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Problem 1.

Show that convergence in total variation implies convergence in distribution for random variables.

Solution. Let (Ω,M,P) be a probability space. Suppose Xn : Ω → C are random variables for n ∈ N and

that Xn −→ X in total variation. This means that the total variation of PXn
−PX goes to 0 as n −→ ∞.1

Let f : C → C be a bounded continuous function. We show that E[f(Xn)] −→ E[f(X)] as n −→ ∞:

|E[f(Xn)]− E[f(X)]| ≡
∣∣∣∣∫

Ω

f ◦Xn dP−
∫
Ω

f ◦X dP
∣∣∣∣

=

∣∣∣∣∫
C
f dPXn

−
∫
C
f dPX

∣∣∣∣
=

∣∣∣∣∫
C
f d(PXn

−PX)

∣∣∣∣
≤ (sup

C
|f |) ·

∫
C
1 d |PXn

−PX |

= (sup
C

|f |) · ∥PXn
−PX∥TV

Since the last term goes to 0 with n, so does the first term.

1Convergence here is with respect to the the total variation norm, namely ∥·∥TV : µ 7→ |µ| (Ω). A related norm is given by

∥·∥1 :=µ 7→ supS∈M |µ(S)|. The two norms are equivalent in the sense that ∥µ∥1 ≤ ∥µ∥TV ≤ π∥µ∥1. In particular, the notions

of convergence for these two norms coincide.
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Problem 2.

Show that convergence in probability implies convergence in distribution for random variables.

Solution. Let (Ω,M,P) be a probability space. Suppose Xn : Ω → C are random variables for n ∈ N and

that Xn −→ X in probability. This means we have limn→∞ P[|Xn −X| > ϵ] −→ 0 as n −→ 0 for all ϵ > 0.

Let f : C → C be a bounded continuous function. We need to show that E[f(Xn)] −→ E[f(X)] as

n −→ ∞. It suffices to show that lim supn→∞ |E[f(Xn)− f(X)]| ≤ ϵ for arbitrary ϵ > 0. Fixing ϵ > 0, we

define for each n

Bn :={ω ∈ Ω | |f(Xn(ω))− f(X(ω))| > ϵ}

We claim that P(Bn) −→ 0 as n −→ ∞. Assuming this, it follows that

|E[f(Xn)]− E[f(X)]| = |E[f ◦Xn − f ◦X]|

=

∣∣∣∣∫
Ω

(f ◦Xn − f ◦X) dP
∣∣∣∣

≤
∫
Ω

|f ◦Xn − f ◦X| dP

=

∫
Bn

|f ◦Xn − f ◦X| dP+

∫
Ω−Bn

|f ◦Xn − f ◦X|

≤
∫
Bn

(|f ◦Xn|+ |f ◦X|) +
∫
Ω−Bn

ϵ

≤ (2 sup
C

f) · P(Bn) + ϵ

Taking lim sup of the first and last terms of this inequality gives the desired result.

It remains to show that P[Bn] −→ 0 as n −→ ∞ (i.e. that f(Xn) −→ f(X) in probability). To see

this, fix ϵ > 0 and choose M > 0 such that P[|X| < M ] > 1 − ϵ. The uniform continuity of f on the closed

disk of radius M + 1 implies that for some δ ∈ (0, 1), we have |f(x)− f(y)| < ϵ for all x, y ∈ C satisfying

|x| , |y| < M + 1 and |x− y| < δ. Without loss of generality, we may suppose that P[|Xn −X| < δ] < ϵ

for all n.2 Then |f(Xn(ω))− f(X(ω))| ≥ ϵ implies that either |Xn(ω)−X(ω)| > δ or |Xn(ω)| > M + 1 or

|X(ω)| > M + 1. If |Xn(ω)−X(ω)| < δ, then the last two cases are covered by the case that |X(ω)| > M .

Putting all this together gives

P[Bn] = P[|f(Xn)− f(X)| > ϵ] ≤ P[|Xn −X| > δ] + P[|X| > M ] ≤ 2ϵ

The result now follows from the fact that ϵ can be made arbitrarily small.

2This can be achieved by restricting to a tail of the sequence f1, f2, . . . .
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Problem 3.

Let (Ω,M,P) be a probability space. Suppose Xn : Ω → R for n ∈ N and and X : Ω → R are (real-valued)

random variables. Show that Xn −→ X in distribution if and only if P[Xn < t] −→ P[X < t] for all values

of t ∈ R at which x 7→ P[X < x] is continuous. C.f. Theorem 2.3 in Varadhan’s Probability Theory.

Solution. =⇒ Fix t ∈ R at which x 7→ P[X < x] is continuous. Let ϵ > 0. Choose δ > 0 such that

P[X < t− δ] > P[X > t]− ϵ, P[X < t+ δ] < P[X < t] + ϵ

Let f : R → R be a continuous function satisfying3

(i) f(x) = 1 for x ≤ t− δ.

(ii) f(x) = 0 for x ≥ t.

(iii) 0 ≤ f(x) ≤ 1 for all x ∈ R.

Then

P[Xn < t] ≥ E[f(Xn)] −→ E[f(X)] ≥ P[X < t− δ] > P[X < t]− ϵ

It follows that

lim inf
n→∞

P[Xn < t] ≥ P[X < t]− ϵ

Similarly, let g : R → R be a continuous function satisfying

(i) g(x) = 1 for x ≤ t.

(ii) g(x) = 0 for x ≥ t+ δ.

(iii) 0 ≤ g(x) ≤ 1 for all x ∈ R.

Then

P[Xn < t] ≤ E[g(Xn)] −→ E[g(X)] ≤ P[X < t+ δ] < P[X < t] + ϵ

It follows that

lim sup
n→∞

P[Xn < t] ≤ P[X < t] + ϵ

Since ϵ can be made arbitrarily small in the inequalities

lim sup
n→∞

P[Xn < t]− ϵ ≤ P[X < t] ≤ lim inf
n→∞

P[Xn < t] + ϵ

it follows that limn→∞ P[Xn < t] = P[X < t].

3For instance, we can find a piecewise-linear function with these properties.
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⇐= Note that x 7→ P[X < x] is an increasing function of x. This implies that it has at most countably

many points of discontinuity. In particular, its points of continuity are dense in R.

Let f : R → C be a bounded continuous function. Let K > 0 be an upper bound on |f |. Let ϵ > 0.

Choose M > 0 such that P[X < −M ] < ϵ and P[X < M ] > 1− ϵ. We can additionally choose M such

that both M and −M are points of continuity of x 7→ P[X < x]. Without loss of generality, we may

also suppose that P[Xn < −M ] < 2ϵ and P[Xn < M ] > 1− 2ϵ for all n.4

Since [−M,M ] is compact, f is uniformly continuous on this interval. So we can find a sequence

x0, x1, . . . , xN (for some N) such that

(i) x0 = −M , xN = M

(ii) x0 < x1 < · · · < xN

(iii) Each point xj is a point of continuity of x 7→ P[X < x]

(iv) |f(y1)− f(y2)| < ϵ for all y1, y2 in a common interval [xj , xj+1].

Define g : R → C by g =
∑n

j=1 f(xj−1)χ[xj−1,xj). The hypotheses above imply that

|f(t)− g(t)| ≤ ϵ for t ∈ [−M,M ] and |f(t)− g(t)| ≤ 2K for all t

Hence for all n

|E[f(Xn)]− E[g(Xn)]| ≤ ϵ+K P[Xn < −M ] +K P[Xn ≥ M ] ≤ ϵ+ 4Kϵ

Similarly,

|E[f(X)]− E[g(X)]| ≤ ϵ+K P[X < −M ] +K P[X > M ] ≤ ϵ+ 2Kϵ

Hence, by the triangle inequality,

|E[f(Xn)]− E[f(X)]| ≤ |E[f(Xn)]− E[g(Xn)]|+ |E[g(Xn)]− E[g(X)]|+ |E[g(X)]− E[f(X)]|

≤ (6K + 2)ϵ+

n∑
j=1

f(xj−1) |P[xj−1 ≤ Xn < xj ]− P[xj−1 ≤ X < xj ]|

Since

P[xj−1 ≤ Xn < xj ]− P[xj−1 ≤ X < xj ] = (P[Xn < xj ]− P[X < xj ])− (P[Xn < xj−1]− P[X < xj−1])

this term tends to 0 with n. Therefore, taking limit suprema in the inequality above gives

lim sup
n→∞

|E[f(Xn)]− E[f(X)]| ≤ (6K + 2)ϵ

Since ϵ can be made arbitrarily small, the result follows.

4This is necessarily true for all large enough n. So we can achieved the desired result by replacing our sequence of functions

by one of its tails.
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Problem 4.

Let (Ω,M,P) be a probability space. Suppose Xn : Ω → R for n ∈ N and and X : Ω → R are (real-

valued) random variables satisfying E[exp(itXn)] −→ E[exp(itX)] pointwise for t ∈ R. Then Xn −→ X in

distribution.

Solution. We need to show that E[f(Xn)] −→ E[f(X)] for all bounded continuous functions f : R → C. The

proof of is given under Theorem 7.32 in the lecture notes in the case where f is the Fourier transform of

some L1 function g : R → C. Now let F be the image of the Fourier transform operator L1(R → C, λ) −→
C0(R → C). Note that F is dense in C0(R → C).5 Therefore, for any f ∈ C0(R → C), we can a sequence

f1, f2, . . . in F such that fm −→ f uniformly. We have (using the triangle inequality)

|(E[fm(Xn)]− E[fm(X)])− (E[f(Xn)]− E[f(X)])| ≤ |E[fm(Xn)]− E[f(Xn)]|+ |E[fm(X)]− E[f(X)]|

= |E[(fm − f)(Xn)]|+ |E[(fm − f)(X)]|

≤ 2∥fm − f∥∞

and therefore (using the triangle inequality again)

|E[f(Xn)]− E[f(X)]| ≤ |(E[fm(Xn)]− E[fm(X)])|+ 2∥fm − f∥∞

We take limit suprema over n, noting that the fm ∈ F implies that the middle term tends to 0. This gives

lim sup
n

|E[f(Xn)]− E[f(X)]| ≤ 2∥fm − f∥∞

Letting m −→ ∞ shows that E[f(Xn)] = E[f(X)]. This holds for any f ∈ C0(R → C). To extend the result

to Cb(R → C), consider any bounded continuous function f : R → C. Fix ϵ > 0. Let M be large enough

that P[−M < X < M ] > 1− ϵ. Let f1 : R → C be a continuous function satisfying6

(i) f1 coincides with f on the interval [−M − 1,M + 1].

(ii) f1 vanishes outside the interval [−M − 2,M + 2]

(iii) |f1(x)| ≤ |f(x)| for all x ∈ R.

Then

|E[f(Xn)]− E[f1(Xn)]| = |E[(f − f1)(Xn)]| ≤ E[|f − f1| ◦Xn] ≤ 2∥f∥∞ P[|Xn| > M + 1]

To bound the last term, let g : R → R be a compactly supported function satisfying

(i) g = 1 on the interval [−M,M ].

5This follows from the combination of Corollary 8.23 and Proposition 8.17 in Folland’s Real Analysis.
6For instance, such function can be obtained by multiplying f by a suitable compactly supported function valued in [0, 1].
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(ii) g vanishes outside the interval [−M − 1,M + 1]

(iii) 0 ≤ g(x) ≤ 1 for all x ∈ R.

Then

P[−M − 1 < Xn < M + 1] ≥ E[g(Xn)] −→ E[g(X)] ≥ P[−M < X < M ] > 1− ϵ

It follows that P[|Xn| > M + 1] < ϵ for all sufficiently large n. So going back to the inequality above shows

that for all large enough n

|E[f(Xn)]− E[f1(Xn)]| ≤ 2ϵ∥f∥∞

Since ϵ can be made arbitrarily small, the result is obtained.

Problem 5.

Let (Ω,M,P) be a probability space and X a real-valued random variable on Ω such that a ≤ X ≤ b almost

surely. Show that

E[exp(tX)] ≤ exp

(
tE[X] +

t2(b− a)2

8

)
Solution. Consider the centred random variable Y :=X − E[X]. Note that Y takes values in [−a, b] where

a, b ≥ 0 are given by a :=E[X]− a, b := b− E[Y ]. The above inequality becomes

E[exp(tY )] ≤ exp

(
t2(b+ a)2

8

)
Using the convexity of the function y 7→ exp(ty) on the interval [−a, b], we can write

exp(ty) ≤ y + a

b+ a
exp(tb) +

b− y

b+ a
exp(−ta)

(Here we use the fact that y = y+a

b+a
b + b−y

b+a
(−a).) Now we replace y with Y and take expectations (noting

E[Y ] = 0):

E[exp(tY )] ≤ E[Y ] + a

b+ a
exp(tb) +

b− E[Y ]

b+ a
exp(−ta) =

be−ta + aetb

b+ a

We claim that the last term is always bounded above by exp
(

t2(b+a)2

8

)
. To see this, we define

F (t) := log
be−ta + aetb

b+ a

One computes7

F (0) = 0, F ′(0) = 0, F ′′(t) =
ab(a+ b)2

(be−t(a+b)/2 + aet(a+b)/2)2

7It is helpful to know that (log f(t))′′ = f ′′(t)f(t)−f ′(t)2

f(t)2
.
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Using the AM-GM inequality, we get the bound

be−t(a+b)/2 + aet(a+b)/2 ≥ 2
√
ab

Hence

F ′′(t) ≤ ab(a+ b)2

4ab
=

(a+ b)2

4ab

By integrating twice (or using Taylor expansions), it follows that

F (t) ≤ (a+ b)2

ab
· t

2

2

which completes the proof.

Problem 6.

Let (Ω,M,P) be a probability space and X a non-negative L2 random variable on Ω with positive expected

value. Show that

P[X ≥ θ · E[X]] ≥ (1− θ)2
E[X]2

E[X2]
for all θ ∈ [0, 1]

Solution. Define two new random variables Y,Z : Ω → [0,∞) by

Y (ω) :=

X(ω) if X(ω) < θE[X]

0 otherwise
, Z(ω) :=

X(ω) if X(ω) > θE[X]

0 otherwise

Observe that Y + Z = X and Y Z = 0 (pointwise). Starting with the inequality

E[Z2 | Z ̸= 0] ≥ E[Z | Z ̸= 0]2

and multiplying both sides by P[Z ̸= 0]2, we get

E[Z2]P[Z ̸= 0] = E[Z2 | Z ̸= 0]P[Z ̸= 0]2 ≥ (E[Z | Z ̸= 0]P[Z ̸= 0])2 = E[Z]2

Thus

E[X2]P[X ≥ θE[X]] = E[Y 2 + Z2]P[Z ̸= 0] ≥ E[Z2]P[Z ̸= 0] ≥ E[Z]2 = (E[X]− E[Y ])2

Since Y ≤ θE[X] pointwise, we have

E[X]− E[Y ] ≥ E[X]− θE[X] = (1− θ)E[X]

Putting things together gives

E[X2]P[X ≥ θE[X]] ≥ (1− θ)2 E[X]2
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Problem 7.

Solution. a). We define the function F (q) = logE[Y q]. We compute the derivatives of F :

F ′(q) =
E[Y q log Y ]

E[Y q]
= Eq[log Y ]

F ′′(q) =
E
[
Y q(log Y )2

]
E[Y q]

−
(
E[Y q log Y ]

E[Y q]

)2

= Varq[log Y ]

Taking the logarithm and dividing by 1/r, our goal is to show the following relation:

1

s
F (s)− 1

r
F (r) =

∫ s

0

1

r
fr,s(q)F

′′(q)dq

This is simply a calculus exercise. We compute:∫ r

0

1

r
fr,s(q)F

′′(q)dq =
s− r

rs

∫ r

0

qF ′′(q)dq =
s− r

rs

(
rF ′(r)− F (r)

)
=

s− r

s
F ′(r)− 1

r
F (r) +

1

s
F (r)∫ s

r

1

r
fr,s(q)F

′′(q)dq =

∫ r

0

s− q

s
F ′′(q)dq =

r − s

s
F ′(r)− 1

s
F (r) +

1

s
F (s)

b). We apply the result in part a) and use the additional bounds in the problem to get:

E[Y r
n ] =

(
E[Y s

n ]
) r

s · exp
(
−
∫ s

0

fr,s(q)Varq[log Yn]dq

)
≤ C

r
s
s exp

(
− csn

∫ s

0

fr,s(q)dq

)
We compute that: ∫ s

0

fr,s(q)dq =
r(s− r)

2

We obtain that the optimal constants are:

Dr = sup
s∈(r,1)

C
r
s
s , d = inf

s∈(r,1)
cs
r(s− r)

2

Problem 8.

Let X be a nonnegative random variable on a probability space (Ω,M,P). Show that

E[Xs] = s

∫ ∞

0

ts−1 P[X > t] dλ(t)

for all s > 0.

Solution. Applying HW4Q6, we have

E[Xs] ≡
∫
Ω

Xs dP =

∫ ∞

0

P[Xs > x] dλ(x)

Applying the change of coordinates x = ts, dλ(x) = sts−1 dλ(t), we get∫ ∞

0

P[Xs > x] dλ(x) =

∫ ∞

0

P[Xs > ts] · sts−1 dλ(t) = s

∫ ∞

0

ts−1 · P[X > s] dλ(t)
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Problem 9.

Let X be a random variable such that there are 0 < α < a, ϵ ∈ (0, 1) and β ∈ (0,∞) for which

P[|X| < α] ≤ β
√
P[X ≤ −a]P[X ≥ a] + ϵ

Show that

E[X2] ≥ 1− ϵ

1 + 1
2β

α2

Solution. Note that the AM-GM inequality gives√
P[X ≤ −a]P[X ≥ a] ≤ 1

2
(P[X ≤ −a] + P[X ≥ a]) ≤ 1

2
(P[X ≤ −α] + P[X ≥ α]) =

1

2
P[|X| ≥ α]

So the inequality in the hypothesis becomes

β

2
P[|X| ≥ α] + ϵ ≥ P[|X| < α] = 1− P[|X| ≥ α]

Solving we get

P[|X| ≥ α] ≥ 1− ϵ

1 + 1
2β

We therefore have

E[X2] ≥ α2 P[X2 ≥ α2]

= α2 P[|X| ≥ α]

≥ 1− ϵ

1 + 1
2β

α2

Problem 10

Let M be an n×n matroid with values in the field F ∈ {R,C} which is positive-definite as a bilinear operator.

1. Calculate the Gaussian normalization factor

ZA :=

∫
Fn

e−
1
2 ⟨x,Ax⟩ dλ(x)

Solution. Let Ã := 1
2 (A + A∗) be the conjugate-symmetrization of A. (We have A = Ã in case A was

already Hermitian. Also note that A∗ = AT in the real case.) Then ⟨x, Ãx⟩ = ⟨x,Ax⟩ for all x ∈ Fn.8

Then Ã is unitarily (in the real case: orthogonally) diagonalizable. Let ν1, . . . , νn be the eigenvalues

8To see this, note that the hypotheses imply ⟨x,Ax⟩ = ⟨x,Ax⟩ = ⟨Ax, x⟩ = ⟨x,A∗x⟩.
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of Ã. Note that these are positive real numbers. Let D = diag(ν1, . . . , νn) and let U be a unitary (or

orthogonal) matrix such that Ã = U∗DU . Then〈
x, Ãx

〉
=

〈
x, U∗D̃Ux

〉
= ⟨Ux,DUx⟩

On the other hand, x 7→ Ux is an isometry of Fn. In particular, it preserves the Lebesgue measure.

Thus

ZA ≡
∫
Fn

e−
1
2 ⟨x,Ax⟩ dλ(x) =

∫
Fn

e−
1
2 ⟨x,Ãx⟩ dλ(x) =

∫
Fn

e−
1
2 ⟨Ux,DUx⟩ dλ(x) =

∫
Fn

e−
1
2 ⟨x,Dx⟩ dλ(x)

Using Tonelli’s theorem, we can write∫
Fn

e−
1
2 ⟨x,Dx⟩ dλ(x) =

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2 dλ(x) =

n∏
j=1

∫
F
e−

1
2νj |xj |2 dλ(xj)

Using a (simple) change-of-coordinates formula, we get∫
F
e−

1
2νj |t|2 dλ(t) = ν

−d/2
j

∫
F
e−

1
2 |t|

2

dλ(t)

where d = 1 if F = R and d = 2 if F = C. The Gaussian integral on the right has value (2π)d/2. From

this we get ∫
Fn

e−
1
2 ⟨x,Dx⟩ dλ(x) =

 n∏
j=1

2π

νj

d/2

=
(2π)nd/2

(det Ã)d/2

2. Evaluate the integral ∫
x∈Fn

e−
1
2 ⟨x,Ax⟩+⟨v,x⟩ dλ(x)

Solution. We deal only with the case F = R. Again, we replace A with Ã with no effect on the integral.

We have ∫
x∈Rn

e−
1
2 ⟨x,Ax⟩+⟨v,x⟩ dλ(x) = e

1
2 ⟨Ã−1v,v⟩

∫
x∈Rn

e−
1
2 ⟨(x−Ã−1v, Ã(x−Ã−1v)⟩ dλ(x)

= e
1
2 ⟨Ã−1v,v⟩

∫
x∈Rn

e−
1
2 ⟨x, Ãx⟩ dλ(x)

= e
1
2 ⟨Ã−1v,v⟩

√√√√ n∏
j=1

2π

νj

In particular, if A is orthogonal then

∫
x∈Rn

e−
1
2 ⟨x,Ax⟩+⟨v,x⟩ dλ(x) = e

1
2 ⟨A−1v,v⟩

√√√√ n∏
j=1

2π

νj
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3. For v1, v2 ∈ Fn, evaluate the expectation value

Z−1
A

∫
Fn

e−
1
2 ⟨x,Ax⟩ ⟨v1, x⟩ ⟨x, v2⟩ dλ(x)

Solution. We again replace A with Ã. We also write Ã = U∗DU for unitary U and diagonal D.∫
Fn

e−
1
2 ⟨x,Ãx⟩ ⟨v1, x⟩ ⟨x, v2⟩ dλ(x) =

∫
Fn

e−
1
2 ⟨Ux,DUx⟩ ⟨v1, x⟩ ⟨x, v2⟩ dλ(x)

=

∫
Fn

e−
1
2 ⟨x,Dx⟩ ⟨v1, U∗x⟩ ⟨U∗x, v2⟩ dλ(x)

=

∫
Fn

e−
1
2 ⟨x,Dx⟩ ⟨Uv1, x⟩ ⟨x, Uv2⟩ dλ(x)

Then writing Uv1 = (u1, . . . , un) and Uv2 = (w1, . . . , wn), we have∫
Fn

e−
1
2 ⟨x,Dx⟩ ⟨Uv1, x⟩ ⟨x, Uv2⟩ dλ(x) =

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2

∑
1≤j,k≤n

ujwkxjxk dλ(x)

=
∑

1≤j,k≤n

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2ujwkxjxk dλ(x)

We decompose this last term into two kinds of summands:

n∑
j=1

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2ujwj |xj |2 dλ(x) +

∑
1≤j,k≤n

j ̸=k

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2ujwkxjxk dλ(x)

Each term in the second sum vanishes because each of the integrands e−
1
2

∑n
j=1 νj |xj |2ujwkxjxk is odd

in the variable xj . Each term in the first sum can be rewritten (using Fubini-Tonelli) as

∫
Fn

e−
1
2

∑n
j=1 νj |xj |2ujwj |xj |2 dλ(xj) =

 ∏
1≤k≤n
k ̸=j

∫
F
e−νk|xk|2/2 dλ(xk)

 · ujwj

∫
F
e−νj |xj |2/2 |xj |2 dλ(xj)

= ZA · ujwj

∫
F
e−νj |xj |2/2 |xj |2 dλ(xj)

/∫
F
e−νj |xj |2/2 dλ(xj)

One computes the quotient of these two integrals to be d/νj , where as before d = 1 if F = R and d = 2

if F = C. Putting things together gives∫
Fn

e−
1
2 ⟨x,Ãx⟩ ⟨v1, x⟩ ⟨x, v2⟩ dλ(x) = d · ZA

n∑
j=1

ujwj/νj

= dZA

〈
Uv1, D

−1Uv2
〉

= dZA

〈
v1, Ã

−1
v2

〉
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Problem 11.

Consider a sequence (Xn)n∈N of independent and identically-distributed Bernoulli random variables, with a

common parameter p ∈ (0, 1). Calculate the asymptotic distribution of the random variableAN :=N−1
∑

n≤N Xn

in two ways: by (a) appealing to the Central Limit Theorem and by (b) proving and then using the De

Moivre-Laplace Theorem.

(a) Let q := 1 − p. Each Xn satisfies P[Xn = 0] = q, P[Xn = 1] = p. One calculates E[Xn] = p, E[X2
n] = p

and so V⅁∖[Xn] = pq and σXn
=

√
pq. By the Central Limit Theorem, we have An ≈ N

(
np,

√
pqn

)
(b) Use the “De-Moivre Laplace Theorem” to recover the previous result.

Solution. An easy calculation shows that

PAn
=

n∑
k=0

(
n

k

)
pkqn−kδk

The standard normal distribution with mean pn and standard deviation
√
pqn has probability density

function

t 7→ 1√
2πpqn

e−
(t−np)2

2pqn

We would like to say that9 (
n

k

)
pkqn−k ≈ 1√

2πpqn
e−

(k−np)2

2pqn (∗)

The sense of ≈ will be clarified below. Stirling’s approximation gives x! ∼ xxe−x
√
2πx. It follows that(

n

k

)
pkqn−k =

n!

k! · (n− k)!
pkqn−k

≈
√
n√

2πk(n− k)
· pkqn−k · nn/en

kk/ek · (n− k)n−k/en−k

=

√
n√

2πk(n− k)

[(pn
k

)k/n
(

qn

n− k

)1−k/n
]n

=

√
n√

2πk(n− k)
exp (n · [η logα+ (1− η) log β])

where α := pn/k, β := qn/(n − k) and η := k/n. Since ηα + (1 − η)β = p + q = 1, the concavity of the

logarithm gives

η logα+ (1− η) log β ≤ log[ηα+ (1− η)β] = 0

9To get An ≈ N
(
np,

√
pqn

)
, we should really show that

(n
k

)
pkqn−k ≈

∫ k+1/2
k−1/2

1√
2πpqn

e
− (t−np)2

2pqn dt. But 1√
2πpqn

e
− (k−np)2

2pqn dt

is a good proxy for this integral.
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with equality if and only if α = β.10 It follows that
(
n
k

)
pkqn−k tends exponentially to 0 if α ̸≈ β. Since

ηα + (1 − η)β = 1, we have α ≈ β iff α ≈ 1, i.e. iff p = k/n. We will show that (∗) holds if k/n ∼ p.

Note that this implies (n− k)/n ∼ q.

Going back to our Stirling-based approximation, and applying a Taylor expansion gives

η logα+ (1− η) log β =
k

n
log

(
1− k − pn

k

)
+

n− k

n
log

(
1 +

k − pn

n− k

)
≈ −k

n

(
k − pn

k
+

(k − pn)2

2k2

)
+

n− k

n

(
k − pn

n− k
− (k − pn)2

2(n− k)2

)
= − (k − pn)2

2nk
− (k − pn)2

2n(n− k)

≈ − (k − pn)2

2n2p
− (k − pn)2

2n2q

= − (k − pn)2

2n2
·
(
1

p
+

1

q

)
= − (k − pn)2

2n2pq

Thus (
n

k

)
pkqn−k ≈

√
n√

2πk(n− k)
exp (n · [η logα+ (1− η) log β])

≈
√
n√

2πpqn2
exp

(
−n · (k − pn)2

2n2pq

)
=

1√
2πpqn

exp

(
− (k − pn)2

2npq

)

Problem 12.

Let Z be a standard normal random variable. Fixing µ ∈ R and σ > 0, we define a new random variable

X := exp(µ+ σZ)

(a) Calculate the moments of X.

Solution. We have

E[Xn] = E[exp(nµ+ nσZ)] = E[exp(nµ) exp(nσZ)] = enµ · 1√
2π

∫
R
enσt · e−t2/2 dt

The integral at the end is given by∫
R
enσt · e−t2/2 dt = en

2σ2/2

∫
R
e−(t−nσ)2/2 dt = en

2σ2/2

∫
R
e−t2/2 dt =

√
2πen

2σ2/2

Thus E[Xn] = enµ+n2σ2/2.
10We also have equality if η = 0 or η = 1. The special cases k ≈ 0 and k ≈ n therefore need to be checked separately.
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(b) Show that E[etX ] = ∞ for all t > 0.

Solution. Note that X takes only positive values. Therefore, by the monotone convergence theorem,

E[etX ] = E

[ ∞∑
n=0

tnXn

n!

]
=

∞∑
n=0

E
[
tnXn

n!

]
=

∞∑
n=0

tn

n!
E[Xn] =

∞∑
n=0

tn

n!
enµ+n2σ2/2

If this value were finite, the summands would tend to 0. However, the bound n! ≤ nn shows that

tn

n!
enµ+n2σ2/2 ≥ tn

nn
enµ+n2σ2/2 = enµ+n2σ2/2+n log t−n logn

Since σ > 0, the exponent

nµ+ n2σ2/2 + n log t− n log n

is dominated by the term n2σ2/2, so tends to ∞ with n. It follows that the series diverges to infinity.

So E[etX ] = ∞.

(c) Show that Z has the same moments as some discrete random variable on R (i.e. one whose measure is

supported on a countable set).

Solution. Let ξ be the measure

ξ :=C
∑
m∈Z

e−σ2m2/2δσm

where C =
(∑

m∈Z e
−σ2m2/2

)−1

is chosen so that ξ(R) = 1. Let ν be the pushforward of ξ under the

map x 7→ exp(µ+ σx). Concretely, we have

ν :=C
∑
m∈Z

e−σ2m2/2δeµ+σ2m

Then the n-th moment of ν is given by∫
R
xn dν(x) = C

∑
m∈Z

en(µ+σ2m)e−σ2m2/2

= enµ+σ2n2/2 · C
∑
m∈Z

e−σ2(m−n)2/2

= enµ+σ2n2/2 · C
∑
m∈Z

e−σ2m2/2

= enµ+σ2n2/2 = E[Xn]
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