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Problem 1.

Solution. See proof of Theorem 4.4 in Chapter 1 of Stein and Shakarchi: Real analysis. O

Problem 2.

Solution. We find a counter-example for d = 1. We define f, : R = R by f, = 1 4y and f: R - R
as f = 0. Then f,, converges to f everywhere on R. For £ > 0 small, we suppose there exists M C R with

m(M) < e such that f,, — f uniformly on R\ M. Then for any € > 0 there exists N(e) > 0 large enough such

that | fn(z) — f(x)] < e for all n > N(e) and x € R\M, which is of course a contradiction. O
Problem 3.
Solution. See proof of Theorem 7.10 in Chapter 7.2 of Folland. O
Problem 4.

Solution. Since p is concentrated on S, by the definition of the total variation measure it follows that || is
also concentrated on S. Similarly, we get for each x € S that |u|(z) = |u(z)| = |cz|, since the partitions of

{z} are simply {{z},0}. We conclude by countable additivity that:

|| = Z |z |0

reS



Problem 5. Let N € N be an integer. The set of Hermitian matrices of order N is given by
Hermpy (C):={A € Matyxn(C) | A= A"}

where * is the conjugate-transpose operator. The set of unitary matrices of order N is given by
U(N):={U e Matyxn(C) |UU* = In}

where Iy is the identity matrix of order V.

We write TV for the set of N x N diagonal unitary matrices. These are precisely the matrices of the
form diag(e®,...,e") for 0y,...,0n € R. Write also Dy for the set of diagonal matrices in Maty x x (R)
and Sy for the set of permutation matrices in Matyx n(R) C Maty«n(C).

Note the following

e Hermy (C) is an R-vector subspacdﬂ of Mat yx n(C) of dimension N2. The Euclidean norm on Herm y (C)
is given in three equivalent ways: (i) as the square root of the sum of the squares of the absolute values
of all coordinates, (ii) as the function H — +/tr(HH*), (iii) as the square root of the sum of the squares

of the absolute values of the eigenvalues.
e U(N) is a non-Abelian (real) Lie subgroupﬂ of GLx(C) of dimension N2.
e TV is an Abelian (closed) Lie subgroup of ¢(N) of dimension N.

e Dy is an R-vector subspace of Hermy (C) of dimension N. The map diag : RY = Dy is the isomor-

phism we will use.
e Sy is a finite subgroup of GLy(C).

IfU e U(N) and A € Matyxn(R) is a diagonal matrix, the matrix H :=UAU" is Hermitianﬂ This gives a
map
¥ : Dy x U(N) — Hermp (C) (A,U) — UAU*

The content of the unitary diagonalization theorem for Hermitian matricesﬂ is precisely that the map v
is surjective. For a fixed matrix H € Hermy (C), the corresponding matrix A € Dy is A = diag(p1,...,pN)
where the p; are the eigenvalues of H, and the corresponding matrix U € U(N) is given by some orthonormal
basis of eigenvectors for H E| The matrix A is unique up to permuting its diagonal entries. The matrix U

fails to be unique in three different ways:

IWarning: Herm y(C) is not a C-vector space.

2A Lie group is a smooth manifold with a compatible group structure. GLp(R) and GL,(C) are canonical examples of Lie
groups.

31t will be necessary for simplicity to use this form of diagonalization (as opposed to U*AU). This will have no effect on the
end result.

4C.f. Lang’s Algebra, Ch. XV, §6, Corollary 6.5. See also https://math.umd.edu/~hking/Normal.pdf for a self-contained

discussion.
5Specifically, it is the columns of U that give the orthonormal eigenbasis.


https://math.umd.edu/~hking/Normal.pdf

e If we permute the entries of A, we should also permute the entries of U accordingly. Precisely, this
means that if ¢)(A,U) = H then for any permutation matrix P € Sy, we have ¢y (P *AP,UP) = H as

well.

e If vy,..., vy are an orthonormal basis of eigenvectors for H € Hermy (C), then so is e®1vy, ..., eNuy

for any 64, ...,0, € R. It follows that if ¢(A,U) = H then also ¢(A,UT) = H for any T € TV.

o If two eigenvalues of H coincide, i.e. if p; = p; for i < j, then there is a lot more freedom in the choice
of U. This is because in the eigenspace corresponding to p;, we may choose an arbitrary orthonormal

basis, of which there are uncountably many if the dimension of this eigenspace is at least 2.

Nevertheless, the following is a very natural question. Suppose we have an integrable function F' : Hermy (C) —
C which is invariant under conjugation, i.e. F(UHU*) = F(H) for all H € Hermpy(C), U € U(N)E| This

essentially means that the value of F' depends only on the eigenvalues of its argumentm Then it is natural to

wish to rewrite the integral of F' over Hermy (C) as an integral over Dy = RY, which is (almost) the space

of possible eigenvalues. Doing this for arbitrary functions F' : Hermpy(C) — C is (almost) the problem of

computing the pushforward measure of the Lebesgue measure under the map Hermy (C) — RY sending a

matrix to its eigenvalues.

The error in the above explanation is that the “eigenvalues” map Hermy(C) — RY is not well-defined
since the matrix only determines an unordered (multi)set of eigenvalues, not an ordered tuple of eigenvalues.
This problem can be resolved by restricting to the full-measure subset of Hermy (C) consisting of Hermitian
matrices with eigenvalues having pairwise distinct absolute values, and sending a Hermitian matrix H to the
ordered tuple (p1,...,pn) where p1, ..., pN are the eigenvalues of H and |p1]| < |p2| < -+ < |pn|. The image

of this function will be the region
C:={(z1,...,2N) cRY |21 <---<zn}

There are N! such regions—obtained by permuting indices in all possible ways—which cover RY (up to a set
of measure 0). These regions are obtained from one another through reflections in RYN. Tt follows that we
can express any integral over C' as an integral over RY multiplied by a factor % This discussion justifies
the existence of a solution to the following problem.

Problem. Let f : RN — C be an integrable symmetric function. Thatis, f(z1,...,on) = F(@rys 5 Tr(y)
for any permutation 7w : {1,...,N} — {1,...,N}. We obtain a well-defined function F' on Hermpy(C) by
setting F(H) :== f(p1,...,pn) where p1,...,pn are the eigenvalues of H € Hermpy (C) (in some order). Find

SNatural examples include functions that depend only on the trace and determinant of the argument matrix.
7This is true on the dense open subset of Hermy (C) consisting of matrices with distinct eigenvalues. For matrices with

repeated eigenvalues, there are more conjugacy classes. However, since the set of these has measure 0, we can safely ignore this

technicality.



a measurable function § : RY — C—independent of f—such that
/ F(H)d\H) = / FA)O(A) dA(A)
HEHermN((C) AeDyn

~

Here we get the Lebesgue measure on Hermy (C) and Dy wvia identifications Hermy (C) = RN and Dy =
RV B
Solution. Consider the map ¢ : Dy x U(N) — Hermy (C) defined above. As we observed, the value of

remains invariant under the action of multiplication by TV on the right. We therefore get an induced map
¢ : Dy x U(N)/TY — Hermy/(C)

where Z/{(N)/TN is the left-coset space of TV in M(N)H Over the generic point in Hermy (C), the map 1
has a fibre (i.e. pre-image) of size NI

We wish to compute the Jacobian of the map . We start by doing this at a point (A, Iy) where A € Dy
and Iy is the image of the identity matrix in U(V) / TV. To this end, first note that the tangent space at I
of the manifold U (N )H (lying inside Mat yx v (C)) is precisely ¢ Herm N(C)B The tangent space at Iy of the
subgroup T is given by the subspace iDy of i Hermy (C). It follows that the tangent space to L{(N)/ T
at Iy is i Hermy (C)/iDy.

For 1 < j,k < N, let e;; be the matrix in Matyxn(C) with a 1 in the jk-th entry and Os everywhere
else. Define also

e iftj=*k o
o (et ens) iR k= g ook~ k)
Then the set
Bo={rjk [1<j <k < N}U{sju |1 <j<k<N}

forms an orthonormal R-basis of Hermy(C). Note that the matrices {r;; | 1 < j < N} are an orthonormal

basis for Dy. It follows that (the images of) the matrices in

Bi={rj |1<j<k<N}U{sjp |1<j<k<N}

8The identifications will be made such that the natural Euclidean norms on either side are also identified. This condition

alone is enough to ensure that the function § is uniquely determined.
9See Theorem 5 of Chapter 4 and its corollary on p. 138 in Godement’s Introduction to the Theory of Lie Groups for a proof

that this coset-space is a manifold. In fact, Z(N) inherits the structure of a Riemannian manifold from its embedding into
Matyx v (C) =2 R2N? | Since the (translation) action of TN on U(N) is by isometries with respect to this metric, the quotient

Z/{(N)/ TV inherits a canonical Riemannian metric. It is with respect to this metric that we are taking Jacobians.
10aka the Lie algebra of U(N)
' The meaning of this is that the inclusion of U(N) in Mat x5 (C) induces an inclusion of tangent spaces at Iy. The image

of this inclusion is precisely the space of skew-Hermitian matrices. To see this, we differentiate the defining equation of U(N),
namely UU* = I. The derivative of U — UU™* is A — AU* + UA*. Setting U = I and returning to the original equation
gives A+ A* =0, i.e. A* = —A. This is equivalent to (—iA)* = —¢A. That is, A is in ¢ Hermy (C). Justifying these steps is an

exercise in differential topology.



form an orthonormal basis of Hermy (C)/Dy.

By the product rule, the derivative of ¢ at a point (A,U) € Dy x U(N) is given by
DY(A,U) : (n,v) = vAU* + UnU* + UAv*, (n,v) € Dy x iHermy (C)
Setting U = Iy and v = iH we get
DA, In): (n,iH) —n+iHA —iAH,, (n,H) € Dy x Hermy (C)

An orthonormal basis for Dy x ¢ Hermpy (C) is given by the union of {(r;;,0) |1 <j < N} and {(0,i) | b €
By}. Evaluating the derivative on this basis and writing A = diag(p1, ..., pN) we get

(15,0) = 755, (0,755) = 0, (0,ir;1) = (px — pj)Sjk, (0,is5%) = (pj — Pr)Tjk

An orthonormal basis for Dy x iHermy(C)/iDy is given by the union of {(r;;,0) | 1 < j < N} and
{(0,b) | b € By }. The same formulae (restricted to j < k) give the derivative of 1) with respect to this basis.
It follows that the absolute value of the Jacobian determinant of v at the point (A, Iy) is

det D) = H (pj — pr)? where A = diag(p1,...,pnN)

1<j<k<N

In fact the same is true at all points (A,U) € Dy x U(N /TN To see this, fix Uy € U(N /TN and a lift
Uy e U(N /T (i.e. Uy mapsto to Uy under the quotient map U(N) — U(N /TN We can write ¢ as the
composition

H—UgHU;

(A U) — (A, UZU) —2— UZUAU*U, UAU*

The leftmost and rightmost maps are isometries (hence have no effect on the Jacobian). Taking the derivative
and evaluating at U = Uy, we see that the Jacobian of ¢ at Up is equal to the Jacobian at UjUy = I,,.

Let p be the measure on U(N / T? induced on this manifold by its Riemannian metric. It follows from
the change-of-variables formula for manifolds—and the fact that ¢ is (generically) a N!-to-one function—that,
writing A = diag(p1,...,pn) gives

v [ F(H)axH) = [ FOOD) T (o= )? A3 x (A, D)

HeHermy (C) (A, UYEDNX U(N)/ TN

1<j<k<N
= / FA) IT (e = pe)* dA(A) </ 1 du(U)>
AE€DN 1<j<k<N UeU(N)/ TN
where in the second step we have used Tonelli’s theorem. Thus for some positive constant C', we have
/ P =C [ feeow) T G- w0 i)
HecHermp (C) A=diag(p1see,pn) 1<j<k<N

To figure out the value of this constant, we plug in the function

f(xl, e 7LCI\/') = 6_%(T“§+"'+Z?V)



On the matrix side, this is given by
F(H) _ e—tr(HH*)/2

Noting that H +— tr(HH*) is just the usual Euclidean norm on Hermy (C) 2 ]RN2, the left-hand-side of the
above equation is simply a Gaussian integral in RV XY Tts value is given by
/ F(H)d\(H) = / e B Wit TR dyy L dyye = (2m)V/2
HeHerm y (C) RN?

On the other side, the integral is given by

N 2
/RNe_Za:lpa‘/Q H (pj—pk)2dp1...dp]v

1<j<k<N
This is a special case of Mehta’s integral (with parameter v = I)B Its value is given by
N 2 N
/ em 2= T (pj—pk)dpr ... dpn = 2m)N2 ] 5!
RV 1<j<k<N j=1

Thus

and so the solution to the problem is given by

27NN
Sor,p) = @0 =TI T] (0 —p)?

j=1 1<j<k<N

Problem 6.

Solution. As an example we consider Q = {1,2,3,4}, M = 22 and P({n}) = 1/4 for all n € Q. We define
the events A = {1,2}, B = {2,3}, C = {1, 3}, each having probability 1/2. Moreover, they are pairwise
independent, as we can check:

P(ANB) = B({1}) = 1 = P()B(B),

and similarly for the other pairs. However, the sequence A, B, C' is not fully independent since:
P(ANBNC)=P0) =0+#P(APB)PC)

O

12See the paper “Some Macdonald-Mehta Integrals by Brute Force” by Frank G. Garvan for a discussion. See also https:

//en.wikipedia.org/wiki/Selberg_integral.


https://en.wikipedia.org/wiki/Selberg_integral
https://en.wikipedia.org/wiki/Selberg_integral

Problem 7.

Solution. The quadratic equation Xt +Yt+ Z = 0 has real roots iff Y2 > 4X Z. This event has probability:

P(Y (w)? > 4X (w / / / Li2>qusdp(u)dp(t)dp(s)

e o e

Problem 8.

Solution. We denote by f(z) = dc%‘(x) the Radon-Nikodym derivative. Thus, f(—z) = f(z) and:

Px(4) =P(X () = [ fla)ir@)
A
For any set A C R we define:
VAL ={z€[0,00): 2?2 € AN[0,00)}
Then, we can write:
(47 (4) = {X € VAT U {X € —V/Ay)

and note the intersection of the two sets is X! ({0}). We get:

P (4) = Px (/) + Px(~V/A}) ~ Bx((0) = [ @)+ / L @) [ )
The last term on the RHS is zero. Using f(—z) = f(z) and a change of variables, we get that:
) _ " 7)) = —1/2 ¢ (41/2
Pxa(4) =2 [ pmEre J o B0

We conclude that:
dP x>

=

_1/2%(1,1/2) . 1[0’00)

Problem 9.

Solution. See Chapter III of Widder: The Laplace transform. One could read Section 1 as an introduction,
then Section 2 (up to the proof of Theorem 2b), and Section 4 which completes the proof of the Hausdorff

moment problem. O

Problem 10.

Solution. See Theorem 1 in Chapter 14 of Cheney and Light: A Course in Approximation Theory for a

detailed exposition of this result. O



CHAPTER 111
THE MOMENT PROBLEM
1. Statement of the Problem

The moment problem of Hausdorff, sometimes called the lttle momeni
problem is the following. Given a sequence of numbers

(1) {unlo: Mo, 1, p2, oo+ ;

we may ask under what conditions it is possible to determine a function
a(t) of bounded variation in the interval (0, 1) such that

(2) pn = fo t" da(t) (n=01,2 ...)

Any such sequence will be called a moment sequence. It is evident that
not every sequence (1) has the form (2) since (2) implies that

| un | £ Via®)lo

the quantity on the right being the variation of a(f) on the interval (0, 1).
That is, every moment sequence is bounded. It was F. Hausdorff
[1921a] who first obtained necessary and sufficient conditions that a se-
-quence should be a moment sequence.

In section 6.1 of Chapter II we showed that a sequence can have at
most one representation (2) if «(t) is a normalized function of bounded
variation. That is,

«0) = 0, o) = ) ‘2“‘“’) 0<t<1)

Since normalization of the function a(t) does not change the value of
the integral (2) we may assume without loss of ‘generality that «f(f) is
normalized. This we do throughout the present chapter without further
repetition of the fact.

Equations (2) may be regarded as a transformation of the function
a(t) into the sequence {u.}. This transformat n is closely related to
the Laplace transform, is in fact the discrete analogue of the latter.
For, if we replace the integer n by the variable s in (2) and then make
the change of variable t = ¢, we obtain

wo= [ e dl—ale™L

[
3NN ¥
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It is thus clear that much light will be thrown on the Laplace transform
by a solution of the moment problem.
2. Moment Sequence

We introduce several definitions:
DEerFINITION 2a.

S ( )mm k=012 -..).

m=(

DeFINITION 2b.
)\k-m(x) = (:l/)xm(l - x)k—m (k) m = 0; 1) 2} ¢t ).
DEFINITION 2c.

- (Z)(—l)k_"'Ak_"‘#m (k,m=20,1,2,...).

DEeriviTiON 2d. A Bernstein polynomial B{f(x)] for a function f(x),
defined on the interval (0, 1), is

Bi{f(2)] = Zf( )Mm(x)

m=0

The degree of the polynomial is % unless

% () -o

when it is of lower degree or identically zero. For example,

Bif1] = Zk: Aen(z) = 1.

m=Q

DEeFINITION 2¢. The sequence {u.}o satisfies Condition A if a constant

L exists such that
2

2 um| <L k=012 .-.).
m==(
For example, if
1
(1) Bn = f t" de(t) (n=0,1,2 ---)
(H

with «(f) of bounded variation in (0, 1}, then

,,Z;*""" - m_o< ) f (1 — O " da(t) = f da(t)

> [hunl = [ 1da®)] = VI@B,

m=0
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That is, Condition A is necessary that the sequence {u.}& should have
the form (1). In particular the sequences

ol e O<cs1)

satisfy Condition A.
DErinrrioN 2f.  If P,(z) is the polynomial

P (z) = i anx",

m=(
an operator M[P.(x)], called the moment of P,(x) with respect to the se-
quence {u,}, ts defined as

M[P.(z)] = zn: O [«

m==(

For example,

M[xn] = fln, Z M[)»\k.m(x)] = Z-:O xk.m = '#0-

m=0

If u. has the representation (1) then
. .
M[P.(z)] = f " Pa(t) dalt).

Note that the operator is applicable only to polynomials.
We shall now prove that Condition 4 is also sufficient that the se-

quence {u.}o should have the representatlon (1). We need a prelimi-

nary result.
LemMma 2. If n is a posilive integer, then

n—1
I
kl-{?o I-]e; k— 1

kx—'l_z,,

uniformly for 0 = z =< 1.
This is clear since each factor of the product approaches z uniformly

in the interval 0 < z < 1.
We now prove:

THEOREM 2a. If the sequence {u,}o satisfies Condition A, then
un = lim M[B:[z"]] (n=0,1,2 -..).

k—+00

For, by the binomial theorem we have fork > n > 0
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k—n |
" =2 [(1 — z) + 2] = Z:o (k ;; n) 2" (1 — g
_ i mim—1) ... (m —n +1)

me—=n k(k - 1) eo (k —-n + 1) RIc.m(x).

Cam amm—1) i (m =+ 1)
#n—M[“’]_,,;-k(k—l)f-?(k"'"'*'l)‘

— n _k‘m(m—l)...(m_n_,l_l) m\"
| un — M[Bilz"]] = 2_; { k=1 h—nFD —_ (70_> })"f""

E(y : e

_ ky(ky — 1) --- (ky — n + 1) n} |

Z{ k(k—1) .- (k—n+1) Y Mem
' n=1 m)n

| - (@) -

where y = m/k. Let e be an arbitrary positive number. By Lemma 2

we see that we can determine %o such that for k > ko

ky(y = 1) - by —n+1)
kk—1---(k—n+1 Y

(y:zl m:n’n;{—l;;..k-)’

Aiim.

m=n

<'e

B’
and such that _ ,

:{\::‘: (%),. e | < (g)nL <e > ko).
Hence | i |

| n — M[Blz™ 1| < eL + ¢ (k > ko).
This gives us the desired result if _51, =12 .... Ifn=20 ‘

po = MIBi1]]. -

By use of this result we can prove easily thé main result of this section
THEOREM 2b. A necessary and sufficient condition that {u.}e should
be a moment sequence 1s that it should satisfy Condition A.

We have already seen that the condition is necessary. To prove it
sufficient define a step-function a;(f) which is normalized and has jumps
Mi,m at points m/k,
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O (%2+) - O (15_> ='>\k,m ('m = 17 2: MR k — 1)1
coar(04) =Xpos () = 0,
k=1 .
a;.(l—) = Zg >\k,m1'

) = e =
Then

MBI = [ ¢ des(),
and by Theorem 2a, _ :
| in = lim [ 1 de (i)

k—w JO

- The total variation of a,(f) is clearly

Zk: l Arm I’

ma=={)

which has an upper bound L, independent of k. Hence by Helly’s
theorem, i.e., Theorem 16.3 of Chapter I, there exists a subsequence
{ax;(t)}7=0 of the sequence {ai(f)}7 which approaches a limit o*(f), of
bounded variation in 0 < ¢t £ 1.- But

1

po = lim [ ¢ deou,0)

o JO

S | i
=limn [ o (D) = 01t (=1,2,-:)
Al 0 .
1

po = lim oz (1) = a*(1) = f da*(2).

j—+0 - d

Since . ‘
laL,(l) - ak,'('l) ! < 2L7

we may Qmplc')y the Lebesgue limit theorem and obtain*
1
= [ 07 ) — Ol (=12 )
o

1
=ftwfw (n=0,1,2 -..),
0 .

which is what we were to prove.

* One could avoid the integration by parte if Theorem 16.4 of Chapter I were
used. The Lebesgue limit theorem is perhaps more familiar.
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If o*(f) is not normalized, we normalize it and denote the resulting
function by a(t). Then by the uniqueness theorem, i.e., Theorem 6.1.
of Chapter II, a*(!) = a(f) in' the set E of points of continuity of a(t)
Hence at these points .

lim e, (t) = a(t)
1=
Since every subsequence of {ax(t)}7 has in it a subsequence Whlch
approaches a(f)-at points of E we have
2 lim o (f) = «(t) (te E)
: k=0
It can be shown in fact that (2) holds throughout the interval (0, 1)

We may use Theorem 2b to prove an important result of F. Riesz
[1909] concerning 11near functionals. '

DerFiniTION 29. To each function f(x) continuous on 0 < z < 1 let
there correspond a number L{f(zx)]. This correspondence is sazd to define
a linear functional if '

@ Lieifi(2) + cfe(x)] = aLlfi(z)] + c.L{f2(x)]

Jor every pair of constants ci, ¢z and every pair of continuous functwns

fi(@), folz);
() | LIf(x)] | = M || (=) ||,

where M is some positive constant and || f(z) || is the maximum value of
[flx)|on0 <z = 1.

~ For example, if ,

Lif(x)] = 13),

r if ’

Lf(@)] = f f(z).dz,

we see easily that L[f (x)] is a linear functional. In fact by reference %o
Chapter I we see that if '

@ L@ = fof(x)'da(:v)

with «(z) of bounded variation on 0 < z < 1, then conditions (a) and (b)
are satisfied with M equal to the total variation of a(z) on0 = z = 1.
Riesz’s result is that (3) defines the most general linear functicnal defined
on the set of continuous functions. We give a proof due to T. H..
Hildebrandt and I. J. Schoenberg {1933].

THEOREM 2¢. Every linear function 'l L{f(x)] deﬁned on the set of func-
tions continuwous in 0 < z < 1 has the form (3) with a(x) of bounded -
variationon 0 S z < 1.
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To prove this set
Liz"] = p, n=0,12-...)

We show first that the sequence {u,}q satisfies Condition A. We mus
determine a constant N such that

k k A '
k e .
4) Z%Ikk,m|=25(m)m" pm| <N k=0,1,2"..)
But by choosing em = =1 suitably we have

> henl = 2 en(B) (-0t

) [mz_:,) n ( ‘ ) z™(1 — -,x)"f“"‘] :

Here we have used property (a) of the functional L and observed that
Liz™(1 — 257 = (1) A", . |

Since
£e(S)0-ar]2| £ ()0 - o]
we see by use of (b) that
Z |)\k m I = M

m=0.

so that. (4) holds Wlth M "N. Hence by Theorem 2b

. - 1 -
(5) - . L[x”] = f " da(x) . (n = .0, 1,2, .. 2)
’ o HS

for some function a(z) of bounded variation on 0. < z < 1.

Now let f(z) be any function continuous on 0 < z < 1 and let e be an
‘arbitrary positive number. By Weierstrass’s theorem we can deter-
mine a polynomial P(z) such that

If(x) ~ P() | <e ' 0 <z =1).
By (5), (a) and (b) it is clear that
Lif@)! = Lif@) - P@)] + LIPE) = L@ - P@]+ [ Pla) data)

[P(x) §(@)] da<x>l

= MHf(:c) - P(z) II +

OB ~ [ o) da)

<Me-—|—ef [da(:c)l

Hence (3) follows, and our theorem is proved.
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It can also be shown that Theorem 2b follows from Theorem 2c.
Hence the problem of determmmg the general linear functional on'the
set of continuous functions is equivalent to that of determining the set
of all moment sequences.

3. An Inversion Opérator

Let us now introduce a new operator on the sequence {u.}; by the
following definition.
DerINITION 3. An operator Ly,{u.} is defined by the relation

_L’Cv'{#} = L, pa} = (& + 1)>\k.[k_t] k=1,2---,0 é’ t = 1).

The notation [kf] means. the largest integer contained in ki. By
means of this operator we can prove: '
TaEOREM 3. If {ua}o satisfies Condition A then

gl - |
Mn — Mo =I}im A t"L&‘,L{”; dt v (n = 0’ 1, 2, .o .).
For, by the law of the mean

o . (k+1) + 6,.\"
-[th't{#}dt Z)\km( % ),

m==0

where
0<6,<1 (m=0,1,---,k — 1)

But we saw in section 2 that

#n=hm2( ))\k,m n=0,1,...)

k=0 m=0

k—1 n
= ’}]m [)\kk + z ( ) )\k,m].

To evaluate the first term we have

1
"Nk = pk = j.. & da(t)

pe = {a(l) —a(1-)} + Icfx tk_l{a(l-") —al®)}dt (k=1,2, ---)

hmlpk——a(l)-l-a(l )| llm Ia(l-)-a(t)]=0

o = a(l) — a(1-).

Thus pe must exist under Conditions 4, and it remains only to show that
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k—1 n
. m + 6.\ _ (m\"\ _
i () - () e 0.

By the law of the mean we have
<m 4 0m>" _ (r_:_m)" _g nfm §- 6, \" "
k ' k) T"k\ k& _

0<6p<bn,<1 -  (m=0,1,-..,k — 1).

where

Hence
""1 m <+ O, ) (m)"l = nL
e <? | 2=
P> ( B) fhem| S g Neml <
so that the theorem is established. '

4. Completely Monotonic Sequences

We now introduce the notion of a completely monotonic sequence.

DEeFINITION 4. - The sequence {un}s is completely monotonic if its ele-
ments are non-negative and ils successive differences are alternately non-
posttive and non-negative

(A 20 (,E=0,1,2---)
An equivalent form for the definition is o
Mem 2= 0 (m & =0,1,2-:.).
For example, the sequences | | '
! 1. @ . ] .
o {EE e e<esd

. are completely monotonic.. Note that this class is included inlthe class
of sequences which satisfy Condition A. For

z:o“‘k'nl— E"km-—#o"'L

We can now prove:
"THEOREM 4a. A necessary and suffictent condition that the - sequence
{ p,,}o should have the expression

(2) ftda(t) =01, 2, -+,

where a(t) is non-decreasing and bounded for O St=1,1s that it should be
completely monotonic. '
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For the necessity of the condition we have
1
(=1)* A = fo (1 — 1 dal(t) 2 0 (t, k=0,1,2 ---).

For the sufficiency we see at once that the given sequence must have
the form (2) with «(t) of bounded variation on (0, 1) by Theorem 2b.
But we showed in section 2 that if «(f) is normalized
lim ar(t) = alt)

at all points of continuity of a(f). But ai(t) is non-decreasing since its
jumps, Aw.m, are non-negative. It follows that «(f) is non-decreasing
if properly defined at its points of discontinuity. This completes the
proof of the theorem..

TuEOREM 4b. A necessary and .mﬁczent condztwn that the sequence
{un) should satisfy Condition A is that it should be the difference of two
completely monotonic sequences.

This is obvious since «(t) is of bounded variation if and only if it is
the difference of two bcunded non-decreasing functions.

It is easily seen directly that the sequences (1) have the form (2).
In the first case a(t) is the non-decreasing function ¢; in the second it is a
step-function with jump unity at ¢ = c.

5. Function of L”

In this section we discuss sequences §2 (1) where a(t) is the integral
of a function of class L” (p > 1). That is,

1
- f i o(0) dt (n=0,1,2 -
0

f | o(t) |Pdt < o.
[}

We introduce a cundition which will guarantee that a sequence will have
this form. .

DEFINITION 5. The sequence {ua}e satisfies Condition B for a given
number p > 1 zf there exists a constant L such that

<k+1>“2 Mem!? <L (k=0,1,2 ).

: sequence
For example, the seq

1 * .
{—_—n+l—9}o w<o<D
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Completely Monotone Functions

Some of the theory of completely monotone functions is necessary for our later work on
radial basis functions in Chapter 15. We begin with a definition.

Definition. A function f is said to be completely monotone on [0, o) if
1. fECI0, )
2. fEC*®(0, o)
3. (— 1Y ®@)=0fort>0andk =0, 1,2,...

Such functions exist in great abundance. Here are some examples that can be quickly
verified directly from the definition:

1. f()=a (a=0)
2. f()=@t+a)’ (@>0=b)
3.f=e“ (@a=0)

A famous theorem of Bernstein and Widder gives a complete characterization of this
function class. This theorem states, in effect, that a function is completely monotone if
and only if it is the Laplace transform of a nonnegative bounded Borel measure.

The theorem has an equivalent formulation in terms of the Riemann-Stieltjes inte-
gral. If y is a nondecreasing function, we define

b n
I f(@®) dy(s) = lim Z FENya) —yt,_p]
“ i=1
The limit here is similar to the one used in the Riemann integral. Thus the limit is equal
to a number L if for each ¢ > 0 there corresponds a & > 0 such that for any partition
a=ty<t, <--<t,= b satisfying max,|t; — t,_,| < J and for any points ¢, satisfy-
ingt; ;=& =t wehave

<e

L= f&) =@yl
i=1
94
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Of course, as in the Riemann integral, the defining limit may not exist in some cases. (It
does exist if f is continuous.) Notice that when y(x) = x, we recover the familiar Rie-
mann integral. Introductions to the Riemann-Stieltjes integral can be found in Widder’s
book [W4] and in Hewitt-Stromberg [HewS].

THEOREM 1. (Bernstein—Widder) A function f : [0, c0)— [0, ) is
completely monotone if and only if there is a nondecreasing bounded function
y suchthatf(t) = [ e dy(s).

Proof. The easier half of the proof is to show that if y is as stated then the integral defines
a completely monotone function. The derivatives of f are obtained by differentiating
under the integral. (The validity of this procedure is addressed in Theorem 5.) We obtain

)
P = L (=sffe™" dy(s)
The sign of f ® (1) is clearly (— 1)¥. To test the continuity of f at 0, note first that

fO)= J;) dy(s) =y(c0) — 7(0)

On the other hand, by the Monotone Convergence Theorem,

o

lim f(t) = 11m e S dy(s)= J lim e dy(s) = J dy(s) = y(0) — y(0)
110 0 0 10 0

For the other half of the proof, suppose that f is completely monotone on [0, o). As
explained later, the sequence f(n/m), (n =0, 1, 2, ...) is completely monotone for any
m € N. By the Hausdorff Moment Theorem (Theorem 2 below), there is a nondecreas-
ing bounded function §,, such that

f(ﬁ) = J: s"dB(s)  (n=0,1,2,...)

m

Also, from Theorem 2 we can assume that §,,(0) =0 and that for every s, §,,(s) =
l[ﬂ (s+0)+B,(s— 0)]. Replacing n by nm in an equation above, we have

1
ror=[ s gy o= 5 dpy s
By the uniqueness part of Theorem 2, f,,(s 1/my = B (s). Putting y(s) = —B,(¢"°) and

s=¢e 7, we have

m

(E)- [ amo= [

- j ? oot g, (¢ = f: e7m/™ dy(s)

co

By continuity, this leads to

f= J:o e dy(s) ™
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The measure-theoretic version of the Bernstein-Widder Theorem states that f is
completely monotone on [0, o) if and only if it is the Laplace transform of a nonnega-
tive, finite-valued, regular, Borel measure on [0, o0). The term regular when applied to
a nonnegative measure v means that

v(A) = sup v(K) = inf v (O)

where K ranges over the compact sets contained in A, and O ranges over the open sets
containing A.
Some of the results needed in the preceding proof are given here. For a sequence
u=Lug, Hy» iy, ... ], the forward difference operation is defined by
Ap=uy = pos iy = 1y, -1

This defines A as a linear operator, and its powers are defined in the usual way. If
(-1)fA*u=0fork =0, 1,2, then s said to be a completely monotone sequence.
Examples are y, = (n + 1) !and U, = A", if 0 < A = 1. The famous Moment Theorem
of Hausdorff is as follows:

THEOREM 2. (Hausdorff) In order that a sequence [y, u,, ...1be com-
pletely monotone, it is necessary and sufficient that it be the moment
sequence of a nondecreasing bounded function f§ on [0, 1]; that is,

1
ﬂ,,=J0 t" dp(t)

If we insist that $(0) =0 and f(t) = %[ﬂ(t +0) + B(t — 0)] for every t,
then [ is uniquely determined by the sequence L.

The forward difference operator is also defined for functions:
AN =flx+1) = f(x)
Its powers obey the equation
k(& . k (k .
A HE =D ( .)(—l)k"f(x +H=2 ( _)(—fo(x +k=J)
j=0 \J j=0 \J

See [AS], page 882 or [Stef], page 10. Since these operations are special cases of divided
differences, we can write (using standard notation for divided differences)

AN = flx, x +1]
(A%f)(x) =flx, x + 1, x + 2], etc.

If f® exists and is continuous, then for a suitable ¢ between x and x + k,
W) = flr x+ 1,y x4 K =250

See, for example, [KinC], page 357. These remarks allow us to conclude that if f is com-
pletely monotone, then (for each m) the sequence f (n/m) is completely monotone.
Indeed, we can let F(x) = f(x/m) and u, = f(n/m) so that
k= (A =Llpwey =L
An = A F) ) = F O Q) = 1 FOe/m)
The sign of this last term is (—1)¥, by the complete monotonicity of f.
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Examples. By taking various functions y, we can generate interesting completely
monotone functions:

LIfy@s)=1—¢e Sthenf()=@+ 1)L
2. fy(s)=sfor0O=s=<1landy(s)=1fors>1,thenf(t)=(1—e ")/t

One can obtain further examples by using the following theorems.
THEOREM 3. The family of all completely monotone functions on [0, o)
is algebraically closed under the formation of linear combinations with pos-
itive coefficients.

THEOREM 4. If f and g are completely monotone on [0, o), thensois fg.

Proof. By Leibniz’s rule,

k(K . .
Dr(fg) = ( ) D/ f)(D*g)
j=0\J
The sign of (D7 f)(D*g)is (= 1)/ (= 1) 7 = (= 1)*. .

Now we address the question of whether “differentiation under the integral” is a
valid procedure. Thus, we seek suitable hypotheses to make the following equation correct:

0
1 < L £, 1) dux) = JX L, 1 duto

The setting is as follows. A measure space (X, A, y) is prescribed. Thus X is a set, A is
a g-algebra of subsets of X, and u : A— [0, oo] is a measure. An open interval (@, b) is
also prescribed. The function f is defined on X X (g, b) and takes values in R. Select a
point ¢, in (a, b) where (3f/d)(x, ) exists for all x. What further assumptions are
needed in order that Equation (1) shall be true for ¢ = ¢? Let us assume that

(03} For each ¢ in (g, b), the function x > f(x, t) belongs to ! X, A, p.
3) There exists a function g € L' (X, A, ) such that

fox, t) = fx, tp)

po— =g xEX,a<t<b, t#1ty
0

THEOREM 5. Under the hypotheses given above, Equation (1) is true for
the point t = t,.

Proof. By Hypothesis (2) we are allowed to define
o) = L fx, 1) du(x)

Now the derivative ¢'(t,) exists if and only if for each sequence t, converging to ¢, we have

00 =000y, [ St =St
t,—t n—oo JX

Py du(x)

9'(ty) = lim
n—oo n 0
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By Hypothesis (3), the integrands in the preceding equation are bounded in magnitude
by the single L!-function g. The Lebesgue Dominated Convergence Theorem allows an
interchange of limit and integral. Hence

VN . f ) —fx ) _J of
oty = JX nl_l_)t& Py du(x) = ot (x, ty) du(x) |
This proof is given by Bartle [Bart1]. Related theorems can be found in advanced
calculus books, such as [W4], page 352, and in McShane’s book [McS]. A useful corol-
lary of Theorem 5 is as follows.

THEOREM 6. Let (X, A, u) be a measure space such that u(X) < co. Let
f : X X (a, b)— R. Assume that for each n, (3"f/9t")(x, t) exists, is mea-
surable, and is bounded on X X (a, b). Then

n

) j—tnj G0 dﬂ(x)=J ‘;—’;(x, Hdulx)  (r=12..)
b'e x ot

Proof. Since u(X) < oo, any bounded measurable function on X is integrable. To see
that Hypothesis (3) of the preceding theorem is true, use the mean value theorem:
, 1) — , 1

1=ty at

where M is a bound for |df/dt| on X X (a, b). By the preceding theorem, Equation (4)
is valid for n = 1. The same argument can be repeated to give an inductive proof for all n.
]

Further references on the Bernstein-Widder Theorem are [Be]; [Cho], vol. 2, page
239; [Phel], page 11; [Phe2], page 155; [SG]; [W1]; [W3], page 157; and [W5], page
162. For the moment problem, see [W5], [ST], [Lan], and [Ak1]. For the Riemann-
Stieltjes integral, consult [W4].

Problems

1. Prove that for any nondecreasing bounded function p, the function f(¢) =
f ;’O (t + s)”1 dy (s) is completely monotone on [0, 00). Generalize this result.

2. Prove that if 0 < a < b then the function

_ t+b
f6)=log ——

is completely monotone on [0, co).

3. Determine whether the function f(f) = 7/2 — tan~! ¢ is completely monotone on
[0, o0).



10.

11.

12,

13.

14.
15.

16.
17.
18.

19.
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. Prove that if g is a nonnegative member of L'[0, o0), then its Laplace transform is

completely monotone on [0, o©).

. Prove that a polynomial of degree one or more cannot be completely monotone on

[0, o0).

. A function f is defined to be completely monotone on (0, ) if f € C* (0, o) and

(—1)" f (k)(t) =0 for all k and ¢. Verify that the function f(z) = t~Lis completely
monotone on (0, co) but not on [0, o).

. (Continuation) Prove that if y is nondecreasing on [0, co) and if the integral

) (°)° e~ dy(s) exists for all ¢, then the resulting function of ¢ is completely monot-
one on (0, co).

. What must be assumed of the function g if the function ¢+ g(—t) is to be com-

pletely monotone on [0, c0)?

. What must be assumed of the function g if f o g is to be completely monotone on

[0, co) whenever f is completely monotone on [0, c0)?

If f is completely monotone on [0, o), does it follow that the function ¢ — £ (7 ) is
completely monotone on [0, 00)?

Let f be completely monotone on [0, c0). Prove that lim,_, tkf(k)(t) =0 for

k=1,72,3,....(Stronger results are known. For example, the function ¢ — tkf ® ()
is integrable. See a paper by R. E. Williamson in Duke J. Math. 23 (1956), 189-207,
or the book [SG]. What is the value of the limit when k = 0?

By considering the definition of the Riemann-Stieltjes integral, show that if y has a
jump discontinuity of magnitude c at ¢, then the integral ) Z f(@®) dy(t) will contain
aterm cf (¢y).

(Continuation) Show that at a point of discontinuity of y, say ¢, the integral
Jf(®dy(t) is not changed by redefining y at t, by the equation y(ty) =
rto ) + 9t

Prove the formula for A*f given in the text.

A function f is said to be absolutely monotone on an interval (a, b) if f® (1) = 0 for

k=0,1,2,... and for all  in (a, b). Prove that a function g is completely monotone
on (0, o) if and only if the function t = g(—1) is absolutely monotone on (— oo, 0).

Prove Theorem 3.
Carry out the inductive proof that is needed to establish Theorem 6.

Prove that the family CM of all completely monotone functions on [0, co) is closed
under translation by a positive number. Thus if f €ECM and ¢>0, then
t = f(t + ¢)is alsoin CM.

Prove that a function f is completely monotone on (0, o) if and only if there exists
a Borel measure 4 on (0, 1] such that f(¢) = f(lj x" du(x). (The change of variable
x = e 7V is useful.)



100 Chapter 14

References

[AS] Abramowitz, M., and 1. A. Stegun. Handbook of Mathematical Functions. National
Bureau of Standards, Washington, 1964. Reprint, Dover, New York.

[Ak1]  Akhiezer, N. I. The Classical Moment Problem. New York, 1955.

[Bartl] Bartle, R. G. Elements of Integration Theory. Wiley, New York, 1966. Reprinted,
enlarged, and retitled: Elements of Integration and Lebesgue Measure, 1995.

[Be] Bernstein, S. N. “Sur les fonctions absolument monotones.” Acta Math. 52 (1929),
1-66.

[Cho] Choquet, G. Lectures on Analysis (3 vols). W. A. Benjamin, New York, 1969.

[HewS] Hewitt, E., and K. Stromberg. Real and Abstract Analysis. Springer-Verlag, New York,
1965.

[KinC] Kincaid, D., and W. Cheney. Numerical Analysis. 2nd ed., Brooks/Cole, Pacific Grove,
CA, 1996.

[Lan] Landau, H. J. (ed.). Moments in Mathematics. Amer. Math. Soc., Providence, RI, 1987.

[McS]  McShane, E. J. Integration. Princeton University Press, Princeton, NJ, 1944.

[Phel]  Phelps, R. R., “Lectures on Choquet’s Theorem.” Van Nostrand, New York, 1966. Rev.
ed., Ergebnisse der Math. Springer-Verlag, Berlin, 1984.

[Phe2] Phelps, R. R. “Integral representation for elements of convex sets.” In Studies in Func-
tional Analysis, ed. by R. G. Bartle. Math. Assoc. of America, 1980, 115-157.

[SG] Shilov, G. E., and B. L. Gurevich. Integral, Measure and Derivative: A Unified
Approach. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[ST] Shohat, J. A., and J. D. Tamarkin. The Problem of Moments. Amer. Math. Soc., Provi-
dence, RI, 1943.

[Stef] Steffensen, J. F. Interpolation. Chelsea, New York, 1950.

[W1]  Widder, D. V. “Necessary and sufficient conditions for the representation of a function
as a Laplace integral.” Trans. Amer. Math. Soc. 33 (1932), 851-892.

[W3] Widder, D. V. An Introduction to Transform Theory. Pure and Applied Mathematics
series, vol. 42. ed. by P. A. Smith and S. Eilenberg. Academic Press, New York, 1971.

[W4] Widder, D. V. Advanced Calculus. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1961.
Reprint, Dover, New York.

[W5] Widder, D. V. The Laplace Transform. Princeton University Press, Princeton, NJ, 1946.



