]

And we let A:=,cxUpsn Am

Now suppose I C [0,1] is a closed interval with rational endpoints. Then
I = I; for some j € N. We have A(I N A4;) > A([a;,a; + ¢€;]) = €¢; and for each
k>j

AMINAR) > MINA;) Z)\ —€,b;]) > € — Z€l>€] Zei

1=j+1 i=j+1 i>]

Also A(I N A;) < A([aj,b; —€;]) = A(I) —¢; and for k > j

k k
A =AINAR) > M) =-AINA) = Y Mlaiaite]) > - > & >e—) &
i=j+1 i=j+1 i>j
Now using Theorem 2.29,
ANI) = Ap NI | = inf sup M(A, NI) =1 MAp NI
ann=a U i A 1) = B AL 0D

neNm>n

So from NI NAg) > €5 — > o 6 and M) — AT NAg) > €5 — >, € we get
AMINA) =€ =3 6 >0and A1) —AINA) >e€ — >, & >0 by taking
limits. O

210ne such sequence is given by €= 379fy - L.
22For intuition about what this means, see Problem 9.

11



Problem 7
Give an example of an open set U C R such that A\(OU) > 0.

Solution. Let C be a closed subset of R of positive Lebesgue measure having
empty interior@ Define for each positive integer m

m+1

Vm:{xeR‘ <d(:z:,C’)<1}
m

Note that each V, is open because the distance function = — d(z,C) is a
continuous function P4 Define

U:= U Vin

m even

We will show that C' C OU, from which the claim follows immediately. To see
that C C U, let € C be arbitrary and let J > x be an open interval containing
x. Since C has empty interior, we can find y € C°N J. We have d(z,C) = 0
and d(y,C) > 0. By the continuity of z — d(z, C), this function attains every
value in [0,d(z, C')] on the interval J. In particular, it attains a value between
1/m and 1/(m + 1) for sufficiently large even m. It follows that JNU # .
Since J was arbitrary we get x € U. Since x € C was arbitrary, we get C C U.

To see that C' C U<, note that by symmetry, if we define U':=J,, ,qq Vin
then also C' C U’. But clearly U’ C U€. Thus we conclude. O

23 A fat Cantor set would be one such example. For another, let © D Q be an open set of
finite measure and consider the closed set Q°.
241n fact, it is uniformly continuous: |d(z,C) — d(y, C)| < d(z,y).

12



Problem 8

Let A be the set of real numbers in the interval [0, 1] whose decimal expansions
do not contain the digit 4. Then A(A) = 0. (In particular, A is Lebesgue-
measurable.)

Solution. First note the following:

Claim (1). Let n be a positive integer. Then the number of integers in the
interval [0,10™) whose decimal expansion does not contain the digit 4 is exactly
9”.

The integers in the interval [0,10™) are in bijection with the sequences of
length n in the alphabet {0,1,...,9}. Those avoiding the digit 4 are in bijec-

tion with the sequences in the sub-alphabet {0,1,2,3,5,6,7,8,9}. Hence they
number

|{07 ]‘72737 57 67 77 87 9}n| = ‘{07 1’2737 57 67 77879}|n = 977/

Claim (2). The set A, of real numbers in the interval [0, 1) whose first n decimal
digits are not the digit 4 has Lebesque measure precisely (9/10)™.

To see this, note that « € [0, 1) satisfies the property in the claim if and only
if |10"z| does not contain the digit 4. Hence

m m+1
Ay = = I
L [mn 107 )
meZn[0,10™)
m has no digit 4

Using Claim (1), A, is the union of 9™ pairwise disjoint intervals of length 10~™.
Claim (2) follows.

Now observe that A = {1} U, cx Anﬁ Also, clearly A; D A D A3 D ...
Hence by Theorem 2.29(4),

AA) = lim A(4,) = lim (9 )n =0

n—o00 n—oo \ 10

25Note that this means A is Borel, not just Lebesgue-measurable.

13



Problem 9 (a) and (b)

Let E1, Fs,... be a sequence of Lebesgue measurable subsets of R such that
> re1 A(Eg) < 0o. We define

E:={x € R | z € E}, for infinitely many k}
Show (a) that F is measurable and (b) that A(E) = 0.
Solution. For x € R, have the following sequence of equivalences:

x € Ej, for infinitely many k <= the set {k € N |z € E;} is infinite
<= the set {k € N|z € E}} is not bounded above
<= for any n € N, there exists k > n such that x € Fy

< foranyn €N, x € UEk
k>n
— xeﬂ UEk
neNk>n

Hence E = (,cny Up>p Er- Thus E is in the o-algebra generated by the E;. In
particular, F is contained in the o-algebra of A-measurable sets. This proves
(a). As for (b), note that for each n, E'C |Jy,, Ex. Hence by subadditivity

ME) <M B | <D AMER)
k>n k>n

Since the series > po; A(Ej) converges, the “remainders” Y ;3 A(E)) tend to
0 as n grows. Taking the limit, we get A\(F) < 0. B O

Problem 9(c)

Let f1, fa,-+- : [0,1] — C be a sequence of measurable functions. Then there
exists a sequence of constants ¢y, ¢z, - - € (0,00) such that
tim 2 _ g

n—oo C’I’L
for almost all z € [0,1], i.e. for all z € [0, 1] excluding some set of measure 0.

Solution. After replacing f,, with |f,| we may suppose without loss of generality
that each f,, has image lying in [0,00). For each n, choose M,, > 0 such that
M{z € [0,1] | fu(z) > My}) < 27" Let B, :={z € [0,1] | fu(z) > M,}
and let ¢, = nM,. Then \(E,) < 2" implies that Y > | A(E,,) converges. By
the result above, there is a set E of measure 0 such that x ¢ E implies that

26This is made possible by applying Theorem 2.29(4) to N ;en{z € [0,1] | fu(z) > M} = 2.

14



x is in at most finitely many F,’s. For z € [0,1] — F and for large enough n
(depending on x)

fn(z) < M,
Cn Cn,

<

SRS

and the result follows.

15



Problem 10

Suppose f : R — C is a measurable functionm Then there exist continuous

functions fi, fa, -+ : R — C and a set E of measure 0 such that
Jim f(t) = f(2)

for all t € E°. (To describe this, we say that f, — f pointwise almost-
everywhere.)

Solution. We will say that a function f : R — Cis good if it satisfies the property
stated above. We will say that a set is good if its characteristic function is good.
We proceed in six stages of increasing goodness.

Claim (1). Let a € R be arbitrary. Then the interval (a,00) is good.

Here one can be very explicit. We can simply define

0 itt<a
fat):=<n(t—a) fa<t<a+1l/n
1 ift>a+1/n

Then it is easy to see that each f, is continuous and that lim, o f,.(t) =
X(a,oo)(t)'

Lemma 3. The collection of good functions is closed under finite sums, finite
products and multiplication by complex scalars.

Proof. If f1, fa,... and ¢1, g2, . . . are continuous and f,, — f pointwise outside
of a set 7 of measure 0 and g, — ¢ pointwise outside of a set Fs of measure
0 then h,, := f, + gn is continuous and h,, — f + ¢ outside of F; U F5, which
has measure 0. This proves the case of sums. The other cases are treated
analogously. O

Claim (2). Let A be the algebra in defined in Claim 4.4 and used in Problem
5. Then every set in A is good.

For any real numbers a < b, the identity X(a,5) = X(a,00) = X(b,00) Shows that
X(a,b) 18 good. Any set in A is a finite disjoint union of intervals of the form
(a,b]. So the claim follows by taking sums and using Lemma

Lemma 4. Suppose that f1, fo,... is a sequence of good functions converging
pointwise to a function f. Then f is good.

270ne could also allow f to take the value co on a set of measure 0. However, to recover
this version, one can simply change the values on that set from oo to 0 (or anything else)
without affecting measurability or the validity of the problem statement.

16



Proof. First note that if g is a good function then for any €1, €5, M > 0 one can
find a continuous function h such that A\({z € [-M, M] | |g(z) — h(z)| > €1}) <
€2. To see that this is so, consider a sequence of continuous functions g1, ga, - . .
such that g, — g as n — oo pointwise outside a set E of measure 0. Then
by assumptio

(N U {zel-M M]||g(x) - gm(x)| >a} CE

neNm>n

By Theorem 2.29(4), we can find n € N such that

MUtz e =M M] [ g(2) = gm()] > a1} | <e

m>n
In particular,
A{z € [-M, M] | |g(z) = gn(@)] > e1}) < €2

So we may let h = g,,.
Returning to the main claim, we now know that we can find continuous
functions hq, hs, ... such that for each n € N the set

E,:= {x € [-n,n] -

(@) = hu()] > 1}

satisfies A(E,) < 27". Now applying the Borel-Cantelli Lemma (i.e. Problem
9 (b)), we get that almost all z € R belong to only finitely many of the sets
E,. For such an x, we have |f,,(z) — h,(2)| < 1/n for all sufficiently large n. It
follows that

lim h,(x) = lim f,(z) = f(x)

n— oo n—oo

Claim (3). The collection G of good sets S C R forms a o-algebra.

To prove this, note that yg = 0 and yg = 1 are themselves continuous, so
@, R € G. Next, if S1,S55 € G then

XS1nS: = XS1 * XS,  Xsg =1 —Xxg

It follows from this and Lemma [3] that G forms an algebra. It remains to show
that G is closed under taking countable increasing unions. Suppose S1 C Sy C
S3 C ... is an increasing sequence of elements of G and let S = UneN Sp. Then
clearly

xs(t) = lim xg, (t) forallteR

n—oo

So S € G by Lemma [

28To unpack the meaning of the intersection-union below, the reader may wish to compare
this situation with the one in Problem 9.
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Claim (4). Every Lebesgue measurable set is good.

From the previous two claims it follows that every Borel set is good. More-
over, for any set S of Lebesgue measure 0, setting f, :=0 we get f, — Xxs
almost everywhere. So measure-zero sets are in G. The rest now follows from

Claim (3)@
Claim (5). Let f : R — [0,00) be a measurable function. Then f is good.

By Theorem 2.27, f is the pointwise limit of simple functions s; < sy < ...
Each simple function is good by Lemma |3| applied to Claim (4). It follows that
f is good by Lemma [4]

Claim (6). Let f : R — C be a measurable function. Then f is good.

This is immediate from Lemma applied to Claim (5) and the fact that any
function f : R — C can be written in the form

f=fo+ifi— fa—ifs

where fo, f1, f2, f3 are functions taking values in [0, oo)m O

291t is a good exercise to show that every Lebesgue-measurable set differs from a Borel set
by a set of measure 0.
300ne sets fm (t) :=max(0, R(:~™ f(t))) where R : C — R is the real part function.
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Problem 11

Show there exist closed sets A, B C R such that A(A) = A\(B) = 0 but A(4 +
B) > 0.

Solution 1. We will prove the beautiful result that
C+C=]0,2

where C is the Cantor set. It will be more convenient to work with C’:= %C.
We need to show that C’+C’ = [0, 1]. Note that C is the set of all real numbers
in [0,1] with a ternary expansion of only 0’s and 2’s. It follows that C’ = %C’
is t% set of all real numbers in [0, 1) with a ternary expansion of only 0’s and
1’s

Any real number z € [0,1] can be written the form
o~ a
k
-5
k=1

where a;, € {0,1,2}. Define by :=min(ag, 1) and ¢x :=ay — bkrﬂ Then by, cx, €
{0,1} and by, + ¢ = ag. Define

Then y,z € C' and y + z = =. O

Solution 2. For a visual proof, the reader should ponder the projections onto
the antidiagonal of the figures below. O

31 A priori, it should be the numbers in [0, 1/2]. However, every number in (1/2, 1) contains

a 2 in its ternary expansion.
32That is, by = ag,cr = 0 if ar, € {0,1} and by, = ¢ = 1 if az, = 2.

19



Problem 12

The image of a Lebesgue measurable set under a continuous function need not
be Lebesgue measurable.

Lemma 5. There exists a continuous function c : [0,1] — [0,1] which is sur-
jective when restricted to the Cantor set, i.e. such that each x € [0,1] is of the
form c(y) for some y in the Cantor set.

Proof. The Cantor set is the set of all real numbers which admit a ternary
expansion containing only 0’s and 2’s. Even though a real number can have
up to two ternary expansions, it is easy to see that at most one of these has
no 1’s. We define the Cantor function ¢ : C — [0,1] by sending = € C to the
unique real number admitting a binary expansion that coincides with a ternary
expansion of %x That is, if = 0.d1dads ... is a ternary expansion of % with
d; € {0,2} for each i. Then c(z) is the unique real number represented in base
2 by 0.d{d4dy ... where d; = d;/2 for each i. It is clear that c is increasing in
the sense that ¢(z) < ¢(y) whenever z,y € C and x < y. It should also be clear
that ¢ is surjective onto [0, 1]

For any = € [0,1] — C, we can write the ternary expansion of z as z =
0.didads . ... Let j be the first index at which d; = 1. Let _ be the number
represented in ternary by 0.d1ds...d;-10222222... and let x4 be the number
represented by 0.d1ds . .. d;-120000000.... Thenz_,z+ € C'and CN(z_,z1)N
C= @ﬁ It is not hard to see that c(z_) = ¢(x4). We extend ¢ to a function
[0,1] — [0, 1] by defining ¢(z) = ¢(x_) = ¢(r4+) in every such case. It is clear
that by doing so we maintain the property that c is increasing and surjective. A
surjective monotone function between intervals of R must be continuous, since
increasing functions can only have jump discontinuities. Thus ¢ is continuous.

O

To prove the statement in the problem, we of course need to know that
non-measurable subsets of R exist at all@ Here we will take this for granted.

Let X C [0,1] be a non-measurable set, let C' be the Cantor set, let ¢ :
[0,1] — [0,1] be the Cantor function in the lemma above, and let Y = ¢=*(X)N
C'. Since C has measure 0 and Y C C, the completeness of A\ means that Y is
measurable. On the other hand, since c is surjective when restricted to C, we
have ¢(Y) =X E

33 A real number in [0, 1] represented in binary by the expansion 0.d1dz ... is the image of
the ternary number 0.d1d2 ... defined by d, :=2d,,, which lies in the Cantor set.

34That is, 24 and z_ the endpoints of the Cantor set nearest to .

35For a proof of this fact, which requires the axiom of choice, see https://e.math.cornell.
edu/people/belk/measuretheory/NonMeasurableSets.pdf.

SWe remark that Y is also a Lebesgue-measurable set which is not Borel. The curious
reader may have a go at proving this.
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Problem 13

For any continuous function f : R — R, letting

A(f, xp.1) ={z € R| f(x) # xj0,1y(2)}

we get A(A(f, xp,11)) > 0.

Proof. Tt will suffice to show that A(f, x[0,1)) has non-empty interior.

Choose z¢ € (—1,0), z; € [0,1] such that f(xz¢) = x[o,1](w0) and f(z1) =
X[0,1)(21). If either of these is impossible to find then either (—1,0) or [0,1] is
contained in A(f, x[0,1]), giving the result immediately.

Since f(xzg) = 0 < 1 = f(x1) we can, by the intermediate value theorem,
find /5 € [20, 1] such that f(z1/2) = 1/2. By continuity, there is some § > 0
such that |f(y) — 1/2] < 1/2if |y — 25| < 4. It follows that

(w12 — 0,172 +0) € A(f, Xj0,1))
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Problem 14

Suppose A C E C B C R with A, B Lebesgue measurable and A(4) = A(B).
Then E is Lebesgue measurable.

Solution. Observe that by additivity of A
AMB—-—A)=XB)—XA)=0

Since
E—-ACB-A

and the Lebesgue measure is complete, it follows that E — A is A-measurable
and thus so is F = (F — A) U A. O
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Problem 15
Let X be a metric space. For S C X, § > 0 and d € [0, oo)li] define

HY(S) :=inf ({i(diam U)?

i=1 =1

Up,Uy,---C X st. SC UUi A diamU; < § for alli})

Note HZ(S) € [0,00]. Ezceptionally, we treat (diam U;)? as 0 if diam U; = d = 0.
Claim (a). For fized S and d, the function § — HE(S) is monotone decreasing.

If 6; < &5 then Hy (S) is the infimum over a subset of the coverings in the
infimum defining Hy (S). So H{. (S) > Hj (95).

Claim (b). By part (a) and the fact that HE(S) > 0, we know that

exists (in [0,00]) for any admissible S and d. For fived d, the map S +— H%(S)
is an outer measure on X.

For fixed § > 0, let ps : P(X) — [0,00] by defined by ps(S) :=(diam S)<.
Then by definition, H¢(S) = ¢,, in the sense of Proposition 2.65. It follows
that HZ(S) is an outer measure for fixed § > 0. By taking limits, criteria (1)
and (2) in Definition 2.63 for H¢ follow immediately from the corresponding
properties of Hgi. As for countable subadditvity, suppose Sy, S, - C X. Then

d B Y d ) : A ; dig.) — d(g.
H (91 Sl> = lim Hj (szl Sl> < 51561;]{5 (Si) = ;51561 H{(S;) = ;H (S)

The exchange of the infinite sum and the limit is justified by Lebesgue monotone
convergence theorem for sumsﬁ since HZ(S) increases as § decreases to 0.

Claim (c). Let B(X) be the collection of Borel sets of X, i.e. the o-algebra
generated by the open subset of X. Then all sets in B(X) are H%-measurable.

To prove this, we use the following lemma:

Lemma 6. Suppose A, B C X satisfy d(A,B) > 0. Then
H{(A)+ H}(B) = H{(AU B)

for all sufficiently small § > 0. It follows that H*(A) + HY(B) = HY(A U B).

37Note that for d < 0, the values are always infinite and the problem trivializes.
38This is Theorem 2.46 in the special case when X = N and p is the counting measure on
X.
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Proof. Suppose 0 < § < d(A, B). Suppose Uy, Us,--- C X form a cover of AUB
such that diam U; < § for all ¢ € N. If for some ¢ we could find a € U; N A and
b e U; N B then

0 < d(A,B) <d(a,b) < diamU,; < ¢
A contradiction. The sets J4:={i e N|U;NA# @} and Jp:={i e N|U;NB #
&} must therefore be disjoint. Since {U; |i € Ja} and {U; | i € Jp} form covers
of A and B respectively, it follows that

Z(dlamU > Z (diam U;)¢ + Z (diam U;)? > HE(A) + H(B)

i=1 i€Ja i€Jp

Taking the infimum over all covers Uy, Us, ... with diam U; < § we get Hgl(A U
B) > H}(A)+HZ(B). The reverse inequality follows by subadditivity of H¢. O

As a corollary of this lemma, we get

Corollary. Let Ay C Ay C As C ... be subsets of X with A:= UieN A;. Sup-
pose that d(A;, A — A;j11) > 0 for each i € N. Then H(A) = sup;cy HY(4;).

Proof. The inequality H?(A) > sup,cy H%(A;) follows from the fact that H¢ is
an outer measure. To get the reverse inequality, we consider the infinite series
S:=3"2  H¥(A;41 — A;). On the one hand, from 4 = |J;2, (Ai41 — A4;) we get
H4(A) < S by countable subadditivity. On the other hand, we can use Lemma
|§| inductively on the sets As — A1, A4 — As, ... to get (for n € N)

_ n—1 n—1
Z Ajy—Ay) = H? U (Aiy1 — Ay) | < H? (U (Aip1 — Az)> =H%4,)
iodd doda =t

Taking the supremum over all n € N, we get

Z H A1 —Ap) < supHd(An)

7 odd

By symmetry, we have a similar inequality for even i. We therefore get

S = ZHd ir1—A Z HY A —Ay)+ Z HY(Aj1—4;) < 2-sup HY(A,)
— im1 n
7 odd i even

In summary, we have
1 d d
55 <sup H%(A4,) < H*(A) < S
n

It follows that if one of these quantities of interest is infinite then they all are,
in which case the desired inequality is trivial. We may therefore assume that all
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these quantities are finite. Then by countable subadditivity we have (for n € N)

HY(A) = H? (An U D (Aiy1 — Al—)> < HYA,) + in(Ai+1 —4)

1=n

Taking the limit as n — oo we get

HY(A) <lim HY(A,) + lim Y H*Aiyy — A;) = sup HY(A,) + 0
n n—00 £ n

where equality on the right follows from the convergence of S. 0

To deduce Claim (c), note that by Theorem 2.69, it suffices to show that
all closed sets are H%measurable. For this purpose, let C' C X be closed and
A C X arbitrary. We will show that H%(A) > HY(ANC) + HY (AN Ce).

For each n € N, let Cy,:={z € X | d(z,C) < L}. Then each C,, is closed
and

C;;OCHHC{xEX‘d(x,C’)>1}ﬁ{x€X’d(m7C)<ni1}:®

3

Note that [,cn Cn = C = C. Letting A,,:=A —C,, and A":= AN C°, we get
A" =U,en An- Also A,y CCf and A" — A1 € Chyqy imply

d(Ap, A’ — Apir) > d(CS,Crsy) > 0

So we may apply the corollary above to get Hd(A’): sup,, H(A,). Let now
A" :=ANC. Observe that for fixed n € N, we have 4, NA” CCSNC =@. So
d(A,,A”) > 0 and we may apply Lemma [f] to get

HYA,) + HYA") = HY(A, U A") < HY(A)
Taking the supremum over n € N we get

HYA) > HY(A")+sup HY(A,) = HY(A")+ HY(A') = H{(ANC)+ HY(ANC®)

Claim (d). For fived S, the function d — H?(S) is monotone decreasing on
[0,00). Its image may contain O and/or oo and/or at most one finite number
m € (0,00)E If the last case holds, then there is a unique d, € [0,00) such
that H%(S) = m. Furthermore, H4(S) = o for d < d. and H%(S) = 0 for
d > d,.

For ¢ restricted to the interval (0,1) and 0 < d; < dg, it is clear that
H3(S) > H{?(S) since we are taking sums over the same values of diam U; €
[0,1) but with exponent d; in one case and ds in the other. By taking the limit
as § — 07, we get H4(S) < H¥%(S).

39 All possible images are described schematically as: {0}, {oo}, {0, 0}, {0,m}, {0, c0, m}.
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To prove the uniqueness of d, it suffices to_show that if H4(S) < oo for
some d € [0,00) then H¥ (S) = 0 for all d’ > d To see this, let M := H(S)
and let § > 0 be arbitrary. Then HZ(S) < M implies that we can cover S by
subsets Uy, Us, -+ C X such that diamU; < ¢ for each ¢ € N and such that
oo, (diam U;)? < M + 1. Note that

(diam U;)? = (diam U;)%(diam U;)? =% < (diam U;)? - ¢ ¢

Hence

Z (diam U;)% < 6% —4(M + 1)

Since § was arbitrary, we get

HY(S) = lim HY(S) < lim 644 (M +1)=0
§—0+

§—0+

Claim (e). Suppose d € N and X = R%. Then for X : B(R?Y) — [0,00] the
d-dimensional Lebesgue measure we have

A(S) = BaH(S)
for all S € B(RY), where By is the volume of the d-ball of radius 1/2
Proof. To show A < H ¢ we need the following result:
Theorem (Isodiametric inequality). For any subset X C R?, we have
AM(X) < Ba(diam X)?

In other words, for a fixed diameter the ball achieves the mazimum volume

Now let S C R? be arbitrary and suppose S is covered by sets Uy, Us, ... of
diameter < §. Then by the theorem
) > A ( Uu )

It follows that H{(B?) > A(S) for all § > 0. Hence H%(S) > A(S5).
To get the opposite direction, we will need some preliminary work.

oo

Ba Z(dlam U)?

i=1

uMg

40Those of you who have taken complex analysis may find it useful to compare this result
with a similar result about the convergence of power series in the complex plane.

41For explicit formulae giving the volume of such a ball for arbitrary d, see https://en.
wikipedia.org/wiki/Volume_of_an_n-ball.

*2For a proof of this classical result, see Theorem 2.4 in Measure Theory and Fine Properties
of Functions by Evans and Gariepy.

43Though the proof of the isodiametric inequality is not trivial, it is trivial to show that
A(X) < B4(2-diam X)¢. This much weaker inequality is still sufficient to recover the fact that
X and H? are equal up to some scalar.
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Lemma 7. Fiz a positive integer d. Then there exists a constant cq > 0 such
that each non-empty open set U C R? of finite Lebesque measure contains finitely
many pairwise disjoint open balls By, ..., By, for which

A(B1U-+-UBp) = cgAU)

Furthermore, at the risk of increasing m, the balls may be chosen to have radius
< 9§ for any fized 6 > 0.

Proof. We claim that cq:=4/2 will do. We have

N {xEU‘d(m,Uc)gl}Uﬂch

n
neN

Hence by Theorem 2.29(4), we can find n € N such that

A ({m cU ‘ d(z, U%) < 1}) < \U)/2

n
Define U':={z € U | d(z,U¢) > 5=} and U”:={z € U | d(z,U°) > L1},

Note that the defining condition on n reads A(U") > A(U)/2. Without loss of
generality, we may also suppose n > 6~ 1. Let

I:=U'n (nle"> ={z eU' | ndz € Z"}

For each x € I, we let B, be the open ball of diameter ﬁ centred at . We also
let C, be the closed hypercube of sidelength % centred at x@ Then the balls
B, for x € I are pairwise-disjoint equally-sized open balls contained in U E We
claim that U” C |J,.; Cr. To see this, let p € U” be an arbitrary point. Let

a1 Vd <

qle =2 Z" have minimal distance to p. Then d(p,q) < % -1 diam|0,1]¢ = oG
5 Thus

11 1
<) > c\ _ - - =
d(q,U) > d(p,U°) — d(p, q) > - on = o

and so ¢ € U’, whence g € I. So p € C. Putting these things together, noting
that A(By) = BaA(Cy), we get

A <|_| Bz> =D ABa) =D BaA(Co) = Bal (U O.T>

xel zel zel xzel
> Bd)\(UH) > ,Bd)\(U)/Q = Cd)\(U)

Since the balls B, each have radius ﬁ < 671/d < 6, the last condition is also
satisfied. O

44 That is, Cp :={y € R? | ||y — 2||oo < ﬁ}

45From this and the finiteness of A(U), it follows that I is finite.
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From this lemma we deduce

Corollary 1. Let U C R? be an open set of finite Lebesque measure and § > 0
arbitrary. Then there exists an (at most) countable collection of pairwise-disjoint
open balls By, By, -+ C U all of radius < 6 such that U — UZ B; has measure 0.

Proof. Define Uy :=U, mg:=0 and, having defined U; and m;, choose pairwise-
disjoint open balls By, 41, Bm;+2,- .-, Bm,,, € U; of radius < J such that

)\(Bmﬁ-l u---u Bmi+1) > Cd)‘(Ul)

and then define

Uit1:=Ui = (Bm41 U+ U Bm,,,)
Then by construction the balls By, B, ... are pairwise-disjoint and for each
teN
AU = (BiU--UBp,,,)) < (1= ca)'A(U)
It follows from Theorem 2.29(4) that A(U — | |, B;) = 0. O
Lemma 8. Suppose S C R? satisfies A\(S) = 0. Then also HY(S) = 0.

Proof. Let § > 0 be arbitrary. The assumption on S implie@ that for any € > 0
we can find closed hypercubes C1,Cs, ... such that S C Ufil C; and

ix(c

Let ¢; be the sidelength of C;. Then A\(C;) = ¢¢ and diam C; = Vde;. If we
choose ¢ small enough that (5/v/d)? > ¢ then this will force (for each i € N)

) < Z ) <e< (6/Vd)?
from which it follows that diam C; < §. Then

i diam C;)? Z( dd/2z/\ ) <d¥%e < §
i=1 =1

It follows that H?(S) = 0. O

Now let U C R? be any open subset of finite measure. Fix § > 0. By
Corollary [T] we can find pairwise-disjoint open balls By, Bs, ... of diameter < §

such that
A (U -U BZ) =0
i=1

46Tt is a formative exercise to go through the various definitions in the lecture notes to
actually recover this fact.
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Then using Lemma

H{(U) < H} (fj Bz—) + Hg (U G Bi>

=1

i(dlamB )+ He (U - fj Bi>

i=1

oo
=dZ
i=1

<G >+Bd1A<U6B¢>
= B AU)

Taking the limit as § — 0%, we get A(U) > B4H%(U). Combining this with
the opposite inequality proved above, we get A(U) = BaH(U).

The result that A\ = 8,H% now follows from Proposition 3.11 since this result
implies that both = A and pu = B4H? are defined over all Borel sets by

p(S) = jf - pu(U)
U open
n(U)<oo
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