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Problem 1.

Solution. See proof of Theorem 4.4 in Chapter 1 of Stein and Shakarchi: Real analysis.

Problem 2.

Solution. We find a counter-example for d = 1. We define fn : R → R by fn = 1[n,n+1] and f : R → R

as f = 0. Then fn converges to f everywhere on R. For ε > 0 small, we suppose there exists M ⊂ R with

m(M) < ε such that fn → f uniformly on R\M. Then for any ϵ > 0 there exists N(ϵ) > 0 large enough such

that |fn(x)− f(x)| < ϵ for all n > N(ϵ) and x ∈ R\M, which is of course a contradiction.

Problem 3.

Solution. See proof of Theorem 7.10 in Chapter 7.2 of Folland.

Problem 4.

Solution. Since µ is concentrated on S, by the definition of the total variation measure it follows that |µ| is
also concentrated on S. Similarly, we get for each x ∈ S that |µ|(x) = |µ(x)| = |cx|, since the partitions of

{x} are simply
{
{x}, ∅

}
. We conclude by countable additivity that:

|µ| =
∑
x∈S

|cx|δx
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Problem 5. Let N ∈ N be an integer. The set of Hermitian matrices of order N is given by

HermN (C) :={A ∈ MatN×N (C) | A = A∗}

where ∗ is the conjugate-transpose operator. The set of unitary matrices of order N is given by

U(N) :={U ∈ MatN×N (C) | UU∗ = IN}

where IN is the identity matrix of order N .

We write TN for the set of N × N diagonal unitary matrices. These are precisely the matrices of the

form diag(eiθ1 , . . . , eiθN ) for θ1, . . . , θN ∈ R. Write also DN for the set of diagonal matrices in MatN×N (R)

and SN for the set of permutation matrices in MatN×N (R) ⊂ MatN×N (C).

Note the following

• HermN (C) is an R-vector subspace1 of MatN×N (C) of dimensionN2. The Euclidean norm on HermN (C)

is given in three equivalent ways: (i) as the square root of the sum of the squares of the absolute values

of all coordinates, (ii) as the function H 7→
√
tr(HH∗), (iii) as the square root of the sum of the squares

of the absolute values of the eigenvalues.

• U(N) is a non-Abelian (real) Lie subgroup2 of GLN (C) of dimension N2.

• TN is an Abelian (closed) Lie subgroup of U(N) of dimension N .

• DN is an R-vector subspace of HermN (C) of dimension N . The map diag : RN ∼−→ DN is the isomor-

phism we will use.

• SN is a finite subgroup of GLN (C).

If U ∈ U(N) and Λ ∈ MatN×N (R) is a diagonal matrix, the matrix H :=UΛU∗ is Hermitian.3 This gives a

map

ψ : DN × U(N) → HermN (C) (Λ, U) 7→ UΛU∗

The content of the unitary diagonalization theorem for Hermitian matrices4 is precisely that the map ψ

is surjective. For a fixed matrix H ∈ HermN (C), the corresponding matrix Λ ∈ DN is Λ = diag(ρ1, . . . , ρN )

where the ρi are the eigenvalues of H, and the corresponding matrix U ∈ U(N) is given by some orthonormal

basis of eigenvectors for H.5 The matrix Λ is unique up to permuting its diagonal entries. The matrix U

fails to be unique in three different ways:

1Warning: HermN (C) is not a C-vector space.
2A Lie group is a smooth manifold with a compatible group structure. GLn(R) and GLn(C) are canonical examples of Lie

groups.
3It will be necessary for simplicity to use this form of diagonalization (as opposed to U∗ΛU). This will have no effect on the

end result.
4C.f. Lang’s Algebra, Ch. XV, §6, Corollary 6.5. See also https://math.umd.edu/~hking/Normal.pdf for a self-contained

discussion.
5Specifically, it is the columns of U that give the orthonormal eigenbasis.
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• If we permute the entries of Λ, we should also permute the entries of U accordingly. Precisely, this

means that if ψ(Λ, U) = H then for any permutation matrix P ∈ SN , we have ψ(P−1ΛP,UP ) = H as

well.

• If v1, . . . , vN are an orthonormal basis of eigenvectors for H ∈ HermN (C), then so is eiθ1v1, . . . , e
iθN vN

for any θ1, . . . , θn ∈ R. It follows that if ϕ(Λ, U) = H then also ϕ(Λ, UT ) = H for any T ∈ TN .

• If two eigenvalues of H coincide, i.e. if ρi = ρj for i < j, then there is a lot more freedom in the choice

of U . This is because in the eigenspace corresponding to ρi, we may choose an arbitrary orthonormal

basis, of which there are uncountably many if the dimension of this eigenspace is at least 2.

Nevertheless, the following is a very natural question. Suppose we have an integrable function F : HermN (C) →
C which is invariant under conjugation, i.e. F (UHU∗) = F (H) for all H ∈ HermN (C), U ∈ U(N).6 This

essentially means that the value of F depends only on the eigenvalues of its argument.7 Then it is natural to

wish to rewrite the integral of F over HermN (C) as an integral over DN
∼= RN , which is (almost) the space

of possible eigenvalues. Doing this for arbitrary functions F : HermN (C) → C is (almost) the problem of

computing the pushforward measure of the Lebesgue measure under the map HermN (C) → RN sending a

matrix to its eigenvalues.

The error in the above explanation is that the “eigenvalues” map HermN (C) → RN is not well-defined

since the matrix only determines an unordered (multi)set of eigenvalues, not an ordered tuple of eigenvalues.

This problem can be resolved by restricting to the full-measure subset of HermN (C) consisting of Hermitian

matrices with eigenvalues having pairwise distinct absolute values, and sending a Hermitian matrix H to the

ordered tuple (ρ1, . . . , ρN ) where ρ1, . . . , ρN are the eigenvalues of H and |ρ1| < |ρ2| < · · · < |ρN |. The image

of this function will be the region

C :={(x1, . . . , xN ) ∈ RN | x1 < · · · < xN}

There are N ! such regions—obtained by permuting indices in all possible ways—which cover RN (up to a set

of measure 0). These regions are obtained from one another through reflections in RN . It follows that we

can express any integral over C as an integral over RN multiplied by a factor 1
N ! . This discussion justifies

the existence of a solution to the following problem.

Problem. Let f : RN → C be an integrable symmetric function. That is, f(x1, . . . , xN ) = f(xπ(1), . . . , xπ(N))

for any permutation π : {1, . . . , N} → {1, . . . , N}. We obtain a well-defined function F on HermN (C) by

setting F (H) := f(ρ1, . . . , ρN ) where ρ1, . . . , ρN are the eigenvalues of H ∈ HermN (C) (in some order). Find

6Natural examples include functions that depend only on the trace and determinant of the argument matrix.
7This is true on the dense open subset of HermN (C) consisting of matrices with distinct eigenvalues. For matrices with

repeated eigenvalues, there are more conjugacy classes. However, since the set of these has measure 0, we can safely ignore this

technicality.
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a measurable function δ : RN → C—independent of f—such that∫
H∈HermN (C)

F (H) dλ(H) =

∫
Λ∈DN

f(Λ)δ(Λ) dλ(Λ)

Here we get the Lebesgue measure on HermN (C) and DN via identifications HermN (C) ∼= RN
2

and DN
∼=

RN .8

Solution. Consider the map ψ : DN × U(N) → HermN (C) defined above. As we observed, the value of ψ

remains invariant under the action of multiplication by TN on the right. We therefore get an induced map

ψ : DN × U(N)
/
TN → HermN (C)

where U(N)
/
TN is the left-coset space of TN in U(N).9 Over the generic point in HermN (C), the map ψ

has a fibre (i.e. pre-image) of size N !.

We wish to compute the Jacobian of the map ψ. We start by doing this at a point (Λ, IN ) where Λ ∈ DN

and IN is the image of the identity matrix in U(N)
/
TN . To this end, first note that the tangent space at IN

of the manifold U(N)10 (lying inside MatN×N (C)) is precisely iHermN (C).11 The tangent space at IN of the

subgroup TN is given by the subspace iDN of iHermN (C). It follows that the tangent space to U(N)
/
TN

at IN is iHermN (C)/iDN .

For 1 ≤ j, k ≤ N , let ejk be the matrix in MatN×N (C) with a 1 in the jk-th entry and 0s everywhere

else. Define also

rjk :=

ejj if j = k

1√
2
(ejk + ekj) if j ̸= k

sjk :=
i√
2
(ejk − ekj)

Then the set

B0 :={rjk | 1 ≤ j ≤ k ≤ N} ⊔ {sjk | 1 ≤ j < k ≤ N}

forms an orthonormal R-basis of HermN (C). Note that the matrices {rjj | 1 ≤ j ≤ N} are an orthonormal

basis for DN . It follows that (the images of) the matrices in

B1 :={rjk | 1 ≤ j < k ≤ N} ⊔ {sjk | 1 ≤ j < k ≤ N}
8The identifications will be made such that the natural Euclidean norms on either side are also identified. This condition

alone is enough to ensure that the function δ is uniquely determined.
9See Theorem 5 of Chapter 4 and its corollary on p. 138 in Godement’s Introduction to the Theory of Lie Groups for a proof

that this coset-space is a manifold. In fact, U(N) inherits the structure of a Riemannian manifold from its embedding into

MatN×N (C) ∼= R2N2
. Since the (translation) action of TN on U(N) is by isometries with respect to this metric, the quotient

U(N)
/
TN inherits a canonical Riemannian metric. It is with respect to this metric that we are taking Jacobians.

10aka the Lie algebra of U(N)
11The meaning of this is that the inclusion of U(N) in MatN×N (C) induces an inclusion of tangent spaces at IN . The image

of this inclusion is precisely the space of skew-Hermitian matrices. To see this, we differentiate the defining equation of U(N),

namely UU∗ = IN . The derivative of U 7→ UU∗ is A 7→ AU∗ + UA∗. Setting U = IN and returning to the original equation

gives A+A∗ = 0, i.e. A∗ = −A. This is equivalent to (−iA)∗ = −iA. That is, A is in iHermN (C). Justifying these steps is an

exercise in differential topology.
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form an orthonormal basis of HermN (C)/DN .

By the product rule, the derivative of ψ at a point (Λ, U) ∈ DN × U(N) is given by

Dψ(Λ, U) : (η, υ) 7→ υΛU∗ + UηU∗ + UΛυ∗, (η, υ) ∈ DN × iHermN (C)

Setting U = IN and υ = iH we get

Dψ(Λ, IN ) : (η, iH) 7→ η + iHΛ− iΛH, , (η,H) ∈ DN ×HermN (C)

An orthonormal basis for DN × iHermN (C) is given by the union of {(rjj , 0) | 1 ≤ j ≤ N} and {(0, ib) | b ∈
B0}. Evaluating the derivative on this basis and writing Λ = diag(ρ1, . . . , ρN ) we get

(rjj , 0) 7→ rjj , (0, rjj) 7→ 0, (0, irjk) 7→ (ρk − ρj)sjk, (0, isjk) 7→ (ρj − ρk)rjk

An orthonormal basis for DN × iHermN (C)/iDN is given by the union of {(rjj , 0) | 1 ≤ j ≤ N} and

{(0, ib) | b ∈ B1}. The same formulae (restricted to j < k) give the derivative of ψ with respect to this basis.

It follows that the absolute value of the Jacobian determinant of ψ at the point (Λ, IN ) is

detDψ =
∏

1≤j<k≤N

(ρj − ρk)
2 where Λ = diag(ρ1, . . . , ρN )

In fact the same is true at all points (Λ, U) ∈ DN × U(N)
/
TN . To see this, fix U0 ∈ U(N)

/
TN and a lift

U0 ∈ U(N)
/
TN (i.e. U0 mapsto to U0 under the quotient map U(N) ↠ U(N)

/
TN ). We can write ψ as the

composition

(Λ, U) 7−→ (Λ, U∗
0U)

ψ7−−−−→ U∗
0UΛU∗U0

H 7→U0HU
∗
07−−−−−−−−−−−→ UΛU∗

The leftmost and rightmost maps are isometries (hence have no effect on the Jacobian). Taking the derivative

and evaluating at U = U0, we see that the Jacobian of ψ at U0 is equal to the Jacobian at U∗
0U0 = In.

Let µ be the measure on U(N)
/
TN induced on this manifold by its Riemannian metric. It follows from

the change-of-variables formula for manifolds—and the fact that ψ is (generically) aN !-to-one function—that,

writing Λ = diag(ρ1, . . . , ρN ) gives

N !

∫
H∈HermN (C)

F (H) dλ(H) =

∫
(Λ,U)∈DN×U(N)/TN

F (ψ(Λ, U))
∏

1≤j<k≤N

(ρj − ρk)
2 d(λ× µ)(Λ, U)

=

∫
Λ∈DN

f(Λ)
∏

1≤j<k≤N

(ρj − ρk)
2 dλ(Λ)

(∫
U∈U(N)/TN

1 dµ(U)

)

where in the second step we have used Tonelli’s theorem. Thus for some positive constant C, we have∫
H∈HermN (C)

F (H) dλ(H) = C

∫
Λ∈DN

Λ=diag(ρ1,...,ρN )

f(ρ1, . . . , ρN )
∏

1≤j<k≤N

(ρj − ρk)
2 dλ(Λ)

To figure out the value of this constant, we plug in the function

f(x1, . . . , xN ) := e−
1
2 (x

2
1+···+x2

N )
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On the matrix side, this is given by

F (H) = e− tr(HH∗)/2

Noting that H 7→ tr(HH∗) is just the usual Euclidean norm on HermN (C) ∼= RN
2

, the left-hand-side of the

above equation is simply a Gaussian integral in RN×N . Its value is given by∫
H∈HermN (C)

F (H) dλ(H) =

∫
RN2

e−
1
2 (y

2
1+···+y2

N2 ) dy1 . . . dyN2 = (2π)N
2/2

On the other side, the integral is given by∫
RN

e−
∑N

j=1 ρ
2
j/2

∏
1≤j<k≤N

(ρj − ρk)
2 dρ1 . . . dρN

This is a special case of Mehta’s integral (with parameter γ = 1).12 Its value is given by∫
RN

e−
∑N

j=1 ρ
2
j/2

∏
1≤j<k≤N

(ρj − ρk)
2 dρ1 . . . dρN = (2π)N/2

N∏
j=1

j!

Thus

C = (2π)
N2−N

2

N∏
j=1

(j!)−1

and so the solution to the problem is given by

δ(ρ1, . . . , ρN ) = (2π)
N2−N

2

N∏
j=1

(j!)−1
∏

1≤j<k≤N

(ρj − ρk)
2

Problem 6.

Solution. As an example we consider Ω = {1, 2, 3, 4}, M = 2Ω, and P({n}) = 1/4 for all n ∈ Ω. We define

the events A = {1, 2}, B = {2, 3}, C = {1, 3}, each having probability 1/2. Moreover, they are pairwise

independent, as we can check:

P(A ∩B) = P
(
{1}
)
=

1

4
= P(A)P(B),

and similarly for the other pairs. However, the sequence A,B,C is not fully independent since:

P(A ∩B ∩ C) = P(∅) = 0 ̸= P(A)P(B)P(C)

12See the paper “Some Macdonald-Mehta Integrals by Brute Force” by Frank G. Garvan for a discussion. See also https:

//en.wikipedia.org/wiki/Selberg_integral.
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Problem 7.

Solution. The quadratic equation Xt2 +Y t+Z = 0 has real roots iff Y 2 ≥ 4XZ. This event has probability:

P
(
Y (ω)2 ≥ 4X(ω)Z(ω)

)
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

1t2≥4usdµ(u)dµ(t)dµ(s)

=

∫ ∞

0

∫ ∞

0

µ
(
(0, t2/4s]

)
dµ(t)dµ(s) =

∫ ∞

0

∫ ∞

0

F

(
t2

4s

)
dµ(t)dµ(s)

Problem 8.

Solution. We denote by f(x) = dPX

dλ (x) the Radon-Nikodym derivative. Thus, f(−x) = f(x) and:

PX(A) = P
(
X−1(A)

)
=

∫
A

f(x)dλ(x)

For any set A ⊂ R we define: √
A+ :=

{
x ∈ [0,∞) : x2 ∈ A ∩ [0,∞)

}
Then, we can write:

(X2)−1(A) =
{
X ∈

√
A+

}
∪
{
X ∈ −

√
A+

}
and note the intersection of the two sets is X−1

(
{0}
)
. We get:

PX2(A) = PX(
√
A+) + PX(−

√
A+)− PX({0}) =

∫
√
A+

f(x)dλ(x) +

∫
−
√
A+

f(x)dλ(x)−
∫
{0}

f(x)dλ(x)

The last term on the RHS is zero. Using f(−x) = f(x) and a change of variables, we get that:

PX2(A) = 2

∫
√
A+

f(x)dλ(x) =

∫
A∩[0,∞)

t−1/2f
(
t1/2

)
dλ(t)

We conclude that:
dPX2

dλ
(x) = x−1/2 dPX

dλ

(
x1/2

)
· 1[0,∞)

Problem 9.

Solution. See Chapter III of Widder: The Laplace transform. One could read Section 1 as an introduction,

then Section 2 (up to the proof of Theorem 2b), and Section 4 which completes the proof of the Hausdorff

moment problem.

Problem 10.

Solution. See Theorem 1 in Chapter 14 of Cheney and Light: A Course in Approximation Theory for a

detailed exposition of this result.
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