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Problem 1.

Show that convergence in total variation implies convergence in distribution for random variables.

Solution. Let (2,9, P) be a probability space. Suppose X,, : Q — C are random variables for n € N and
that X,, — X in total variation. This means that the total variation of Px, —Px goes to 0 as n — ooE|
Let f: C — C be a bounded continuous function. We show that E[f(X,)] — E[f(X)] as n — oo:

/QfoXnd]P’—/QfonP’

= /CfdPxn—/CfdPX‘

- /Cfd(PXn M‘

[E[f(Xn)] = E[f(X)]]

IN

(sup |]) - / 1d[Px, — Px]|
C C
— Guplf)- [P, ~Pxllry

Since the last term goes to 0 with n, so does the first term. O

1 Convergence here is with respect to the the total variation norm, namely ||-||7y : &+~ |u| (). A related norm is given by
[Ill1 :=p — supgean [1£(S)|. The two norms are equivalent in the sense that ||u||1 < ||pu|l7v < 7||pll1. In particular, the notions

of convergence for these two norms coincide.



Problem 2.

Show that convergence in probability implies convergence in distribution for random variables.

Solution. Let (2,9, P) be a probability space. Suppose X,, : @ — C are random variables for n € N and

that X,, — X in probability. This means we have lim,,_, P[|X,, — X| > ¢] — 0 as n — 0 for all € > 0.
Let f : C — C be a bounded continuous function. We need to show that E[f(X,)] — E[f(X)] as

n — oo. It suffices to show that limsup,,_, . |E[f(X,) — f(X)]| < € for arbitrary ¢ > 0. Fixing ¢ > 0, we

define for each n
Bni={w e Q| [f(Xn(w)) — f(X())| > €}
We claim that P(B,) — 0 as n — co. Assuming this, it follows that

[E[f(Xn)] = E[f(X)]] = [E[f 0 X» — f o X]|

/(foXn—foX)dIF"
Q

g/ﬂfoXn—foX\dIF’
:/Bn|foXn—foX| dIP+/Q_Bn|foXn—foX|
<[ Urexi+lroxh+ [ e

Bn Q_Bn

< (ZS%pf) -P(By) + ¢

Taking lim sup of the first and last terms of this inequality gives the desired result.

It remains to show that P[B,] — 0 as n — oo (i.e. that f(X,) — f(X) in probability). To see
this, fix € > 0 and choose M > 0 such that P[|X| < M] > 1 — e. The uniform continuity of f on the closed
disk of radius M + 1 implies that for some § € (0,1), we have |f(z) — f(y)| < € for all z,y € C satisfying
|z|,ly] < M +1 and |z —y| < §. Without loss of generality, we may suppose that P[| X, — X| < J] < €
for all nE| Then |f(X,(w)) — f(X(w))] > € implies that either |X,,(w) — X(w)| > ¢ or | X, (w)| > M + 1 or
| X (w)] > M +1. If | X,,(w) — X(w)| < 9§, then the last two cases are covered by the case that | X (w)| > M.
Putting all this together gives

PIBn] = P[|f(Xn) = F(X)| > ] <P[|X,, — X[ > 0] + P[|X] > M] < 2e

The result now follows from the fact that € can be made arbitrarily small. O

2This can be achieved by restricting to a tail of the sequence f1, fa,.. ..



Problem 3.

Let (©, 9%, P) be a probability space. Suppose X,, :  — R for n € N and and X :  — R are (real-valued)

random variables. Show that X,, — X in distribution if and only if P[X,, < ] — P[X < ¢] for all values

of t € R at which z — P[X < z] is continuous. C.f. Theorem 2.3 in Varadhan’s Probability Theory.

Solution. = Fix t € R at which z — P[X < z] is continuous. Let ¢ > 0. Choose J > 0 such that
PX <t—0]>PX >t]—e¢ PX <t+0] <PX <t]+e
Let f: R — R be a continuous function satisfyingEI

(i) f(z)=1forz <t—0d.
(ii) f(z) =0 for = > t.
(iii) 0 < f(z) <1 for all z € R.
Then
PIX,, <t] > E[f(Xn)] — E[f(X)] >P[X <t -] >P[X <] —¢
It follows that

liminf P[X,, <t] > PX <t]—¢

n—oo
Similarly, let g : R — R be a continuous function satisfying
(i) g(z) =1 for z < t.
(ii) g(x) =0for z >t +4.
(iii) 0 < g(z) <1forall z € R.
Then
PX, <t] <E[g(X,)] — E[g(X)]| <PX <t+ <PX <t]+e

It follows that
limsupP[X, <] <P[X <t]+e

n—oo

Since € can be made arbitrarily small in the inequalities

limsupP[X,, <t] —e <PX <] <liminfP[X,, <t]+¢€

n— oo n—oo

it follows that lim,, . P[X,, < t] =P[X < ].

3For instance, we can find a piecewise-linear function with these properties.



<= Note that x — P[X < z] is an increasing function of x. This implies that it has at most countably

many points of discontinuity. In particular, its points of continuity are dense in R.

Let f: R — C be a bounded continuous function. Let K > 0 be an upper bound on |f|. Let ¢ > 0.
Choose M > 0 such that P[X < —M] < € and P[X < M] > 1 —e. We can additionally choose M such
that both M and —M are points of continuity of z — P[X < z]. Without loss of generality, we may
also suppose that P[X,, < —M] < 2¢ and P[X,, < M] > 1 — 2¢ for all n[]

Since [-M, M] is compact, f is uniformly continuous on this interval. So we can find a sequence

Zo,Z1,...,xN (for some N) such that

(i

) xo=—-M,zny =M
(il) o <21 < -+ < zN
)

)

(i) Each point z; is a point of continuity of z — P[X < z]
(iv) |f(y1) — f(y2)| < € for all y1,y2 in a common interval [z;, z;41].
Define g: R — C by g = 2?21 f(2j-1)X[e;_1,2;)- The hypotheses above imply that

[f(t) —g(®)| <e forte[-M,M)| and |f(t) —g(t)] <2K forallt
Hence for all n

[E[f(X,)] — Elg(X,)]| < €+ KP[X,, < —M] + KP[X,, > M] < e + 4Ke

Similarly,
[E[f(X)]—E[g(X)]| <e+ KPX < —M]+ KP[X > M] <e+2Ke

Hence, by the triangle inequality,
|E[f(Xn)] = E[f(X)]] < [E[f(Xn)] — E[g(Xn)]] + [E[g(Xn)] — E[g(X)]| + [Elg(X)] — E[f(X)]]
< (GK + 2)6 + if(xj_l) ‘]P)[Ltj_l <X,< ZL‘j} — ]P[Il,’j_l <X< ’JIJH

=1

Since
]P)[l'jfl <X, < .’Ej] — P[l’jfl <X < CL']‘] = (]P[Xn < LU]'] — ]P)[X < {Ej]) — (]P)[Xn < {,ijl] — IP)[X < (Ejfl])
this term tends to 0 with n. Therefore, taking limit suprema in the inequality above gives

lim sup [E[f(X,.)] — E[f(X)]| < (6K +2)e
n—oo
Since € can be made arbitrarily small, the result follows.
O

4This is necessarily true for all large enough n. So we can achieved the desired result by replacing our sequence of functions

by one of its tails.



Problem 4.

Let (2,91, P) be a probability space. Suppose X, : @ — R for n € N and and X : @ — R are (real-
valued) random variables satisfying Elexp(itX,,)] — Elexp(itX)] pointwise for ¢ € R. Then X,, — X in

distribution.

Solution. We need to show that E[f(X,,)] — E[f(X)] for all bounded continuous functions f : R — C. The
proof of is given under Theorem 7.32 in the lecture notes in the case where f is the Fourier transform of
some L! function g : R — C. Now let F be the image of the Fourier transform operator L}(R — C,\) —
Co(R — C). Note that F is dense in Ch(R — (C)E| Therefore, for any f € Co(R — C), we can a sequence
f1, f2, ... in F such that f,, — f uniformly. We have (using the triangle inequality)

[(E[fm(Xn)] = Elfm (X)]) = ELf (Xn)] = E[f(X)D] < [E[fm (Xn)] = E[f (Xa)]| + [E[frm (X)] = E[f(X)]]
= [E[(fm = H(Xn)]| + [E[(fm — F)(X)]]
< 2/ fm = flloo

and therefore (using the triangle inequality again)

[ELf(Xn)] = E[f (O] < [E[fm (Xn)] = E[fm (X)D] + 2/ fm = flloo

We take limit suprema over n, noting that the f,, € F implies that the middle term tends to 0. This gives

lim sup [E[f (Xn)] = E[f(X)]] < 2] fm = flloe

Letting m — oo shows that E[f(X,,)] = E[f(X)]. This holds for any f € Cy(R — C). To extend the result
to Cy(R — C), consider any bounded continuous function f : R — C. Fix € > 0. Let M be large enough
that P[-M < X < M] > 1—e¢. Let f; : R — C be a continuous function satisfyinéﬂ

(i) f1 coincides with f on the interval [-M — 1, M + 1].
(ii) f1 vanishes outside the interval [-M — 2, M + 2]
(iil) |f1(x)| < |f(z)| for all z € R.
Then
IELF(X)] — ELA (X)) = [EI(f — f)(Xa))l S ENf — fil 0 Xa] < 2] flloc Pl Xal > M +1]
To bound the last term, let g : R — R be a compactly supported function satisfying

(i) g =1 on the interval [—M, M].

5This follows from the combination of Corollary 8.23 and Proposition 8.17 in Folland’s Real Analysis.
6For instance, such function can be obtained by multiplying f by a suitable compactly supported function valued in [0, 1].



(ii) g vanishes outside the interval [-M — 1, M + 1]
(iii) 0 < g(z) <1forall z € R.

Then
P-M-1<X,<M+1]>E[g(X,)] —Eg(X)| >P[-M <X <M]>1-—c¢

It follows that P[|X,| > M + 1] < e for all sufficiently large n. So going back to the inequality above shows
that for all large enough n

[E[f(Xn)] = E[f1(Xn)]] < 2¢ flloo

Since € can be made arbitrarily small, the result is obtained. O

Problem 5.

Let (2,9, P) be a probability space and X a real-valued random variable on € such that a < X < b almost
surely. Show that

Elexp(tX)] < exp (tIE[X] + W)

Solution. Consider the centred random variable Y := X — E[X]. Note that Y takes values in [—a, b] where
@,b > 0 are given by a:=E[X] — a, b:=b — E[Y]. The above inequality becomes

t2(b+a)?

Blexp(e7)] < exp (00 )

Using the convexity of the function y — exp(ty) on the interval [—a, b], we can write

exp(ty) < = +il exp(th) + = gexp(—tﬁ)
a b+a
ere we use the fact that y = 2H2p 4 by (_g). ow we replace y wit and take expectations (noting

H he fact th Uy 4 1t N 1 h Y and tak
E[Y] =0): _
E[Y]+a —  b—E[Y] . beT' 4 get?
Elexp(tY)] < ——— exp(tb) + — exp(—ta) = ——————

[exp(tY)] < == —— exp(th) + ———— exp(—ta) "

We claim that the last term is always bounded above by exp (@) To see this, we define

One computesm ( -
abla+b
(be—t(a+b)/2 4 getlatb)/2)2

FO0)=0, F(0)=0 F'(t)=

Tt is helpful to know that (log f(t))” = %W



Using the AM-GM inequality, we get the bound
be—t@th)/2 4 gotatb)/2 5 o /ap

Hence ) )
" ab(a +b) (a+b)
< p—
FI(#) < 4ab 4ab

By integrating twice (or using Taylor expansions), it follows that

(a+b)% ¢

ab 2

F(t) <

which completes the proof. O

Problem 6.

Let (2,991, P) be a probability space and X a non-negative L? random variable on §2 with positive expected

value. Show that
LE[X]?
E[X?]

PIX >6-E[X]] > (1-0) for all 6 € [0, 1]

Solution. Define two new random variables Y, Z : Q — [0, 00) by

¥(w) = X (w) ifX(w)<9E[X]’ () = X(w) if X(w) > 0E[X]
0 otherwise 0 otherwise

Observe that Y+ Z = X and YZ = 0 (pointwise). Starting with the inequality
E[Z* | Z # 0] > E[Z | Z # 0]
and multiplying both sides by P[Z # 0]2, we get
B[22 P[Z # 0] = B[22 | Z £ 0 P[Z £ 0] > (BZ | Z # 0]P[Z # 0))* = E[2]’

Thus
E[X?|P[X > 0E[X]] = E[Y? + Z°| P[Z # 0] > E[Z*] P[Z # 0] > E[Z]* = (E[X] - E[Y])?

Since Y < O E[X] pointwise, we have
E[X] - E[Y] > E[X] - 0E[X] = (1 - 0) E[X]

Putting things together gives
E[X?P[X > 0E[X]] > (1 —0)?E[X]? O



Problem 7.

Solution. a). We define the function F'(q) = log E[Y?]. We compute the derivatives of I :
E[Y?logY]

F'(q) = E[vq]

=E,[logY]

F(q) =

E[Yi(logY)?] (E[Y7logY]\>
E[Y4] < E[Y 4] > = Varg[logY]

Taking the logarithm and dividing by 1/7, our goal is to show the following relation:
1
-F ( - *F / f rs F " )
S

This is simply a calculus exercise. We compute:

| te@r@dn= 20 [ g =2 0E ) - FO) = UG < L6+ L F()

O e SO

b). We apply the result in part a) and use the additional bounds in the problem to get:

B[] = (BYS)* -exp (— / " fra(a)Varllog Yn]dq) < ¢ exp (— con | S fr,s(cndq)

We compute that:
s r(s—r
/ fT,S(Q)dq = ( 5 )
0

We obtain that the optimal constants are:

() = ~F(r) + ()

D, = sup C’E, d= inf Csr(s—r)
s€(r,1) s€(r,1) 2

Problem 8.
Let X be a nonnegative random variable on a probability space (£, 901, P). Show that

E[X*] = s / EUPIX > £ dA(Y)

0
for all s > 0.
Solution. Applying HW4Q6, we have
X% = / XSdIP:/ P[X?® > z] d\(z)
Q 0

Applying the change of coordinates z = t°, d\(z) = st*~1 dA(t), we get

/O PIX* > ] dA(x) = /0 PIX® > 9] - st* 1 dA(t) = s /0 1 BX > 8] dA()



Problem 9.

Let X be a random variable such that there are 0 < o < a, € € (0,1) and 5 € (0, 00) for which

P[|X| < a] < B\/P[X < —a]P[X >a] +¢

Show that
1
E[X2] > —a?
1+4p
Solution. Note that the AM-GM inequality gives
1 1 1
VP[X < —a]P[X >a] < i(IP’[X < —a]+PX >a]) < i(IP[X < —a]+PX >al]) = §P[|X| > af

So the inequality in the hypothesis becomes

TB{X|> o +¢ > P|X| < a] = 1 - B[IX| > of
Solving we get
1_
PX|>a] > —
1+ 38

We therefore have

Problem 10

Let M be an n x n matroid with values in the field F € {R, C} which is positive-definite as a bilinear operator.

1. Calculate the Gaussian normalization factor
Z A ::/ e~ 2w AT) d\(x)

Solution. Let A:= 1(A + A*) be the conjugate-symmetrization of A. (We have 4 = A in case A was
already Hermitian. Also note that A* = A7 in the real case.) Then (z, Az) = (x, Az) for all z € IE‘”

Then A is unitarily (in the real case: orthogonally) diagonalizable. Let vq,...,1, be the eigenvalues

8To see this, note that the hypotheses imply (x, Az) = (x, Az) = (Az,z) = (x, A*z).



of A. Note that these are positive real numbers. Let D = diag(v1,...,v,) and let U be a unitary (or

orthogonal) matrix such that A=U*DU. Then
<x,/~lx> = <x, U*DUz> = (Uzx,DUx)
On the other hand, x — Uz is an isometry of F”. In particular, it preserves the Lebesgue measure.
Thus
Za = / e~ 3 (@A) d\(z) = / ¢~ 3(wAz) d\(z) = / ¢~ 2{UzDU=) d\(z) = / e~z (@Da) d\(z)

n

Using Tonelli’s theorem, we can write

n

/ e~ 2D g)\(z) = / e~z Zimvileil g (z) = H / e~ 3vilzsl? d\(z;)

j=1"F
Using a (simple) change-of-coordinates formula, we get
/e*%”f“‘2 d\(t) = Vj_d/2 / ezt gx(t)
F F

where d = 1 if F =R and d = 2 if F = C. The Gaussian integral on the right has value (27)%2. From

this we get
/2

n nd/2
/ e~ 2 P7) gA(z) = H 2 — (2ﬂ)~ /
n i1 Vi (det A)d/2

. Evaluate the integral
/ e—%(a;,A:z)—i—(v,w} d/\($)
zeF™

Solution. We deal only with the case F = R. Again, we replace A with A with no effect on the integral.
We have

In particular, if A is orthogonal then

/ e—%(x,A:c}—&-(v,w) d)\(a:) _ e%(Aflv,v>
zER™

10



3. For v1,vs € F™, evaluate the expectation value
23 [ HEA (o,0) (o, 02) dr(a)
Solution. We again replace A with A. We also write A = U*DU for unitary U and diagonal D.

/ e ) (2 (@,00) dA(z) = / e 2 UmPU) 0y, 2) (2, v2) dA(x)

n

z/ ez (@D7) (v, Uy (U*x,v2) dA(x)
z/ e~z (@.D7) (Uvy,z) (x,Uvg) dA(x)
Then writing Uvy = (uq,...,u,) and Uve = (wy, ..., wy,), we have

/ e3P (o, 2) (z, Uvy) dA(z) :/ e~z Dimavilzil® Z ;Wi & ;T dA(T)

1<j,k<n

SIS g2 _
E / e~ 2 2= Vilw g T dA ()
Fn

1<g,k<n

We decompose this last term into two kinds of summands:

n
_1lsn |2 — 2 _lsn g |2 — —
§ / e”2 X vl Py o P dA(x) + § / e 2 Xi=1 Vil P T dA ()
n n
Jj=1

1<j,k<n
J#k
. . . _1l5n a2 — .
Each term in the second sum vanishes because each of the integrands e~ 2 2i=1 1% gz, 77 is odd

in the variable x;. Each term in the first sum can be rewritten (using Fubini-Tonelli) as

[ et g o axe = | ][

1<k<n”’F
kg

=7 mw/a%'%“” 2| d)\(:z:j)//el’jlsz/Q dA(z;)
F F

One computes the quotient of these two integrals to be d/v;, where as before d =1if F =R and d = 2

e ReR /2 g (z) -@wj/e_”jle|2/2\$j|2 dA(z;)
F

if F = C. Putting things together gives

/n e 2 (" A9) () @) (2,00) dN(@) = d- Za Y Wywy /v,

j=1

=dZs (Uvy, D" Uvs)

— dZa <v1,21’1v2> 0

11



Problem 11.

Consider a sequence (X, )nen of independent and identically-distributed Bernoulli random variables, with a
common parameter p € (0,1). Calculate the asymptotic distribution of the random variable Ay := N~! Yon < Xn
in two ways: by (a) appealing to the Central Limit Theorem and by (b) proving and then using the De

Moivre-Laplace Theorem.

(a) Let ¢g:=1— p. Each X,, satisfies P[X,, = 0] = ¢, P[X,, = 1] = p. One calculates E[X,,] = p, E[X?] =p
and so VON[X,] = pq and ox, = \/pq. By the Central Limit Theorem, we have A,, ~ N (np7 \ /pqn)

(b) Use the “De-Moivre Laplace Theorem” to recover the previous result.

Solution. An easy calculation shows that

n n o
Pa, =), (k)pkqn F ok

k=0
The standard normal distribution with mean pn and standard deviation ,/pgn has probability density
function

1 _(t—np)?
t ———e Zan

v 2mpgn
n k n—k 1 _(k;”Z)Q
(k)p TS T *)
The sense of ~ will be clarified below. Stirling’s approximation gives x! ~ x%e~*+/2mx. It follows that
N\ &k n—k _ n! E _n—k
(k)p R TR P ST
f pkqnsz . nn/en

\/271']6(27—]@’) ’ Kk ek - (n — k)n—k/en—k
_ Vn k(g R
= e [(k) (:%5) ]

_ Wkﬁi_mexp (n - [nloga + (1 — n)log ])

where a:=pn/k, 8:=qgn/(n — k) and n:=k/n. Since na + (1 —n)B = p + ¢ = 1, the concavity of the

We would like to say thatﬂ

~
~

logarithm gives

nloga+ (1 —n)log 8 < log[na+ (1 —n)B] =0

_(t=np)? _ (k=np)?
9To get An = N (np, /pqn), we should really show that (})p*q"~* ~ :jll//; \/27r1W6 2pan dt. But ﬁe 2pan dt

is a good proxy for this integral.

12



with equality if and only if a = B It follows that (Z)pkq”*’C tends exponentially to 0 if « % S. Since
na+ (1 —n)f =1, we have a = § iff o = 1, i.e. iff p = k/n. We will show that () holds if k/n ~ p.
Note that this implies (n — k)/n ~ q.

Going back to our Stirling-based approximation, and applying a Taylor expansion gives

nlogoz—l—(l—n)logﬁ:ﬁlog 1_/4;—pn +n_klog 1+k—pn
n k n n—k

x_k(k’—pn (k—pn)2>+n—k<k—pn (k_pn)2>

n k * 2k2 n n—k 2n—k)?
(k—pn)*>  (k—pn)?

N 2nk 2n(n — k)
(k—pn)* _ (k—pn)®

~

2n2p 2n2q
B (k—pn)Q.(l_i_l)
2n2 P q
__(k—pn)
 2n2pg

Thus

(Z)pkq"—’“ ~ %k{(ik) exp (- [nlog a + (1 - 1) log )

o (—n- B

- v/ 2mpgn? 2n%pq
1 k — pn)?
N S G Gt 0 R
V2mpgn 2npq

Problem 12.

Let Z be a standard normal random variable. Fixing 4 € R and o > 0, we define a new random variable
X :=exp(u+o02)

(a) Calculate the moments of X.

Solution. We have
1
E[X"] = Elexp(nu + noZ)] = Elexp(nu) exp(noZ)] = ™ - —/ enot . et /2 gt
V2T Jr

The integral at the end is given by

/ena't . 67t2/2 dt = 6"202/2/ 67(t7n0)2/2 dt = en202/2/ 67t2/2 dt = m6n202/2
R R R

Thus E[X"] = gnutn?o?/2, O

10We also have equality if 7 = 0 or 7 = 1. The special cases k ~ 0 and k =~ n therefore need to be checked separately.

13



(b) Show that E[e!X] = oo for all £ > 0.

Solution. Note that X takes only positive values. Therefore, by the monotone convergence theorem,

=X = _ [t Xxn =t =t 2 2
tX71 _ _ X" = np+n“oc</2
Ele }E[Z nl 121[2{”'}2”']}3[ ]*Zn!e“
n=0 n=0 n=0 n=0

If this value were finite, the summands would tend to 0. However, the bound n! < n™ shows that

n n
Lenp+nzo‘2/2 > t nu+n20?/2 — eny+n202/2+nlogt—nlogn

—e
n! nn

Since o > 0, the exponent

np +n?0%/2 + nlogt — nlogn

is dominated by the term n?0?/2, so tends to co with n. It follows that the series diverges to infinity.

So E[e?X] = 0. O

Show that Z has the same moments as some discrete random variable on R (i.e. one whose measure is

supported on a countable set).

Solution. Let £ be the measure

=03 e oo,
meZ

-1

where C' = (Zm€Z e‘”2m2/2) is chosen so that £(R) = 1. Let v be the pushforward of £ under the

map x — exp(u + ox). Concretely, we have
- —027n2/2
V= C Z (& 6eu+02'm
mEZL
Then the n-th moment of v is given by

2" dv(z) =C e”(/ﬁ-azm)e—azm?/z
A >

meZ

_ enu+a2n2/2 .C Z e*JZ(mfn)Q/Z

mEZ
— en;t+02n2/2 .C Z 6—02m2/2
meZ
_ entotn 2 _ B[] 0
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