

Princeton University
 Spring 2025 MAT425: Measure Theory
 HW9 Sample Solutions

Apr 28 2025

Serban Cicortas (only Q7) and Chayim Lowen (all other Questions)

May 5, 2025

Problem 1.

Show that convergence in total variation implies convergence in distribution for random variables.

Solution. Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space. Suppose $X_n : \Omega \rightarrow \mathbb{C}$ are random variables for $n \in \mathbb{N}$ and that $X_n \rightarrow X$ in total variation. This means that the total variation of $\mathbb{P}_{X_n} - \mathbb{P}_X$ goes to 0 as $n \rightarrow \infty$.¹

Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be a bounded continuous function. We show that $\mathbb{E}[f(X_n)] \rightarrow E[f(X)]$ as $n \rightarrow \infty$:

$$\begin{aligned}
 |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| &\equiv \left| \int_{\Omega} f \circ X_n d\mathbb{P} - \int_{\Omega} f \circ X d\mathbb{P} \right| \\
 &= \left| \int_{\mathbb{C}} f d\mathbb{P}_{X_n} - \int_{\mathbb{C}} f d\mathbb{P}_X \right| \\
 &= \left| \int_{\mathbb{C}} f d(\mathbb{P}_{X_n} - \mathbb{P}_X) \right| \\
 &\leq (\sup_{\mathbb{C}} |f|) \cdot \int_{\mathbb{C}} 1 d|\mathbb{P}_{X_n} - \mathbb{P}_X| \\
 &= (\sup_{\mathbb{C}} |f|) \cdot \|\mathbb{P}_{X_n} - \mathbb{P}_X\|_{TV}
 \end{aligned}$$

Since the last term goes to 0 with n , so does the first term. □

¹Convergence here is with respect to the the total variation norm, namely $\|\cdot\|_{TV} : \mu \mapsto |\mu|(\Omega)$. A related norm is given by $\|\cdot\|_1 := \mu \mapsto \sup_{S \in \mathfrak{M}} |\mu(S)|$. The two norms are equivalent in the sense that $\|\mu\|_1 \leq \|\mu\|_{TV} \leq \pi \|\mu\|_1$. In particular, the notions of convergence for these two norms coincide.

Problem 2.

Show that convergence in probability implies convergence in distribution for random variables.

Solution. Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space. Suppose $X_n : \Omega \rightarrow \mathbb{C}$ are random variables for $n \in \mathbb{N}$ and that $X_n \rightarrow X$ in probability. This means we have $\lim_{n \rightarrow \infty} \mathbb{P}[|X_n - X| > \epsilon] \rightarrow 0$ as $n \rightarrow \infty$ for all $\epsilon > 0$.

Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be a bounded continuous function. We need to show that $\mathbb{E}[f(X_n)] \rightarrow \mathbb{E}[f(X)]$ as $n \rightarrow \infty$. It suffices to show that $\limsup_{n \rightarrow \infty} |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| \leq \epsilon$ for arbitrary $\epsilon > 0$. Fixing $\epsilon > 0$, we define for each n

$$B_n := \{\omega \in \Omega \mid |f(X_n(\omega)) - f(X(\omega))| > \epsilon\}$$

We claim that $\mathbb{P}(B_n) \rightarrow 0$ as $n \rightarrow \infty$. Assuming this, it follows that

$$\begin{aligned} |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| &= |\mathbb{E}[f \circ X_n - f \circ X]| \\ &= \left| \int_{\Omega} (f \circ X_n - f \circ X) d\mathbb{P} \right| \\ &\leq \int_{\Omega} |f \circ X_n - f \circ X| d\mathbb{P} \\ &= \int_{B_n} |f \circ X_n - f \circ X| d\mathbb{P} + \int_{\Omega - B_n} |f \circ X_n - f \circ X| \\ &\leq \int_{B_n} (|f \circ X_n| + |f \circ X|) d\mathbb{P} + \int_{\Omega - B_n} \epsilon \\ &\leq (2 \sup_{\mathbb{C}} f) \cdot \mathbb{P}(B_n) + \epsilon \end{aligned}$$

Taking \limsup of the first and last terms of this inequality gives the desired result.

It remains to show that $\mathbb{P}[B_n] \rightarrow 0$ as $n \rightarrow \infty$ (i.e. that $f(X_n) \rightarrow f(X)$ in probability). To see this, fix $\epsilon > 0$ and choose $M > 0$ such that $\mathbb{P}[|X| < M] > 1 - \epsilon$. The uniform continuity of f on the closed disk of radius $M + 1$ implies that for some $\delta \in (0, 1)$, we have $|f(x) - f(y)| < \epsilon$ for all $x, y \in \mathbb{C}$ satisfying $|x|, |y| < M + 1$ and $|x - y| < \delta$. Without loss of generality, we may suppose that $\mathbb{P}[|X_n - X| < \delta] < \epsilon$ for all n .² Then $|f(X_n(\omega)) - f(X(\omega))| \geq \epsilon$ implies that either $|X_n(\omega) - X(\omega)| > \delta$ or $|X_n(\omega)| > M + 1$ or $|X(\omega)| > M + 1$. If $|X_n(\omega) - X(\omega)| < \delta$, then the last two cases are covered by the case that $|X(\omega)| > M$. Putting all this together gives

$$\mathbb{P}[B_n] = \mathbb{P}[|f(X_n) - f(X)| > \epsilon] \leq \mathbb{P}[|X_n - X| > \delta] + \mathbb{P}[|X| > M] \leq 2\epsilon$$

The result now follows from the fact that ϵ can be made arbitrarily small. □

²This can be achieved by restricting to a tail of the sequence f_1, f_2, \dots

Problem 3.

Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space. Suppose $X_n : \Omega \rightarrow \mathbb{R}$ for $n \in \mathbb{N}$ and $X : \Omega \rightarrow \mathbb{R}$ are (real-valued) random variables. Show that $X_n \rightarrow X$ in distribution if and only if $\mathbb{P}[X_n < t] \rightarrow \mathbb{P}[X < t]$ for all values of $t \in \mathbb{R}$ at which $x \mapsto \mathbb{P}[X < x]$ is continuous. C.f. Theorem 2.3 in Varadhan's *Probability Theory*.

Solution. \implies Fix $t \in \mathbb{R}$ at which $x \mapsto \mathbb{P}[X < x]$ is continuous. Let $\epsilon > 0$. Choose $\delta > 0$ such that

$$\mathbb{P}[X < t - \delta] > \mathbb{P}[X < t] - \epsilon, \quad \mathbb{P}[X < t + \delta] < \mathbb{P}[X < t] + \epsilon$$

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying³

- (i) $f(x) = 1$ for $x \leq t - \delta$.
- (ii) $f(x) = 0$ for $x \geq t$.
- (iii) $0 \leq f(x) \leq 1$ for all $x \in \mathbb{R}$.

Then

$$\mathbb{P}[X_n < t] \geq \mathbb{E}[f(X_n)] \rightarrow \mathbb{E}[f(X)] \geq \mathbb{P}[X < t - \delta] > \mathbb{P}[X < t] - \epsilon$$

It follows that

$$\liminf_{n \rightarrow \infty} \mathbb{P}[X_n < t] \geq \mathbb{P}[X < t] - \epsilon$$

Similarly, let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

- (i) $g(x) = 1$ for $x \leq t$.
- (ii) $g(x) = 0$ for $x \geq t + \delta$.
- (iii) $0 \leq g(x) \leq 1$ for all $x \in \mathbb{R}$.

Then

$$\mathbb{P}[X_n < t] \leq \mathbb{E}[g(X_n)] \rightarrow \mathbb{E}[g(X)] \leq \mathbb{P}[X < t + \delta] < \mathbb{P}[X < t] + \epsilon$$

It follows that

$$\limsup_{n \rightarrow \infty} \mathbb{P}[X_n < t] \leq \mathbb{P}[X < t] + \epsilon$$

Since ϵ can be made arbitrarily small in the inequalities

$$\limsup_{n \rightarrow \infty} \mathbb{P}[X_n < t] - \epsilon \leq \mathbb{P}[X < t] \leq \liminf_{n \rightarrow \infty} \mathbb{P}[X_n < t] + \epsilon$$

it follows that $\lim_{n \rightarrow \infty} \mathbb{P}[X_n < t] = \mathbb{P}[X < t]$.

³For instance, we can find a piecewise-linear function with these properties.

\Leftarrow Note that $x \mapsto \mathbb{P}[X < x]$ is an *increasing* function of x . This implies that it has at most countably many points of discontinuity. In particular, its points of continuity are dense in \mathbb{R} .

Let $f : \mathbb{R} \rightarrow \mathbb{C}$ be a bounded continuous function. Let $K > 0$ be an upper bound on $|f|$. Let $\epsilon > 0$. Choose $M > 0$ such that $\mathbb{P}[X < -M] < \epsilon$ and $\mathbb{P}[X < M] > 1 - \epsilon$. We can additionally choose M such that both M and $-M$ are points of continuity of $x \mapsto \mathbb{P}[X < x]$. Without loss of generality, we may also suppose that $\mathbb{P}[X_n < -M] < 2\epsilon$ and $\mathbb{P}[X_n < M] > 1 - 2\epsilon$ for all n .⁴

Since $[-M, M]$ is compact, f is uniformly continuous on this interval. So we can find a sequence x_0, x_1, \dots, x_N (for some N) such that

- (i) $x_0 = -M, x_N = M$
- (ii) $x_0 < x_1 < \dots < x_N$
- (iii) Each point x_j is a point of continuity of $x \mapsto \mathbb{P}[X < x]$
- (iv) $|f(y_1) - f(y_2)| < \epsilon$ for all y_1, y_2 in a common interval $[x_j, x_{j+1}]$.

Define $g : \mathbb{R} \rightarrow \mathbb{C}$ by $g = \sum_{j=1}^n f(x_{j-1}) \chi_{[x_{j-1}, x_j]}$. The hypotheses above imply that

$$|f(t) - g(t)| \leq \epsilon \quad \text{for } t \in [-M, M] \quad \text{and} \quad |f(t) - g(t)| \leq 2K \quad \text{for all } t$$

Hence for all n

$$|\mathbb{E}[f(X_n)] - \mathbb{E}[g(X_n)]| \leq \epsilon + K \mathbb{P}[X_n < -M] + K \mathbb{P}[X_n \geq M] \leq \epsilon + 4K\epsilon$$

Similarly,

$$|\mathbb{E}[f(X)] - \mathbb{E}[g(X)]| \leq \epsilon + K \mathbb{P}[X < -M] + K \mathbb{P}[X > M] \leq \epsilon + 2K\epsilon$$

Hence, by the triangle inequality,

$$\begin{aligned} |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| &\leq |\mathbb{E}[f(X_n)] - \mathbb{E}[g(X_n)]| + |\mathbb{E}[g(X_n)] - \mathbb{E}[g(X)]| + |\mathbb{E}[g(X)] - \mathbb{E}[f(X)]| \\ &\leq (6K + 2)\epsilon + \sum_{j=1}^n f(x_{j-1}) |\mathbb{P}[x_{j-1} \leq X_n < x_j] - \mathbb{P}[x_{j-1} \leq X < x_j]| \end{aligned}$$

Since

$$\mathbb{P}[x_{j-1} \leq X_n < x_j] - \mathbb{P}[x_{j-1} \leq X < x_j] = (\mathbb{P}[X_n < x_j] - \mathbb{P}[X < x_j]) - (\mathbb{P}[X_n < x_{j-1}] - \mathbb{P}[X < x_{j-1}])$$

this term tends to 0 with n . Therefore, taking limit suprema in the inequality above gives

$$\limsup_{n \rightarrow \infty} |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| \leq (6K + 2)\epsilon$$

Since ϵ can be made arbitrarily small, the result follows. □

⁴This is necessarily true for all large enough n . So we can achieve the desired result by replacing our sequence of functions by one of its tails.

Problem 4.

Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space. Suppose $X_n : \Omega \rightarrow \mathbb{R}$ for $n \in \mathbb{N}$ and $X : \Omega \rightarrow \mathbb{R}$ are (real-valued) random variables satisfying $\mathbb{E}[\exp(itX_n)] \rightarrow \mathbb{E}[\exp(itX)]$ pointwise for $t \in \mathbb{R}$. Then $X_n \rightarrow X$ in distribution.

Solution. We need to show that $\mathbb{E}[f(X_n)] \rightarrow \mathbb{E}[f(X)]$ for all bounded continuous functions $f : \mathbb{R} \rightarrow \mathbb{C}$. The proof of is given under Theorem 7.32 in the lecture notes in the case where f is the Fourier transform of some L^1 function $g : \mathbb{R} \rightarrow \mathbb{C}$. Now let \mathcal{F} be the image of the Fourier transform operator $L^1(\mathbb{R} \rightarrow \mathbb{C}, \lambda) \rightarrow C_0(\mathbb{R} \rightarrow \mathbb{C})$. Note that \mathcal{F} is dense in $C_0(\mathbb{R} \rightarrow \mathbb{C})$.⁵ Therefore, for any $f \in C_0(\mathbb{R} \rightarrow \mathbb{C})$, we can a sequence f_1, f_2, \dots in \mathcal{F} such that $f_m \rightarrow f$ uniformly. We have (using the triangle inequality)

$$\begin{aligned} |(\mathbb{E}[f_m(X_n)] - \mathbb{E}[f_m(X)]) - (\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)])| &\leq |\mathbb{E}[f_m(X_n)] - \mathbb{E}[f(X_n)]| + |\mathbb{E}[f_m(X)] - \mathbb{E}[f(X)]| \\ &= |\mathbb{E}[(f_m - f)(X_n)]| + |\mathbb{E}[(f_m - f)(X)]| \\ &\leq 2\|f_m - f\|_\infty \end{aligned}$$

and therefore (using the triangle inequality again)

$$|\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| \leq |(\mathbb{E}[f_m(X_n)] - \mathbb{E}[f_m(X)])| + 2\|f_m - f\|_\infty$$

We take limit suprema over n , noting that the $f_m \in \mathcal{F}$ implies that the middle term tends to 0. This gives

$$\limsup_n |\mathbb{E}[f(X_n)] - \mathbb{E}[f(X)]| \leq 2\|f_m - f\|_\infty$$

Letting $m \rightarrow \infty$ shows that $\mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$. This holds for any $f \in C_0(\mathbb{R} \rightarrow \mathbb{C})$. To extend the result to $C_b(\mathbb{R} \rightarrow \mathbb{C})$, consider any bounded continuous function $f : \mathbb{R} \rightarrow \mathbb{C}$. Fix $\epsilon > 0$. Let M be large enough that $\mathbb{P}[-M < X < M] > 1 - \epsilon$. Let $f_1 : \mathbb{R} \rightarrow \mathbb{C}$ be a continuous function satisfying⁶

- (i) f_1 coincides with f on the interval $[-M - 1, M + 1]$.
- (ii) f_1 vanishes outside the interval $[-M - 2, M + 2]$
- (iii) $|f_1(x)| \leq |f(x)|$ for all $x \in \mathbb{R}$.

Then

$$|\mathbb{E}[f(X_n)] - \mathbb{E}[f_1(X_n)]| = |\mathbb{E}[(f - f_1)(X_n)]| \leq \mathbb{E}[|f - f_1| \circ X_n] \leq 2\|f\|_\infty \mathbb{P}[|X_n| > M + 1]$$

To bound the last term, let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a compactly supported function satisfying

- (i) $g = 1$ on the interval $[-M, M]$.

⁵This follows from the combination of Corollary 8.23 and Proposition 8.17 in Folland's *Real Analysis*.

⁶For instance, such function can be obtained by multiplying f by a suitable compactly supported function valued in $[0, 1]$.

(ii) g vanishes outside the interval $[-M - 1, M + 1]$

(iii) $0 \leq g(x) \leq 1$ for all $x \in \mathbb{R}$.

Then

$$\mathbb{P}[-M - 1 < X_n < M + 1] \geq \mathbb{E}[g(X_n)] \longrightarrow \mathbb{E}[g(X)] \geq \mathbb{P}[-M < X < M] > 1 - \epsilon$$

It follows that $\mathbb{P}[|X_n| > M + 1] < \epsilon$ for all sufficiently large n . So going back to the inequality above shows that for all large enough n

$$|\mathbb{E}[f(X_n)] - \mathbb{E}[f_1(X_n)]| \leq 2\epsilon\|f\|_\infty$$

Since ϵ can be made arbitrarily small, the result is obtained. \square

Problem 5.

Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space and X a real-valued random variable on Ω such that $a \leq X \leq b$ almost surely. Show that

$$\mathbb{E}[\exp(tX)] \leq \exp\left(t\mathbb{E}[X] + \frac{t^2(b-a)^2}{8}\right)$$

Solution. Consider the centred random variable $Y := X - \mathbb{E}[X]$. Note that Y takes values in $[-\bar{a}, \bar{b}]$ where $\bar{a}, \bar{b} \geq 0$ are given by $\bar{a} := \mathbb{E}[X] - a$, $\bar{b} := b - \mathbb{E}[Y]$. The above inequality becomes

$$\mathbb{E}[\exp(tY)] \leq \exp\left(\frac{t^2(\bar{b} + \bar{a})^2}{8}\right)$$

Using the convexity of the function $y \mapsto \exp(ty)$ on the interval $[-\bar{a}, \bar{b}]$, we can write

$$\exp(ty) \leq \frac{y + \bar{a}}{\bar{b} + \bar{a}} \exp(t\bar{b}) + \frac{\bar{b} - y}{\bar{b} + \bar{a}} \exp(-t\bar{a})$$

(Here we use the fact that $y = \frac{y+\bar{a}}{\bar{b}+\bar{a}}\bar{b} + \frac{\bar{b}-y}{\bar{b}+\bar{a}}(-\bar{a})$.) Now we replace y with Y and take expectations (noting $\mathbb{E}[Y] = 0$):

$$\mathbb{E}[\exp(tY)] \leq \frac{\mathbb{E}[Y] + \bar{a}}{\bar{b} + \bar{a}} \exp(t\bar{b}) + \frac{\bar{b} - \mathbb{E}[Y]}{\bar{b} + \bar{a}} \exp(-t\bar{a}) = \frac{\bar{b}e^{-t\bar{a}} + \bar{a}e^{t\bar{b}}}{\bar{b} + \bar{a}}$$

We claim that the last term is always bounded above by $\exp\left(\frac{t^2(\bar{b} + \bar{a})^2}{8}\right)$. To see this, we define

$$F(t) := \log \frac{\bar{b}e^{-t\bar{a}} + \bar{a}e^{t\bar{b}}}{\bar{b} + \bar{a}}$$

One computes⁷

$$F(0) = 0, \quad F'(0) = 0, \quad F''(t) = \frac{ab(a+b)^2}{(be^{-t(a+b)/2} + ae^{t(a+b)/2})^2}$$

⁷It is helpful to know that $(\log f(t))'' = \frac{f''(t)f(t) - f'(t)^2}{f(t)^2}$.

Using the AM-GM inequality, we get the bound

$$be^{-t(a+b)/2} + ae^{t(a+b)/2} \geq 2\sqrt{ab}$$

Hence

$$F''(t) \leq \frac{ab(a+b)^2}{4ab} = \frac{(a+b)^2}{4ab}$$

By integrating twice (or using Taylor expansions), it follows that

$$F(t) \leq \frac{(a+b)^2}{ab} \cdot \frac{t^2}{2}$$

which completes the proof. \square

Problem 6.

Let $(\Omega, \mathfrak{M}, \mathbb{P})$ be a probability space and X a non-negative L^2 random variable on Ω with positive expected value. Show that

$$\mathbb{P}[X \geq \theta \cdot \mathbb{E}[X]] \geq (1 - \theta)^2 \frac{\mathbb{E}[X]^2}{\mathbb{E}[X^2]} \quad \text{for all } \theta \in [0, 1]$$

Solution. Define two new random variables $Y, Z : \Omega \rightarrow [0, \infty)$ by

$$Y(\omega) := \begin{cases} X(\omega) & \text{if } X(\omega) < \theta \mathbb{E}[X] \\ 0 & \text{otherwise} \end{cases}, \quad Z(\omega) := \begin{cases} X(\omega) & \text{if } X(\omega) > \theta \mathbb{E}[X] \\ 0 & \text{otherwise} \end{cases}$$

Observe that $Y + Z = X$ and $YZ = 0$ (pointwise). Starting with the inequality

$$\mathbb{E}[Z^2 \mid Z \neq 0] \geq \mathbb{E}[Z \mid Z \neq 0]^2$$

and multiplying both sides by $\mathbb{P}[Z \neq 0]^2$, we get

$$\mathbb{E}[Z^2] \mathbb{P}[Z \neq 0] = \mathbb{E}[Z^2 \mid Z \neq 0] \mathbb{P}[Z \neq 0]^2 \geq (\mathbb{E}[Z \mid Z \neq 0] \mathbb{P}[Z \neq 0])^2 = \mathbb{E}[Z]^2$$

Thus

$$\mathbb{E}[X^2] \mathbb{P}[X \geq \theta \mathbb{E}[X]] = \mathbb{E}[Y^2 + Z^2] \mathbb{P}[Z \neq 0] \geq \mathbb{E}[Z^2] \mathbb{P}[Z \neq 0] \geq \mathbb{E}[Z]^2 = (\mathbb{E}[X] - \mathbb{E}[Y])^2$$

Since $Y \leq \theta \mathbb{E}[X]$ pointwise, we have

$$\mathbb{E}[X] - \mathbb{E}[Y] \geq \mathbb{E}[X] - \theta \mathbb{E}[X] = (1 - \theta) \mathbb{E}[X]$$

Putting things together gives

$$\mathbb{E}[X^2] \mathbb{P}[X \geq \theta \mathbb{E}[X]] \geq (1 - \theta)^2 \mathbb{E}[X]^2$$

\square

Problem 7.

Solution. a). We define the function $F(q) = \log \mathbb{E}[Y^q]$. We compute the derivatives of F :

$$F'(q) = \frac{\mathbb{E}[Y^q \log Y]}{\mathbb{E}[Y^q]} = \mathbb{E}_q[\log Y]$$

$$F''(q) = \frac{\mathbb{E}[Y^q (\log Y)^2]}{\mathbb{E}[Y^q]} - \left(\frac{\mathbb{E}[Y^q \log Y]}{\mathbb{E}[Y^q]} \right)^2 = \text{Var}_q[\log Y]$$

Taking the logarithm and dividing by $1/r$, our goal is to show the following relation:

$$\frac{1}{s}F(s) - \frac{1}{r}F(r) = \int_0^s \frac{1}{r}f_{r,s}(q)F''(q)dq$$

This is simply a calculus exercise. We compute:

$$\int_0^r \frac{1}{r}f_{r,s}(q)F''(q)dq = \frac{s-r}{rs} \int_0^r qF''(q)dq = \frac{s-r}{rs} (rF'(r) - F(r)) = \frac{s-r}{s}F'(r) - \frac{1}{r}F(r) + \frac{1}{s}F(r)$$

$$\int_r^s \frac{1}{r}f_{r,s}(q)F''(q)dq = \int_0^r \frac{s-q}{s}F''(q)dq = \frac{r-s}{s}F'(r) - \frac{1}{s}F(r) + \frac{1}{s}F(s)$$

b). We apply the result in part a) and use the additional bounds in the problem to get:

$$\mathbb{E}[Y_n^r] = (\mathbb{E}[Y_n^s])^{\frac{r}{s}} \cdot \exp \left(- \int_0^s f_{r,s}(q) \text{Var}_q[\log Y_n] dq \right) \leq C_s^{\frac{r}{s}} \exp \left(- c_s n \int_0^s f_{r,s}(q) dq \right)$$

We compute that:

$$\int_0^s f_{r,s}(q) dq = \frac{r(s-r)}{2}$$

We obtain that the optimal constants are:

$$D_r = \sup_{s \in (r,1)} C_s^{\frac{r}{s}}, \quad d = \inf_{s \in (r,1)} c_s \frac{r(s-r)}{2}$$

□

Problem 8.

Let X be a nonnegative random variable on a probability space $(\Omega, \mathfrak{M}, \mathbb{P})$. Show that

$$\mathbb{E}[X^s] = s \int_0^\infty t^{s-1} \mathbb{P}[X > t] d\lambda(t)$$

for all $s > 0$.

Solution. Applying HW4Q6, we have

$$\mathbb{E}[X^s] \equiv \int_{\Omega} X^s d\mathbb{P} = \int_0^\infty \mathbb{P}[X^s > x] d\lambda(x)$$

Applying the change of coordinates $x = t^s$, $d\lambda(x) = st^{s-1} d\lambda(t)$, we get

$$\int_0^\infty \mathbb{P}[X^s > x] d\lambda(x) = \int_0^\infty \mathbb{P}[X^s > t^s] \cdot st^{s-1} d\lambda(t) = s \int_0^\infty t^{s-1} \cdot \mathbb{P}[X > s] d\lambda(t)$$

□

Problem 9.

Let X be a random variable such that there are $0 < \alpha < a$, $\epsilon \in (0, 1)$ and $\beta \in (0, \infty)$ for which

$$\mathbb{P}[|X| < \alpha] \leq \beta \sqrt{\mathbb{P}[X \leq -a] \mathbb{P}[X \geq a]} + \epsilon$$

Show that

$$\mathbb{E}[X^2] \geq \frac{1-\epsilon}{1+\frac{1}{2}\beta} \alpha^2$$

Solution. Note that the AM-GM inequality gives

$$\sqrt{\mathbb{P}[X \leq -a] \mathbb{P}[X \geq a]} \leq \frac{1}{2}(\mathbb{P}[X \leq -a] + \mathbb{P}[X \geq a]) \leq \frac{1}{2}(\mathbb{P}[X \leq -\alpha] + \mathbb{P}[X \geq \alpha]) = \frac{1}{2} \mathbb{P}[|X| \geq \alpha]$$

So the inequality in the hypothesis becomes

$$\frac{\beta}{2} \mathbb{P}[|X| \geq \alpha] + \epsilon \geq \mathbb{P}[|X| < \alpha] = 1 - \mathbb{P}[|X| \geq \alpha]$$

Solving we get

$$\mathbb{P}[|X| \geq \alpha] \geq \frac{1-\epsilon}{1+\frac{1}{2}\beta}$$

We therefore have

$$\begin{aligned} \mathbb{E}[X^2] &\geq \alpha^2 \mathbb{P}[X^2 \geq \alpha^2] \\ &= \alpha^2 \mathbb{P}[|X| \geq \alpha] \\ &\geq \frac{1-\epsilon}{1+\frac{1}{2}\beta} \alpha^2 \end{aligned}$$

□

Problem 10

Let M be an $n \times n$ matroid with values in the field $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ which is positive-definite as a bilinear operator.

1. Calculate the Gaussian normalization factor

$$Z_A := \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Ax \rangle} d\lambda(x)$$

Solution. Let $\tilde{A} := \frac{1}{2}(A + A^*)$ be the conjugate-symmetrization of A . (We have $A = \tilde{A}$ in case A was already Hermitian. Also note that $A^* = A^T$ in the real case.) Then $\langle x, \tilde{A}x \rangle = \langle x, Ax \rangle$ for all $x \in \mathbb{F}^n$.⁸ Then \tilde{A} is unitarily (in the real case: orthogonally) diagonalizable. Let ν_1, \dots, ν_n be the eigenvalues

⁸To see this, note that the hypotheses imply $\langle x, Ax \rangle = \overline{\langle x, Ax \rangle} = \langle Ax, x \rangle = \langle x, A^*x \rangle$.

of \tilde{A} . Note that these are positive real numbers. Let $D = \text{diag}(\nu_1, \dots, \nu_n)$ and let U be a unitary (or orthogonal) matrix such that $\tilde{A} = U^*DU$. Then

$$\langle x, \tilde{A}x \rangle = \langle x, U^*\tilde{D}Ux \rangle = \langle Ux, DUx \rangle$$

On the other hand, $x \mapsto Ux$ is an isometry of \mathbb{F}^n . In particular, it preserves the Lebesgue measure. Thus

$$Z_A \equiv \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Ax \rangle} d\lambda(x) = \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, \tilde{A}x \rangle} d\lambda(x) = \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle Ux, DUx \rangle} d\lambda(x) = \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} d\lambda(x)$$

Using Tonelli's theorem, we can write

$$\int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} d\lambda(x) = \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} d\lambda(x) = \prod_{j=1}^n \int_{\mathbb{F}} e^{-\frac{1}{2}\nu_j |x_j|^2} d\lambda(x_j)$$

Using a (simple) change-of-coordinates formula, we get

$$\int_{\mathbb{F}} e^{-\frac{1}{2}\nu_j |t|^2} d\lambda(t) = \nu_j^{-d/2} \int_{\mathbb{F}} e^{-\frac{1}{2}|t|^2} d\lambda(t)$$

where $d = 1$ if $\mathbb{F} = \mathbb{R}$ and $d = 2$ if $\mathbb{F} = \mathbb{C}$. The Gaussian integral on the right has value $(2\pi)^{d/2}$. From this we get

$$\int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} d\lambda(x) = \left(\prod_{j=1}^n \frac{2\pi}{\nu_j} \right)^{d/2} = \frac{(2\pi)^{nd/2}}{(\det \tilde{A})^{d/2}}$$

□

2. Evaluate the integral

$$\int_{x \in \mathbb{F}^n} e^{-\frac{1}{2}\langle x, Ax \rangle + \langle v, x \rangle} d\lambda(x)$$

Solution. We deal only with the case $\mathbb{F} = \mathbb{R}$. Again, we replace A with \tilde{A} with no effect on the integral. We have

$$\begin{aligned} \int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}\langle x, Ax \rangle + \langle v, x \rangle} d\lambda(x) &= e^{\frac{1}{2}\langle \tilde{A}^{-1}v, v \rangle} \int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}\langle (x - \tilde{A}^{-1}v), \tilde{A}(x - \tilde{A}^{-1}v) \rangle} d\lambda(x) \\ &= e^{\frac{1}{2}\langle \tilde{A}^{-1}v, v \rangle} \int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}\langle x, \tilde{A}x \rangle} d\lambda(x) \\ &= e^{\frac{1}{2}\langle \tilde{A}^{-1}v, v \rangle} \sqrt{\prod_{j=1}^n \frac{2\pi}{\nu_j}} \end{aligned}$$

In particular, if A is orthogonal then

$$\int_{x \in \mathbb{R}^n} e^{-\frac{1}{2}\langle x, Ax \rangle + \langle v, x \rangle} d\lambda(x) = e^{\frac{1}{2}\langle A^{-1}v, v \rangle} \sqrt{\prod_{j=1}^n \frac{2\pi}{\nu_j}}$$

□

3. For $v_1, v_2 \in \mathbb{F}^n$, evaluate the expectation value

$$Z_A^{-1} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Ax \rangle} \langle v_1, x \rangle \langle x, v_2 \rangle d\lambda(x)$$

Solution. We again replace A with \tilde{A} . We also write $\tilde{A} = U^*DU$ for unitary U and diagonal D .

$$\begin{aligned} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, \tilde{A}x \rangle} \langle v_1, x \rangle \langle x, v_2 \rangle d\lambda(x) &= \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle Ux, DUx \rangle} \langle v_1, x \rangle \langle x, v_2 \rangle d\lambda(x) \\ &= \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} \langle v_1, U^*x \rangle \langle U^*x, v_2 \rangle d\lambda(x) \\ &= \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} \langle Uv_1, x \rangle \langle x, Uv_2 \rangle d\lambda(x) \end{aligned}$$

Then writing $Uv_1 = (u_1, \dots, u_n)$ and $Uv_2 = (w_1, \dots, w_n)$, we have

$$\begin{aligned} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, Dx \rangle} \langle Uv_1, x \rangle \langle x, Uv_2 \rangle d\lambda(x) &= \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \sum_{1 \leq j, k \leq n} \overline{u_j} w_k x_j \overline{x_k} d\lambda(x) \\ &= \sum_{1 \leq j, k \leq n} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \overline{u_j} w_k x_j \overline{x_k} d\lambda(x) \end{aligned}$$

We decompose this last term into two kinds of summands:

$$\sum_{j=1}^n \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \overline{u_j} w_j |x_j|^2 d\lambda(x) + \sum_{\substack{1 \leq j, k \leq n \\ j \neq k}} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \overline{u_j} w_k x_j \overline{x_k} d\lambda(x)$$

Each term in the second sum vanishes because each of the integrands $e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \overline{u_j} w_k x_j \overline{x_k}$ is *odd* in the variable x_j . Each term in the first sum can be rewritten (using Fubini-Tonelli) as

$$\begin{aligned} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\sum_{j=1}^n \nu_j |x_j|^2} \overline{u_j} w_j |x_j|^2 d\lambda(x_j) &= \left(\prod_{\substack{1 \leq k \leq n \\ k \neq j}} \int_{\mathbb{F}} e^{-\nu_k |x_k|^2/2} d\lambda(x_k) \right) \cdot \overline{u_j} w_j \int_{\mathbb{F}} e^{-\nu_j |x_j|^2/2} |x_j|^2 d\lambda(x_j) \\ &= Z_A \cdot \overline{u_j} w_j \int_{\mathbb{F}} e^{-\nu_j |x_j|^2/2} |x_j|^2 d\lambda(x_j) \Big/ \int_{\mathbb{F}} e^{-\nu_j |x_j|^2/2} d\lambda(x_j) \end{aligned}$$

One computes the quotient of these two integrals to be d/ν_j , where as before $d = 1$ if $\mathbb{F} = \mathbb{R}$ and $d = 2$ if $\mathbb{F} = \mathbb{C}$. Putting things together gives

$$\begin{aligned} \int_{\mathbb{F}^n} e^{-\frac{1}{2}\langle x, \tilde{A}x \rangle} \langle v_1, x \rangle \langle x, v_2 \rangle d\lambda(x) &= d \cdot Z_A \sum_{j=1}^n \overline{u_j} w_j / \nu_j \\ &= d Z_A \langle Uv_1, D^{-1}Uv_2 \rangle \\ &= d Z_A \langle v_1, \tilde{A}^{-1}v_2 \rangle \quad \square \end{aligned}$$

Problem 11.

Consider a sequence $(X_n)_{n \in \mathbb{N}}$ of independent and identically-distributed Bernoulli random variables, with a common parameter $p \in (0, 1)$. Calculate the asymptotic distribution of the random variable $A_N := N^{-1} \sum_{n \leq N} X_n$ in two ways: by (a) appealing to the Central Limit Theorem and by (b) proving and then using the De Moivre-Laplace Theorem.

(a) Let $q := 1 - p$. Each X_n satisfies $\mathbb{P}[X_n = 0] = q$, $\mathbb{P}[X_n = 1] = p$. One calculates $\mathbb{E}[X_n] = p$, $\mathbb{E}[X_n^2] = p$ and so $\mathbb{V}\mathcal{O}\backslash[X_n] = pq$ and $\sigma_{X_n} = \sqrt{pq}$. By the Central Limit Theorem, we have $A_n \approx \mathcal{N}(np, \sqrt{pqn})$

(b) Use the “De-Moivre Laplace Theorem” to recover the previous result.

Solution. An easy calculation shows that

$$\mathbb{P}_{A_n} = \sum_{k=0}^n \binom{n}{k} p^k q^{n-k} \delta_k$$

The standard normal distribution with mean pn and standard deviation \sqrt{pqn} has probability density function

$$t \mapsto \frac{1}{\sqrt{2\pi pqn}} e^{-\frac{(t-np)^2}{2pqn}}$$

We would like to say that⁹

$$\binom{n}{k} p^k q^{n-k} \approx \frac{1}{\sqrt{2\pi pqn}} e^{-\frac{(k-np)^2}{2pqn}} \quad (*)$$

The sense of \approx will be clarified below. Stirling’s approximation gives $x! \sim x^x e^{-x} \sqrt{2\pi x}$. It follows that

$$\begin{aligned} \binom{n}{k} p^k q^{n-k} &= \frac{n!}{k! \cdot (n-k)!} p^k q^{n-k} \\ &\approx \frac{\sqrt{n}}{\sqrt{2\pi k(n-k)}} \cdot \frac{p^k q^{n-k} \cdot n^n / e^n}{k^k / e^k \cdot (n-k)^{n-k} / e^{n-k}} \\ &= \frac{\sqrt{n}}{\sqrt{2\pi k(n-k)}} \left[\left(\frac{pn}{k} \right)^{k/n} \left(\frac{qn}{n-k} \right)^{1-k/n} \right]^n \\ &= \frac{\sqrt{n}}{\sqrt{2\pi k(n-k)}} \exp(n \cdot [\eta \log \alpha + (1-\eta) \log \beta]) \end{aligned}$$

where $\alpha := pn/k$, $\beta := qn/(n-k)$ and $\eta := k/n$. Since $\eta\alpha + (1-\eta)\beta = p + q = 1$, the concavity of the logarithm gives

$$\eta \log \alpha + (1-\eta) \log \beta \leq \log[\eta \alpha + (1-\eta) \beta] = 0$$

⁹To get $A_n \approx \mathcal{N}(np, \sqrt{pqn})$, we should really show that $\binom{n}{k} p^k q^{n-k} \approx \int_{k-1/2}^{k+1/2} \frac{1}{\sqrt{2\pi pqn}} e^{-\frac{(t-np)^2}{2pqn}} dt$. But $\frac{1}{\sqrt{2\pi pqn}} e^{-\frac{(k-np)^2}{2pqn}} dt$ is a good proxy for this integral.

with equality if and only if $\alpha = \beta$.¹⁰ It follows that $\binom{n}{k} p^k q^{n-k}$ tends exponentially to 0 if $\alpha \not\approx \beta$. Since $\eta\alpha + (1-\eta)\beta = 1$, we have $\alpha \approx \beta$ iff $\alpha \approx 1$, i.e. iff $p = k/n$. We will show that $(*)$ holds if $k/n \sim p$. Note that this implies $(n-k)/n \sim q$.

Going back to our Stirling-based approximation, and applying a Taylor expansion gives

$$\begin{aligned}
\eta \log \alpha + (1-\eta) \log \beta &= \frac{k}{n} \log \left(1 - \frac{k-pn}{k} \right) + \frac{n-k}{n} \log \left(1 + \frac{k-pn}{n-k} \right) \\
&\approx -\frac{k}{n} \left(\frac{k-pn}{k} + \frac{(k-pn)^2}{2k^2} \right) + \frac{n-k}{n} \left(\frac{k-pn}{n-k} - \frac{(k-pn)^2}{2(n-k)^2} \right) \\
&= -\frac{(k-pn)^2}{2nk} - \frac{(k-pn)^2}{2n(n-k)} \\
&\approx -\frac{(k-pn)^2}{2n^2 p} - \frac{(k-pn)^2}{2n^2 q} \\
&= -\frac{(k-pn)^2}{2n^2} \cdot \left(\frac{1}{p} + \frac{1}{q} \right) \\
&= -\frac{(k-pn)^2}{2n^2 pq}
\end{aligned}$$

Thus

$$\begin{aligned}
\binom{n}{k} p^k q^{n-k} &\approx \frac{\sqrt{n}}{\sqrt{2\pi k(n-k)}} \exp(n \cdot [\eta \log \alpha + (1-\eta) \log \beta]) \\
&\approx \frac{\sqrt{n}}{\sqrt{2\pi p q n^2}} \exp\left(-n \cdot \frac{(k-pn)^2}{2n^2 pq}\right) \\
&= \frac{1}{\sqrt{2\pi p q n}} \exp\left(-\frac{(k-pn)^2}{2npq}\right)
\end{aligned}$$

□

Problem 12.

Let Z be a standard normal random variable. Fixing $\mu \in \mathbb{R}$ and $\sigma > 0$, we define a new random variable

$$X := \exp(\mu + \sigma Z)$$

(a) Calculate the moments of X .

Solution. We have

$$\mathbb{E}[X^n] = \mathbb{E}[\exp(n\mu + n\sigma Z)] = \mathbb{E}[\exp(n\mu) \exp(n\sigma Z)] = e^{n\mu} \cdot \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{n\sigma t} \cdot e^{-t^2/2} dt$$

The integral at the end is given by

$$\int_{\mathbb{R}} e^{n\sigma t} \cdot e^{-t^2/2} dt = e^{n^2 \sigma^2/2} \int_{\mathbb{R}} e^{-(t-n\sigma)^2/2} dt = e^{n^2 \sigma^2/2} \int_{\mathbb{R}} e^{-t^2/2} dt = \sqrt{2\pi} e^{n^2 \sigma^2/2}$$

Thus $\mathbb{E}[X^n] = e^{n\mu + n^2 \sigma^2/2}$.

□

¹⁰We also have equality if $\eta = 0$ or $\eta = 1$. The special cases $k \approx 0$ and $k \approx n$ therefore need to be checked separately.

(b) Show that $\mathbb{E}[e^{tX}] = \infty$ for all $t > 0$.

Solution. Note that X takes only positive values. Therefore, by the monotone convergence theorem,

$$\mathbb{E}[e^{tX}] = \mathbb{E}\left[\sum_{n=0}^{\infty} \frac{t^n X^n}{n!}\right] = \sum_{n=0}^{\infty} \mathbb{E}\left[\frac{t^n X^n}{n!}\right] = \sum_{n=0}^{\infty} \frac{t^n}{n!} \mathbb{E}[X^n] = \sum_{n=0}^{\infty} \frac{t^n}{n!} e^{n\mu + n^2\sigma^2/2}$$

If this value were finite, the summands would tend to 0. However, the bound $n! \leq n^n$ shows that

$$\frac{t^n}{n!} e^{n\mu + n^2\sigma^2/2} \geq \frac{t^n}{n^n} e^{n\mu + n^2\sigma^2/2} = e^{n\mu + n^2\sigma^2/2 + n \log t - n \log n}$$

Since $\sigma > 0$, the exponent

$$n\mu + n^2\sigma^2/2 + n \log t - n \log n$$

is dominated by the term $n^2\sigma^2/2$, so tends to ∞ with n . It follows that the series diverges to infinity.

So $\mathbb{E}[e^{tX}] = \infty$. \square

(c) Show that Z has the same moments as some *discrete* random variable on \mathbb{R} (i.e. one whose measure is supported on a countable set).

Solution. Let ξ be the measure

$$\xi := C \sum_{m \in \mathbb{Z}} e^{-\sigma^2 m^2/2} \delta_{\sigma m}$$

where $C = \left(\sum_{m \in \mathbb{Z}} e^{-\sigma^2 m^2/2}\right)^{-1}$ is chosen so that $\xi(\mathbb{R}) = 1$. Let ν be the pushforward of ξ under the map $x \mapsto \exp(\mu + \sigma x)$. Concretely, we have

$$\nu := C \sum_{m \in \mathbb{Z}} e^{-\sigma^2 m^2/2} \delta_{e^{\mu + \sigma^2 m}}$$

Then the n -th moment of ν is given by

$$\begin{aligned} \int_{\mathbb{R}} x^n d\nu(x) &= C \sum_{m \in \mathbb{Z}} e^{n(\mu + \sigma^2 m)} e^{-\sigma^2 m^2/2} \\ &= e^{n\mu + \sigma^2 n^2/2} \cdot C \sum_{m \in \mathbb{Z}} e^{-\sigma^2(m-n)^2/2} \\ &= e^{n\mu + \sigma^2 n^2/2} \cdot C \sum_{m \in \mathbb{Z}} e^{-\sigma^2 m^2/2} \\ &= e^{n\mu + \sigma^2 n^2/2} = \mathbb{E}[X^n] \end{aligned} \quad \square$$