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1. (Egorov’s theorem) Let
(
Rd,B

(
Rd

)
, λ

)
be the usual measure space and

{
fn : Rd → C

}
n∈N

be a sequence of mea-
surable functions. Show that if there exists some S ∈ B

(
Rd

)
such that λ (S) < ∞ such that { fn }n converges

λ-almost-everywhere on S to some function f : S → C, then for any ε > 0 there exists some M ∈ B
(
Rd

)
with

M ⊆ S such that λ (M) < ε and { fn }n converges uniformly to f on S \M .

2. Find a counter-example of the above theorem that is violated because λ (S) <∞ is violated.

3. (Luzin’s theorem) Take the same
(
Rd,B

(
Rd

)
, λ

)
and let f : Rd → C be a measurable function. Show that

(a) For any ε > 0 and any S ∈ B
(
Rd

)
such that λ (S) < ∞, there exists F ∈ Closed

(
Rd

)
such that λ (S \ F ) < ε

and such that f |F : F → C is continuous.

(b) For any ε > 0 and any S ∈ B
(
Rd

)
such that λ (S) < ∞ and such that S is locally compact, there exists

F ∈ Cpt
(
Rd

)
such that λ (S \ F ) < ε, and such that f |F : F → C is continuous. Moreover, there exists a

continuous function g : Rd → C with compact support such that f |F = g|F and such that

sup
x∈Rd

|g (x)| ≤ sup
x∈Rd

|f (x)| .

4. Let a measure be given by
µ =

∑
x∈S

cxδx

where S ⊆ X is countable and (X,Msrbl (X)) is a measurable space, and { cx }x∈S ⊆ C is some sequence. Calculate
|µ|.

5. Let the Hermitian matrices be denoted by

HermN (C) ≡ {A ∈ MatN (C) | A = A∗ }

and the unitary matrices
U (N) ≡

{
U ∈ MatN (C)

∣∣ U∗ = U−1
}
.

With the notation T := S1, we denote by TN all N ×N diagonal unitary matrices, which is an Abelian subgroup of
U (N). We note that as real vector spaces,

HermN (C) ∼= RN2

.

Moreover, as real manifolds, dimR (U (N)) = N2. As such, when we unitarily diagonalize a Hermitian matrix A = A∗

to factorize it as
A = U∗ΛU

with U ∈ U (N) the matrix of orthonormal eigenvectors and Λ = diag (Λ1, · · · ,ΛN ) ∈ RN the eigenvalues, the matrix
U is not fully determined, since U determines the eigenvectors of A, but each of these eigenvectors is still free to
have a phase gauge degree of freedom: If Aψ = aψ then also Aeiθψ = aeiθψ. As such, Udiag

(
eiθ1 , · · · , eiθN

)
(for

some θ1, · · · , θN ∈ R) is also a “valid” unitary which diagonalizes A. If we want to work towards a change of variable
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formula, we need the diagonalization map to be well-defined. One way to deal with this is to rather work with the
quotient space

U (N) /TN ,

i.e., equivalence classes of unitary matrices up to diagonal unitary matrices (which are precisely the phases of the
eigenvectors). Since both U (N) and TN are Lie groups, we need to establish that the quotient U (N) /TN is also
one and consider it as a real manifold of dimension N2 −N . We then need to find a chart for this manifold. Once
this is done, we define a map

φ : HermN (C) → RN ×
(
U (N) /TN

)
by

A 7→ (Λ, [U ]) ≡
(
φΛ (A) , φ[U ] (A)

)
where U ∈ U (N), Λ ∈ RN and A ≡ U∗ΛU .
Work out the change of variable formula in this case for φ, i.e., find some measurable δ : RN → C measurable so
that the following equation holds for any measurable f : RN → C:∫

A∈HermN (C)

f (φΛ (A)) dλ (A) =

∫
Λ∈RN

f (Λ) δ (Λ) dλ (Λ) .

We identify

δ (Λ) =

∫
[U ]∈U(N)/TN

|det ((Dφ) (Λ, [U ]))|dH ([U ])

where H : Msrbl
(
U (N) /TN

)
→ [0, 1] is the appropriate measure.

6. Let (Ω,Msrbl (Ω) ,P) be a probability space. Find a sequence { Eα }α∈A ⊆ Msrbl (Ω) which is merely pairwise
independent yet not fully independent according to the definition.

7. Let X,Y, Z : Ω → [0,∞) be independent identically distributed random variables, all with the distribution µ :
Msrbl ([0,∞)) → [0, 1]. Define

F (t) := µ ((0, t]) (t > 0) .

Show that the probability of the event{
ω ∈ Ω

∣∣ X (ω) t2 + Y (ω) t+ Z (ω) = 0 for the unknown t has real roots
}

equals ∫ ∞

t=0

∫ ∞

s=0

F

(
t2

4s

)
dµ (t)dµ (s) .

8. Let X : Ω → R be a random variable with dPX

dλ (−x) = dPX

dλ (x) for all x ∈ R. Calculate dPX2

dλ in terms of dPX

dλ .

9. (The Hausdorff moment problem) Let {mn }∞n=1 ⊆ R be given. We seek necessary and sufficient conditions on this
sequence for there to exist a random variable X : R → [0, 1] such that

E [Xn] = mn (n ∈ N) .

A sequence m is called completely monotonic iff

(−1)
k
(
(L− 1)

k
m
)
n
≥ 0 (n, k ∈ N≥0)

where L is the left shift operator on sequences, (Lm)n ≡ mn+1. Show that m is the moments of a random variable
iff m is completely monotonic.

10. One could also ask which functions f : [0,∞) → [0,∞) are the Laplace transform of some positive Borel measure,
i.e., so that there exists a positive Borel measure

µ : B ([0,∞)) → [0,∞)

so that
f (t) =

∫ ∞

x=0

e−txdµ (x) (t ∈ [0,∞)) .

Define a function f : [0,∞) → [0,∞) to be completely monotone iff it is continuous on [0,∞), smooth on (0,∞) and
satisfies

(−1)
n
f (n) (t) ≥ 0 (n ∈ N, t > 0) .

Show that f is completely monotone iff it is the Laplace transform of some non-negative finite Borel measure on
[0,∞).
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