

Princeton University
 Spring 2025 MAT425: Measure Theory
 HW8
 Apr 6th 2025

April 23, 2025

1. (*Egorov's theorem*) Let $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d), \lambda)$ be the usual measure space and $\{f_n : \mathbb{R}^d \rightarrow \mathbb{C}\}_{n \in \mathbb{N}}$ be a sequence of measurable functions. Show that if there exists some $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$ such that $\{f_n\}_n$ converges λ -almost-everywhere on S to some function $f : S \rightarrow \mathbb{C}$, then for any $\varepsilon > 0$ there exists some $M \in \mathfrak{B}(\mathbb{R}^d)$ with $M \subseteq S$ such that $\lambda(M) < \varepsilon$ and $\{f_n\}_n$ converges *uniformly* to f on $S \setminus M$.
2. Find a counter-example of the above theorem that is violated *because $\lambda(S) < \infty$ is violated*.
3. (*Luzin's theorem*) Take the same $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d), \lambda)$ and let $f : \mathbb{R}^d \rightarrow \mathbb{C}$ be a measurable function. Show that
 - (a) For any $\varepsilon > 0$ and any $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$, there exists $F \in \text{Closed}(\mathbb{R}^d)$ such that $\lambda(S \setminus F) < \varepsilon$ and such that $f|_F : F \rightarrow \mathbb{C}$ is continuous.
 - (b) For any $\varepsilon > 0$ and any $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$ and such that S is *locally compact*, there exists $F \in \text{Cpt}(\mathbb{R}^d)$ such that $\lambda(S \setminus F) < \varepsilon$, and such that $f|_F : F \rightarrow \mathbb{C}$ is continuous. Moreover, there exists a *continuous* function $g : \mathbb{R}^d \rightarrow \mathbb{C}$ with compact support such that $f|_F = g|_F$ and such that

$$\sup_{x \in \mathbb{R}^d} |g(x)| \leq \sup_{x \in \mathbb{R}^d} |f(x)|.$$

4. Let a measure be given by

$$\mu = \sum_{x \in S} c_x \delta_x$$

where $S \subseteq X$ is countable and $(X, \text{Msrbl}(X))$ is a measurable space, and $\{c_x\}_{x \in S} \subseteq \mathbb{C}$ is some sequence. Calculate $|\mu|$.

5. Let the Hermitian matrices be denoted by

$$\text{Herm}_N(\mathbb{C}) \equiv \{A \in \text{Mat}_N(\mathbb{C}) \mid A = A^*\}$$

and the unitary matrices

$$\mathcal{U}(N) \equiv \{U \in \text{Mat}_N(\mathbb{C}) \mid U^* = U^{-1}\}.$$

With the notation $\mathbb{T} := \mathbb{S}^1$, we denote by \mathbb{T}^N all $N \times N$ *diagonal* unitary matrices, which is an Abelian subgroup of $\mathcal{U}(N)$. We note that as real vector spaces,

$$\text{Herm}_N(\mathbb{C}) \cong \mathbb{R}^{N^2}.$$

Moreover, as real manifolds, $\dim_{\mathbb{R}}(\mathcal{U}(N)) = N^2$. As such, when we unitarily diagonalize a Hermitian matrix $A = A^*$ to factorize it as

$$A = U^* \Lambda U$$

with $U \in \mathcal{U}(N)$ the matrix of orthonormal eigenvectors and $\Lambda = \text{diag}(\Lambda_1, \dots, \Lambda_N) \in \mathbb{R}^N$ the eigenvalues, the matrix U is not fully determined, since U determines the eigenvectors of A , but each of these eigenvectors is still free to have a phase gauge degree of freedom: If $A\psi = a\psi$ then also $Ae^{i\theta}\psi = ae^{i\theta}\psi$. As such, $U\text{diag}(e^{i\theta_1}, \dots, e^{i\theta_N})$ (for some $\theta_1, \dots, \theta_N \in \mathbb{R}$) is also a “valid” unitary which diagonalizes A . If we want to work towards a change of variable

formula, we need the diagonalization map to be well-defined. One way to deal with this is to rather work with the quotient space

$$\mathcal{U}(N)/\mathbb{T}^N,$$

i.e., equivalence classes of unitary matrices up to diagonal unitary matrices (which are precisely the phases of the eigenvectors). Since both $\mathcal{U}(N)$ and \mathbb{T}^N are Lie groups, we need to establish that the quotient $\mathcal{U}(N)/\mathbb{T}^N$ is also one and consider it as a real manifold of dimension $N^2 - N$. We then need to find a chart for this manifold. Once this is done, we define a map

$$\varphi : \text{Herm}_N(\mathbb{C}) \rightarrow \mathbb{R}^N \times (\mathcal{U}(N)/\mathbb{T}^N)$$

by

$$A \mapsto (\Lambda, [U]) \equiv (\varphi_\Lambda(A), \varphi_{[U]}(A))$$

where $U \in \mathcal{U}(N)$, $\Lambda \in \mathbb{R}^N$ and $A \equiv U^* \Lambda U$.

Work out the change of variable formula in this case for φ , i.e., find some measurable $\delta : \mathbb{R}^N \rightarrow \mathbb{C}$ measurable so that the following equation holds for any measurable $f : \mathbb{R}^N \rightarrow \mathbb{C}$:

$$\int_{A \in \text{Herm}_N(\mathbb{C})} f(\varphi_\Lambda(A)) d\lambda(A) = \int_{\Lambda \in \mathbb{R}^N} f(\Lambda) \delta(\Lambda) d\lambda(\Lambda).$$

We identify

$$\delta(\Lambda) = \int_{[U] \in \mathcal{U}(N)/\mathbb{T}^N} |\det((\mathcal{D}\varphi)(\Lambda, [U]))| dH([U])$$

where $H : \text{Msrbl}(\mathcal{U}(N)/\mathbb{T}^N) \rightarrow [0, 1]$ is the appropriate measure.

6. Let $(\Omega, \text{Msrbl}(\Omega), \mathbb{P})$ be a probability space. Find a sequence $\{E_\alpha\}_{\alpha \in A} \subseteq \text{Msrbl}(\Omega)$ which is merely *pairwise independent* yet not fully independent according to the definition.
7. Let $X, Y, Z : \Omega \rightarrow [0, \infty)$ be independent identically distributed random variables, all with the distribution $\mu : \text{Msrbl}([0, \infty)) \rightarrow [0, 1]$. Define

$$F(t) := \mu((0, t]) \quad (t > 0).$$

Show that the probability of the event

$$\{ \omega \in \Omega \mid X(\omega)t^2 + Y(\omega)t + Z(\omega) = 0 \text{ for the unknown } t \text{ has real roots} \}$$

equals

$$\int_{t=0}^{\infty} \int_{s=0}^{\infty} F\left(\frac{t^2}{4s}\right) d\mu(t) d\mu(s).$$

8. Let $X : \Omega \rightarrow \mathbb{R}$ be a random variable with $\frac{d\mathbb{P}_X}{d\lambda}(-x) = \frac{d\mathbb{P}_X}{d\lambda}(x)$ for all $x \in \mathbb{R}$. Calculate $\frac{d\mathbb{P}_X}{d\lambda}$ in terms of $\frac{d\mathbb{P}_X}{d\lambda}$.
9. (*The Hausdorff moment problem*) Let $\{m_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ be given. We seek necessary and sufficient conditions on this sequence for there to exist a random variable $X : \mathbb{R} \rightarrow [0, 1]$ such that

$$\mathbb{E}[X^n] = m_n \quad (n \in \mathbb{N}).$$

A sequence m is called *completely monotonic* iff

$$(-1)^k \left((L-1)^k m \right)_n \geq 0 \quad (n, k \in \mathbb{N}_{\geq 0})$$

where L is the left shift operator on sequences, $(Lm)_n \equiv m_{n+1}$. Show that m is the moments of a random variable iff m is completely monotonic.

10. One could also ask which functions $f : [0, \infty) \rightarrow [0, \infty)$ are the Laplace transform of some positive Borel measure, i.e., so that there exists a positive Borel measure

$$\mu : \mathcal{B}([0, \infty)) \rightarrow [0, \infty)$$

so that

$$f(t) = \int_{x=0}^{\infty} e^{-tx} d\mu(x) \quad (t \in [0, \infty)).$$

Define a function $f : [0, \infty) \rightarrow [0, \infty)$ to be *completely monotone* iff it is continuous on $[0, \infty)$, smooth on $(0, \infty)$ and satisfies

$$(-1)^n f^{(n)}(t) \geq 0 \quad (n \in \mathbb{N}, t > 0).$$

Show that f is completely monotone iff it is the Laplace transform of some non-negative finite Borel measure on $[0, \infty)$.