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. Show that if X,, — X in total variation (see the lecture notes footnote for a definition) then X,, — X in distribution.
. Show that if X,, — X in probability then X,, — X in distribution.

. Show that X, — X in distribution iff P [X,, < t] = P[X < t] pointwise in ¢ € R, for all ¢ such that t — P[X < ¢] is
continuous.

. Show that if E [eitxn] —E [eitX} pointwise in ¢ then X,, — X in distribution.

. (Hpffding’s lemma) Using Taylor and Jensen, show that if X is a real-valued random variable such that ¢ < X <b
almost-surely, then

t2(b—a)’
E [etX} S exp <tE [X} -+ (8a)> (t S R) .
Also show the trivial lower bound from Jensen,

Ele'X] > !B (t>0).
. (Paley-Zygmund inequality) Let X > 0 be an L? random variable. Show that then

2 E[X]?

PIX 2 0E(X]) 2 (1-0)" £y

0 €0,1]) .
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. (Hélder’s equality)

(a) Let 0 <r < s <1land Y >0 be a random variable. Show that

E[Y] = (E[Y™])} exp ( / io foe (g) Var, [log (v)] d (q))

where

oo (@) = S min ([ g 1) (s —max({r,a})) (4 € (0,9))

and for any random variable X,
2
E[Xe?X]

E[ee¥] ’

Var, [X] = E, [(X — E, [X])?] =

(b) Now let { Y, }, .y be a sequence of non-negative random variables such that for any s € (0, 1) there exists some
Cy < oo such that

sup E[Y;}] < C,
neN



and such that for any s € (0, 1) there exists some ¢, > 0 with which

inf Var, [log (Y,)] > csn (neN).
a€(0,s)

Conclude that for any r € (0, 1),
E[Y,] < D, exp(—d,n) (neN).
Find optimal D, < oo and d,- > 0.
8. (The Layer-Cake Representation revisited (cf. HW4Q6)) Let X > 0 be a random variable. Show that

E[X*] :s/:P[X>t}ts—1dA(t) (s>0).

9. Let X be a real-valued random variable such that there are 0 < a < a, € € (0,1), 8 € (0,00) with which

P[IX|<a] <BVP[X >a]P[X < —d] +¢.
Show that then, the following lower bound holds

1—¢e 4

E[X?] > o
1+ 38

D=

10. Let A > 0 be some n x n matrix with entries in F € { R,C } (recall that A > 0 means (v, Av) > 0 for allv € C"\{0 };
with this notation we mean please carry out the calculation for both real and complex cases). Calculate the following
integrals:

(a) The Gaussian normalization factor:

Zy = / e~ 2 {mAT) g\ (z).
rzeF™
(b) The unnormalized Gaussian MGF: For some v € F",

ZAE4 [e<”’X>] E/ e 3 (mA)+(v.2) g )\ (x).
zeF™

(¢) The Gaussian two point function: For some vy,vs € F",
Ea[(v1, X) (X, v2)] .

11. Let { X,, },,cn be an IID sequence of Bernoulli random variables, each with parameter p € (0,1).

(a) Calculate the asymptotic distribution of the random variable

1 N
n=1

as N — oo by invoking the central limit theorem.

(b) Repeat this exercise by proving (using Striling) and then invoking the “De Moivre-Laplace theorem™

) phgrh e Lo (neN,p+qg=1 > 0)
= — npq n s fr— ’ .
p) P4 D pTq b, q

12. Let Z be a standard normal random variable distributed in 717 (0,1) and u € R, > 0. Define a new random variable

X = ehtoZ
We say that X is a log-normal random variable with distribution parameters u,o.
(a) Calculate E[X™] for all n € N>q (there is a simple closed-form formula) and show

E[X"] = e t2o™™  (neN).



(b) Show that

E[e”] = oo (t>0).
(c¢) Define a measure
vi= Zpk&vk
k=1

where { zj },on C (0,00) is some sequence and { py },cn € (0,00) is chosen so that > 72 | pp = 1 and

> prap =E[X"]  (neN).
k=1

Conclude that v and Px have the same sequence of moments but they are not the same measure.



