
Measure Theory
Princeton University MAT425

Lecture Notes

shapiro@math.princeton.edu

Created: Jan 10th 2025, Last Typeset: May 15, 2025

Abstract

These lecture notes correspond to a course given in the Spring semester of 2025 in the math department of Princeton
University.

Contents
1 Soft introduction 4

1.1 The Riemann integral and its inadequacies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Intuitive difference between Riemann and Lebesgue integration . . . . . . . . . . . . . . . . . . . . . . . 6

2 Abstract measure theory [Rudin] 6
2.1 Measurable sets and measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Limits of measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Integrating positive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Limit theorems I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Integrating complex-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Limit theorems II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Construction of non-trivial measures [Folland] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9.1 Outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9.2 Constructing measures out of outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9.3 Constructing outer measures out of premeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.9.4 The Kakutani-Markov-Riesz representation theorem [extra, Folland and Rudin] . . . . . . . . . . 37

3 Borel measures on topological spaces 41
3.1 Some topological notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Establishing regularity properties of measures from topological properties of X [Folland] . . . . . . . . . 44

4 The Lebesgue measure on R 45
4.1 The premeasure which generates the Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Proof of the uniqueness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 The Lebesgue measure on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Exotic phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 The relation between the Riemann and the Lebesgue integral . . . . . . . . . . . . . . . . . . . . . . . . 50

5 More abstract measure theory 52
5.1 Products [Folland] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Products of measurable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2 The product measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3 The Fubini-Tonelli Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Push forward and pull back measures [Not sure about the source] . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Important inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 The L2 structure of a measure space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 The Lebesgue decomposition theorem [Rudin] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6 Total variation and complex measures [Rudin] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.1 Integration with respect to complex measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1



6 Differentiation of measures on Rn [Rudin] 80
6.1 The Lebesgue differentiation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 The change of variable formula revisited on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Probability theory–measure theory with a soul [Folland] 92
7.1 Multiple random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3 Important inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Convergence of sums of random variables: LLN, CLT, LIL and all of that . . . . . . . . . . . . . . . . . 102

7.4.1 The law of large numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.2 The central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.3 Higher order terms in the asymptotic expansion: an Edgeworth expansion . . . . . . . . . . . . . 108
7.4.4 Law of iterated logarithm (LIL) [extra] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Large deviations [Varadhan] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.6 The Kolmogorov extension theorem [Biskup] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.7 The Wiener measure [Simon functional integration] [extra] . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.7.1 Scaling law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.7.2 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.7.3 Donsker’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7.4 Continuity of Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7.5 The Feynman-Kac formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.7.6 The Karhunen–Loève expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.8 Conditional expectation and probability [extra] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A The extended real line 128

B Elementary families 128

C Banach spaces 129
C.1 The operator norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

D Hilbert spaces 133

E Urysohn’s Lemma [Rudin] 137

F Glossary of mathematical symbols and acronyms 139
F.1 Important sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

References 140

Syllabus
• Main source of material for the lectures: this very document (to be published and weekly updated on the course

website–please do not print before the course is finished and the label “final version” appears at the top).

• Official course textbook: No one, main official text will be used but in preparing these notes; I will probably make
heavy use of [Rud86] and [SS05].

• Other books one may consult are [Fol99, FR10, Sim15, Par67, Bog06].

• Two lectures per week: Tue and Thur, 1:30pm–2:50pm in Fine Hall 314.

• People involved:

– Instructor:
Jacob Shapiro shapiro@math.princeton.edu
Office hours: In Fine 603, Thursdays 4pm-5pm starting Feb 13th, before that over zoom on Mondays at 4pm
(send email beforehand).

– Assistants:
Serban Eugen Cicortas cicortas@princeton.edu
Office hours: Thursdays 3pm-4pm Fine 401
Hyungjun Choi hc9325@princeton.edu
Office hours: Tuesdays from 4:30pm - 5:30pm in the common area in front of Jadwin A10.

2



Chayim Lowen cl3172@princeton.edu
Office hours: Tuesdays 4pm-5pm Fine 401

– Undergraduate assistant:
Lucas Shedlock ls2597@princeton.edu
Office hours: ?
Recitation sessions run by Lucas on Fridays 6pm-9pm in Fine 1001.

• HW will be published on a regular basis but is NOT to be submitted: do it for your own good. Sample solutions
will be published one week later.

• Grade: 50% midterm (written in-person) scheduled-midterm; 45% final exam (oral, in person), 5% bonus.

• Attendance policy: some extra credit to students who attend lectures regularly and ask questions or point out
mistakes.

• Anonymous Ed discussion enabled. Use it to ask questions or to raise issues (technical, academic, logistic) with the
course.

• If you alert me about typos and mistakes in this manuscript (unrelated to the sections marked [todo]) I’ll grant you
some extra credit. In doing so, please refer to a version of the document by the date of typesetting.

– Thanks goes to: Akshat Agarwal (×22), Heyu Li (×9), Natalia Khotiaintseva (×7), Vernon Hughes (×14),
Eva Engel (×13), Tal Spiegel (×19), Joshua Lin (×4), Ary Cheng (×5), Jishnu Roychoudhury, Zhuokai Huang
(×4), Lydia Boubendir (×21), Olivia Kwon (×∞), Selina Marvit (×5), Kareem Jaber (×2), Rodrigo Salgado
Domingos Porto (×2), Joshua Cheng (×4), Kashti Satish Umare (×2), Ron Shvartsman, Kevin Xu, Emmet
Weisz (×2).

Semester plan
List of (big) theorems and topics aimed at being included:

• Abstract measure theory.

• The Lebesgue integral: see Section 2.7.

• Radon-Nikodym derivative: see Section 5.

• Fubini, dominated convergence (see Theorem 2.61), monotone convergence (see Theorem 2.47), Fatou (see Lemma 2.53).

• Borel-Cantelli appears in HW3Q9.

• Ergodic theorems.

• Carathéodory’s theorem (see Theorem 2.70 and Theorem 2.76).

• The Lebesgue-Stieltjes integral appears in HW3Q5.

• Tempered distributions.

• Hilbert space theory and applications to Fourier Transforms, and partial differential equations.

• Some probability theory?

• Introduction to fractals? Maybe.

Semester plan by date:

• Jan 28th 2025: introduction and abstract measure theory

• Jan 29th 2025: abstract measure theory.

3



1 Soft introduction

1.1 The Riemann integral and its inadequacies
In a single-value analysis class we are introduced to the rigorous definition of the Riemann integral, which is a C-linear
map from functions

f : [a, b] → R

into numbers. In particular, the integral is interpreted in multiple ways as:

1. The average value the function takes:

f =
1

b− a

∫
[a,b]

f .

2. The (signed) area enclosed between the graph of f , the horizontal axis, and the vertical lines x = a, x = b.

3. The appropriate continuum generalization to the discrete sum

N∑
n=1

f (n)

understood in some appropriate sense.

There are various ways to rigorously define the Riemann integral [Rud76]. Let us proceed somewhat informally. The
minimal assumption we make on f is that it is bounded (otherwise we do not even ask whether it is Riemann integrable
or not). To avoid the complication of partitions1, let us always consider regular subdivisions of [a, b]. Then the lower /
upper Riemann sum at N subdivisions is given by

LN (f) :=
b− a

N

N−1∑
n=0

inf

({
f (x)

∣∣∣∣ x ∈
(
a+ [n, n+ 1]

b− a

N

)})
and

UN (f) :=
b− a

N

N−1∑
n=0

sup

({
f (x)

∣∣∣∣ x ∈
(
a+ [n, n+ 1]

b− a

N

)})
.

Definition 1.1. If the limits limN LN (f) and limN UN (f) exists and are equal, we say that f is Riemann integrable
on [a, b] and define its Riemann integral as equal to the result of these equal limits:∫

[a,b]

f := lim
N
LN (f) = lim

N
UN (f) .

We remind the reader of Lebesgue’s theorem. For it we need the notion of measure zero set:

Definition 1.2 (Zero measure sets). Let S ⊆ R be given. We say that S has zero measure iff for any ε > 0 there
exists a countable collection of open intervals { Un }n∈N such that both conditions below hold:∑

n

|Un| < ε

S ⊆
⋃
n∈N

Un .

1We note in passing that while we are allowed to restrict to regular subdivisions, we are not allowed to restrict to both regular subdivisions
and always sample at the starting / ending point of each sub-interval.
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Theorem 1.3 (Lebesgue’s theorem). The bounded function f : [a, b] → R is Riemann integrable iff its set of discon-
tinuities on [a, b] has measure zero.

Armed with this theorem, it is easy to come up with some examples and counter-examples of Riemann integrable
functions:

1. Any continuous function is Riemann integrable.

2. The indicator function on the cantor Set C, χC : [0, 1] → R, is Riemann integrable. Its set of discontinuities is the
Cantor set C which has measure zero (though it is uncountable).

3. The indicator function on a fat Cantor set is not Riemann integrable.

4. The indicator function onto the rationals χQ : [0, 1] → R is not Riemann integrable since it is discontinuous every-
where.

This last example is especially heinous: the set on which χQ is different than zero is countable, it should somehow integrate
to zero, since the countable set should not interfere with the uncountablity of the whole interval. Hence, already we see
some deficiencies of the Riemann integral: what if the function we are trying to integrate doesn’t have zero measure?
Couldn’t we still say something about its average value? This brings us to the study of just which sets are measurable
at all, which we will get to eventually. Another question is what about unbounded functions? The improper Riemann
integral addresses this to an extent.

Example 1.4. Consider the function f : (0, 1) → R given by x 7→ 1√
x

which is clearly unbounded. However, we may
make sense of it formally by defining fn :

[
1
n , 1
]
→ R by x 7→ 1√

x
. For finite n ∈ N, the function fn is bounded and

Riemann integrable, and ∫
[ 1
n ,1]

fn =

∫
x∈[ 1

n ,1]

1√
x
dx = 2x

1
2

∣∣∣1
x= 1

n

= 2− 2√
n
→ 2 .

If we had a finite number of integrable blow ups like this we could somehow manage. But this approach can go horribly
wrong:

Example 1.5. Since (0, 1) ∩ Q is countable, let η : N → (0, 1) ∩ Q be the bijection which enumerates this set. Define
then a sequence of functions fn : [0, 1] → R via

fn (x) :=

{
(x− ηn)

− 1
2 x > ηn

0 x ≤ ηn
(n ∈ N, x ∈ [0, 1]) .

Then define f : [0, 1] → [0,∞] via

f (x) :=

∞∑
n=1

fn (x)

2n
(x ∈ [0, 1]) .

f has the weird property that it is unbounded on every open subinterval of [0, 1], since each one contains a rational
number. Hence f is not Riemann integrable on every subinterval of [0, 1] which is not a singleton.

But somehow we still feel like we should be able to assign an area under the graph of f , since we can do so for
each fn: ∫

[0,1]

fn = lim
ε→0+

∫
[0,ηn−ε]

fn +

∫
[ηn+ε,1]

fn

= lim
ε→0+

∫
x∈[ηn+ε,1]

(x− ηn)
− 1

2 dx

= lim
ε→0+

2 (x− ηn)
+ 1

2

∣∣∣1
x=ηn+ε

= 2
√
1− ηn .
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and somehow it should equal∫
[0,1]

f =

∞∑
n=1

2−n
∫
[0,1]

fn =

∞∑
n=1

2−n+1
√

1− ηn ≤
∞∑
n=1

2−n+1 <∞ .

From the more practical and less theoretical perspective, a much more severe limitation of the Riemann integral is
how it behaves with limits. Namely, we have

Theorem 1.6. Let fn : [a, b] → R be a sequence of bounded Riemann integrable functions which converges uniformly
to the bounded function limn fn : [a, b] → R. Then limn fn : [a, b] → R is also Riemann integrable, and

lim
n

∫
[a,b]

fn =

∫
[a,b]

lim
n
fn .

However, establishing uniform converges is notoriously difficult, in fact it is false in many interesting applications. For
instance, letting η : N → (0, 1) ∩ Q again be the bijection which enumerates its codomain, define

fn := χ{ ηj | j∈[1,n]∩Z } .

Clearly each fn is bounded and Riemann integrable. Also, limn fn = χQ∩[0,1] pointwise. But as we saw above, this limit
is not Riemann integrable. We are looking for a way to exchange integration and limit without uniform convergence. We
shall see that to do so we need to invent a new, more robust notion of integration.

1.2 Intuitive difference between Riemann and Lebesgue integration
We will see that conceptually, while the Riemann integral divides the domain into small pieces and measures the area of
each small rectangle, the Lebesgue integral does things somewhat sophisticatedly. To calculate the Lebesgue integral, we
first need the notion of a measure which generalizes volume on Euclidean space to arbitrary spaces. Then we divide the
codomain into small chunks and ask what is the measure of the preimage of that chunk in the domain. This turns out to
give a more robust definition of the integral, which is not so susceptible to discontinuities and behaves better with limits.
For that reason we now turn to abstract measure theory.

2 Abstract measure theory [Rudin]
We now want to define the concept of measurability and ultimately assign a measure to measurable sets. This will be
useful when we define the Lebesgue integral, and furthermore, this has applications in probability theory where measurable
sets may be considered as those events for which a probability can be calculated.

2.1 Measurable sets and measurable functions
On a set X, we now want to define a system of subsets much like Open (X) is a system of subsets with certain ax-
ioms.

Definition 2.1 (σ-algebra). Let X be a set. A collection M ⊆ P (X) is called a σ-algebra in X iff M obeys the
following conditions:

1. X ∈ M (contains the whole space).

2. X \A ∈ M for each A ∈ M (closed under complements).

3. If {An }n∈N is a sequence of subsets such that An ∈ M for each n ∈ N then⋃
n∈N

AN ∈ M .

(closed under countable unions).

The tuple (X,M) where M is a σ-algebra on X, is together called a measurable space.

Note that this definition automatically implies: (1) closure with respect to countable intersections via De Morgan and
(2) ∅ ∈ M.

6



Remark 2.2 (Etymology). The prefix σ denotes the closure w.r.t. countable unions. If we had merely closure wr.t.
finite unions this would be called an algebra.

Contrast this with the notion of a topology on a given set X:

Definition 2.3 (Topology). Let X be a set. A collection T ⊆ P (X) is called a topology on X iff T obeys the
following conditions:

1. X,∅ ∈ T (contains the whole space and the empty set).

2.
⋂n
j=1 Uj ∈ T if U1, · · · , Un ∈ T (closed under finite intersections).

3.
⋃
α∈I Uα ∈ T if Uα ∈ T for any α ∈ I, where I is an arbitrary set (not necessary countable) (closed under

arbitrary unions).

The tuple (X,T), if T is a topology on X, is together called a topological space.

When dealing with a topological space X, it is often convenient to denote its (already defined) topology as Open (X).
Similarly, given a measure space X, we denote by Msrbl (X) the σ-algebra in it, should it be understood from the
context.

Definition 2.4 (Measurable function). Let f : X → Y be given where X,Y are two measure spaces. We say that f
is measurable iff f−1 (A) ∈ Msrbl (X) for each A ∈ Msrbl (Y ).

Note that Rudin [Rud86] defines measurable function slightly differently (his codomains are always topological spaces).

Claim 2.5. The composition of two measurable functions is again measurable.

Proof. Let f : X → Y and g : Y → Z be two measurable functions between measure spaces. Let A ∈ Msrbl (Z).
Then g−1 (A) ∈ Msrbl (Y ). But then f−1

(
g−1 (A)

)
∈ Msrbl (X). But f−1

(
g−1 (A)

)
= (g ◦ f)−1

(A) so we conclude
g ◦ f is measurable.

Example 2.6 (The trivial σ-algebra). Given a set X, we may consider its power set P (X) as a σ-algebra on it. It
is called the trivial or largest σ-algebra on X. The smallest one is of course {∅, X }.

Example 2.7. Take X := { 1, 2, 3, 4 }. Then a possible σ-algebra is {∅, { 1, 2 } , { 3, 4 } , { 1, 2, 3, 4 } }.

Example 2.8. Let A ∈ P (X). Then {∅, A,X \A,X } is the smallest σ-algebra which contains A.

We may consider the category of measure spaces, in which measurable functions are precisely the morphisms.

Remark 2.9. A topology need not be a σ-algebra: it could fail to contain complements.

Claim 2.10. An arbitrary intersection of σ-algebras is again a σ-algebra. Not so for unions.

Proof. TODO, fix this: (even though a-priori it lies within an intersection of σ-algebras). Let then An ∈ σ (F) for
every n ∈ N. Let M ∈ Ω. Then An ∈ M by definition, so

⋃
nAn ∈ M, as M is itself a σ-algebra. But since M ∈ Ω

was arbitrary, the union lies in the intersection σ (F). The other two properties, complements and the entire space,
are verified in the same manner.
TODO : provide a counter-example.

Definition 2.11 (σ-algebra generated by a function). Let f : X → Y with Y a measure space and X a set. Then
the σ-algebra generated by f is a σ-algebra on X, denoted by σ (f), given by

σ (f) :=
{
f−1 (A)

∣∣ A ∈ Msrbl (Y )
}
.

One may then rephrase and say that, if X already had a measure space structure, then f is measurable w.r.t. it iff
σ (f) ⊆ Msrbl (X). Cf. with initial topology.

7



Remark 2.12. Recall that arbitrary intersections of σ-algebras are again σ-algebras, Claim 2.10. As such, if A ∈
Msrbl (X) then we have a σ-algebra structure on A given by the inclusion map ι : A→ X and σ (ι).

Example 2.13 (Baire σ-algebra). Let X be a topological space. Define a σ-algebra M in X via the following
criterion: M is the smallest σ-algebra so that all functions f : X → C which are continuous and compactly supported
are measurable.

Theorem 2.14 (σ-algebra generated by a collection of subsets). Let F ⊆ P (X) with X some set. Then, there exists
a smallest (in the sense of set inclusion) σ-algebra σ (F) in X such that F ⊆ σ (F). We call σ (F) the σ-algebra
generated by F.

Proof. (See [Rud86] Theorem 1.10) Let Ω be the family of all σ-algebras in X which contain F. Of course P (X) is
in Ω, so it is not empty. Define the set

σ (F) :=
⋂

M∈Ω

M .

Clearly F ⊆ σ (F) by construction. The fact that σ (F) is itself a σ-algebra and not just a set follows via Claim 2.10.

Theorem 2.15. If F ⊆ P (X) is countable (i.e., |F| = ℵ0) then σ (F) ⊆ P (X) is either finite or |σ (F)| = 2ℵ0 .

Proof. (Chayim Lowen) See HW3Q3.

Definition 2.16 (Borel sets). Given a topology on X, by Theorem 2.14 there is a σ-algebra generated by Open (X):
σ (Open (X)). The elements of σ (Open (X)) are called the Borel sets of X. In particular:

• Closed sets are also Borel sets, since they are the complements of open sets.

• Countable unions of closed sets are also Borel sets. These are called Fσ’s (F=closed, σ=union (summe)). For
example [a, b) is a Fσ set of R with its standard topology.

• Countable intersections of open sets are also Borel sets. These are called Gδ’s (G=open, δ=intersection (durch-
schnitt)). For example [a, b) is also a Gδ set of R with its standard topology.

We denote this special σ-algebra of Borels sets by B (X) := σ (Open (X)).

Thus, given a topology on X we are automatically provided with the Borel σ-algebra on it! If we don’t specify any
other σ-algebra on a (otherwise topological) space, we shall always mean the Borel σ-algebra.

Claim 2.17. Let f : X → Y be a mapping between two measurable spaces where

Msrbl (Y ) = σ (F)

for some F ⊆ P (Y ). Assume further that

f−1 (F ) ∈ Msrbl (X) (F ∈ F) .

Then f is measurable.

Proof. We may consider the set

M :=
{
A ∈ P (Y )

∣∣ f−1 (A) ∈ Msrbl (X)
}
.

Cf. with final topology. We may verify it is stable under complements and countable unions: If A ∈ M, we want to
show that Ac ∈ M, i.e., that f−1 (Ac) ∈ Msrbl (X). But

f−1 (Ac) =
[
f−1 (A)

]c
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and Msrbl (X) is closed under complements so we are finished. Next, if {An }n∈N ⊆ M then

f−1

(⋃
n∈N

An

)
=
⋃
n∈N

f−1 (An)

and since Msrbl (X) is closed under countable unions, we have f−1
(⋃

n∈N An
)
∈ Msrbl (X) so⋃

n∈N

An ∈ M

so, M is itself a σ-algebra in Y . By hypothesis, F ⊆ M and so actually

F ⊆ σ (F) ⊆ M

since, by construction, σ (F) is the smallest σ-algebra which contains F. But by σ (F) ⊆ M we learn that f is
measurable.

Corollary 2.18. Let f : X → Y be a mapping between where X is a measurable space and Y is a topological
space, such that f−1 (U) ∈ Msrbl (X) for any U ∈ Open (Y ). Then f is measurable w.r.t. Msrbl (X) and B (Y )
respectively. Similarly, if f−1 (F ) ∈ Msrbl (X) for any F ∈ Closed (Y ) then f is measurable w.r.t. Msrbl (X) and
B (Y ) respectively.

Proof. We know that the Borel σ-algebra is generated by the open sets

B (Y ) ≡ σ (Open (Y ))

but in fact it may also be generated by the closed sets (one may verify this...), i.e.,

σ (Open (Y )) = σ (Closed (Y )) .

This then coincides with Rudin’s definition of measurable function, since he only considers maps whose codomains are
topological spaces and then restricts to the special case of the Borel σ-algebra on them.

Theorem 2.19 (Rudin’s Theorem 1.8). Let u, v : X → R be two measurable functions (R is considered a measure
space w.r.t. B (R)). Let φ : R2 → Y be continuous where Y is some topological space. Let h : X → Y be given by

X ∋ x 7→ φ (u (x) , v (x)) ∈ Y .

Then h is measurable w.r.t. Msrbl (X) and B (Y ).

Proof. The function f : X → R2 given by u× v. We have h = φ ◦ f , so we only have to show f is measurable. Let R
be any open rectangle on the plane with sides parallel to the axes: R = I1 × I2 for two open intervals I1, I2 and so

f−1 (R) = u−1 (I1) ∩ v−1 (I2)

which is measurable by assumption on u, v. Since every open set V ∈ Open
(
R2
)

is the countable union of such
rectangles Ri, we find

f−1 (V ) = f−1

( ∞⋃
i=1

Ri

)
=

∞⋃
i=1

f−1 (Ri)

and hence f−1 (V ) is measurable and so is f .
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Theorem 2.20 (Rudin’s Theorem 1.9). Let X be a measure space. Then

1. If u, v : X → R are measurable then f : X → C defined by f := u+ iv is measurable.

2. If f : X → C is measurable then Re {f} , Im {f} and |f | are measurable functions from X → R.

3. If f, g : X → C are measurable then f + g and fg are too.

4. If A ∈ Msrbl (X) then χA : X → R is a measurable function.

5. If f : X → C is measurable then there exists some α : X → C measurable such that f = α |f |.

Proof. We only prove the last statement. Set E := f−1 ({ 0 }) (a measurable set) and Y := C \ { 0 }. Let

φ : Y → C

z 7→ z

|z|
.

Define
α (x) := φ (f (x) + χE (x)) (x ∈ X) .

Show that φ is continuous on Y to conclude.

In what follows, it will be convenient to consider the extended real line [−∞,∞], see Appendix A. In particular we shall
always consider it as a measure space w.r.t. B ([−∞,∞]) unless otherwise specified.

Theorem 2.21. Let f : X → [−∞,∞] be a map with X a measure space. Here we consider [−∞,∞] as the extended
real line with its topology, see Appendix A. Then if

f−1 ((α,∞]) ∈ Msrbl (X) (α ∈ R)

then f is measurable w.r.t. Msrbl (X) and B ([−∞,∞]).

Proof. The set (α,∞] is already open in [−∞,∞] so our goal is to build any of the basis elements of [−∞,∞] using
this basic open set. To that end, let

Ω :=
{
E ⊆ [−∞,∞]

∣∣ f−1 (E) ∈ Msrbl (X)
}
.

Let α ∈ R and { αn }n → α from below. Then (αn,∞] ∈ Ω by hypothesis, and we have

[−∞, α) =

∞⋃
n=1

[−∞, αn] =

∞⋃
n=1

(αn,∞]c

so we get the other type of basic open set, [−∞, α). Next, using

(α, β) = [−∞, β)
⋂

(α,∞]

we see that since every open set of [−∞,∞] is a countable union of segments of the above types, so that Ω contains
all open sets of [−∞,∞] and hence f is measurable.

2.2 Limits of measurable functions
Recall the definition of the lim inf and lim sup: Let { an }n∈N ⊆ R be a given sequence. Then

lim inf
n→∞

an ≡ lim
n→∞

(
inf
m≥n

am

)
= sup
n∈N

inf
m≥n

am . (2.1)

Similarly,

lim sup
n→∞

an ≡ lim
n→∞

(
sup
m≥n

am

)
= inf
n∈N

sup
m≥n

am .
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Evidently, we always have
lim inf
n→∞

an ≤ lim sup
n→∞

an

and if the limit of { an }n actually exists then both are equal to that limit.

Theorem 2.22. If fn : X → [−∞,∞] is a sequence of measurable functions then supn∈N fn : X → [−∞,∞] defined
by

X ∋ x 7→ sup
n∈N

fn (x)

and lim supn→∞ fn : X → [−∞,∞] defined by

X ∋ x 7→ lim sup
n→∞

(fn (x))

are both measurable.

Proof. Let us denote g := supn∈N fn and h := lim supn→∞ fn. Then, from the definition of g it follows that

g−1 ((α,∞]) =

∞⋃
n=1

f−1
n ((α,∞]) .

Indeed, let us show this. If x ∈ g−1 ((α,∞]) then g (x) > α. That means supn∈N fn (x) > α so in particular there
must exist n ∈ N so that fn (x) > α. Alternatively, if x ∈

⋃∞
n=1 f

−1
n ((α,∞]) then there exists some n ∈ N for which

fn (x) > α. This in particular implies g (x) > α.
We conclude that g is measurable. We write

h = inf
k≥1

sup
i≥k

fi

so that h is also measurable by similar representations.

Corollary 2.23. We have

1. The limit of every pointwise convergent sequence of complex measurable functions is measurable.

2. If f, g : X → R are measurable then so are max ({ f, g }) and min ({ f, g }).

3. In particular, so are f+ ≡ max ({ f, 0 }) and f− = −min ({ f, 0 }).

We may always decompose any R-valued function into its positive and negative parts as follows

f = f+ − f−

with f± the positive and negative parts of f , and |f | = f+ + f− 2.

2.3 Simple functions
We shall build a theory of integration starting from primitive functions and then take limits. This will proceed as follows.
Given any function

f : X → C

we write it as
f = Re {f}+ i Im {f} .

Then we write
Re {f} = Re {f}+ − Re {f}−

and similarly for the imaginary part, so that any complex function is the (complex) linear combination of four nonnegative
functions. Measurability is inherited by all four. Then we want to approximate each nonnegative function with even
simpler objects, simple functions.

2Note a certain minimal property for these objects: Note that if f = g − h with g, h ≥ 0 then f+ ≤ g and f− ≤ h. This is because f ≤ g
and 0 ≤ g clearly implies max ({ f, 0 }) ≤ g.
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Definition 2.24 (Simple function). Let X be a measure space and s : X → C. If |im (s)| < ∞ then s is called a
simple function. If in addition, im (s) ⊆ [0,∞) then s is called a nonnegative simple function. We are not including
±∞ as part of C so that simple functions, by definition, cannot take on the values ±∞.

Clearly simple functions always take on the form

s =

n∑
i=1

αiχAi

for some n ∈ N, αi ∈ C and Ai ≡ { x ∈ X | s (x) = αi }.

Claim 2.25. A simple function X → C of the form s =
∑n
i=1 αiχAi

is measurable iff Ai ∈ Msrbl (X) for i = 1, . . . , n.

Proof. (We consider C w.r.t. the Borel sigma algebra, as usual). By Corollary 2.18 we only need to check that
the pre-image of closed sets is msrbl. Hence let F ⊆ C be closed. If F does not contain any of the points αi then
s−1 (F ) = ∅ ∈ Msrbl (X). If F contains αi1 , . . . , αik then

s−1 (F ) =

k⋃
j=1

Aij

and the union of measurable sets is measurable. Conversely, if s is measurable, take the (closed) singleton { αi } to
verify that Ai ∈ Msrbl (X).

Remark 2.26. The product and sum of simple functions is again a simple function. Scalar multiplication also preserves
this property. Hence they form an algebra over C. As we shall see, they however are not closed under limits.

Now we want to establish that any nonnegative measurable function may be approximated by simple functions from
below.

Theorem 2.27 (Approximation by simple functions). Let f : X → [0,∞] be measurable. Then there exist simple
measurable functions sn : X → [0,∞) such that

1. 0 ≤ s1 ≤ s2 ≤ · · · ≤ f .

2. sn → f pointwise.

Proof. (Thanks to Lydia Boubendir)
For every n ∈ N, define

φn : [0,∞] → [0,∞)

t 7→

{
2−n ⌊2nt⌋ 0 ≤ t < n

n t ∈ [n,∞]

which is depicted, at n = 3 in Figure 1. The function φn converges to t 7→ t as n→ ∞. It is doing that in two ways
simultaneously:

1. The region over which it does not resemble the identity function, [n,∞] keeps shrinking.

2. The region over which it does resemble the identity function, it becomes finer and finer at approximation the
identity function there by subdividing [0, n] into roughly 2n sub-intervals and being saw-toothed there.

First, note that at each fixed n ∈ N, φn is a Borel function. Indeed, it is a simple function that takes on basically
2n values on intervals and as such it is measurable. For monotonicity, want to establish

φn (t) ≤ φn+1 (t) (t ∈ [0,∞] , n ∈ N) .
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Figure 1: The function φ3 approximating the identity.

For t ≥ n+ 1 this is easy because n ≤ n+ 1. For n ≤ t ≤ n+ 1 as well, since there,

φn+1 (t) ≡ 2−n−1
⌊
2n+1t

⌋
≥ 2−n−1

⌊
2n+1n

⌋
= n ≡ φn (t) .

Finally, we want to show that for t ∈ [0, n],

2−n−1
⌊
2n+1t

⌋ ?
≥ 2−n ⌊2nt⌋
↕⌊

2n+1t
⌋ ?

≥ 2 ⌊2nt⌋ .

This last relation is implied by the relation

⌊x⌋ ≤ 1

2
⌊2x⌋ (x ≥ 0)

which is always true. Indeed, for all m ∈ N, if x ∈ [m,m+ 1), then ⌊x⌋ = m whereas

1

2
⌊2x⌋ = m+

1

2
χ[m+ 1

2 ,m+1) (x) .

Now we set
sn := φn ◦ f

which automatically fulfills both of our constraints, using the fact that the composition of measurable functions is
measurable Claim 2.5.

2.4 Measures
We now come to the notion of measure which for us is to be understood as a generalization of volume in Rn to much more
exotic sets (yet they still have to be measurable), or of a weight of sets.
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Definition 2.28 (Measure). A complex measure is a map

µ : Msrbl (X) → C ∪ {∞ }

which is countably additive, i.e.,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ (An) (An ∈ Msrbl (X) : An ∩Am = ∅∀n ̸= m) (2.2)

and for which ∃A : µ (A) < ∞ (otherwise it is not very interesting). If im (µ) ⊆ [0,∞] then we say µ is a positive
measure.

Note: Despite the “logical” Definition 2.28, when using the term complex measure Rudin assumes µ never takes on the
value ∞ (unlike when we use the phrase positive measure). Following him, so we will really only consider the dichotomy:

• Either µ takes values in C (complex measure).

• Or µ takes values in [0,∞] (positive measure).

Theorem 2.29. Let µ : Msrbl (X) → [0,∞] be a positive measure. Then

1. µ (∅) = 0 (so in particular (2.2) holds also for finitely many unions).

2. (monotonicity) A ⊆ B implies
µ (A) ≤ µ (B) (2.3)

for all A,B ∈ Msrbl (X).

3. µ may be approximated from “inside” as follows:

lim
n→∞

µ (An) = µ

( ∞⋃
n=1

An

)
(2.4)

for all increasing sequences An ∈ Msrbl (X): A1 ⊆ A2 ⊆ A3 ⊆ · · · .

4. µ may be approximated from “outside” as follows:

lim
n→∞

µ (An) = µ

( ∞⋂
n=1

An

)
(2.5)

for all decreasing sequences An ∈ Msrbl (X): A1 ⊇ A2 ⊇ A3 ⊇ · · · with µ (A1) assumed finite.

Proof. By assumption, there exists B ∈ Msrbl (X) with µ (B) < ∞. Define now a sequence A1 := B, Aj := ∅ for
all j ≥ 2. This sequence obeys the conditions of (2.2) since it is pairwise disjoint. Hence we find

∞ > µ (B) = µ (B) +

∞∑
j=2

µ (∅)

and the only way this equation could hold is if µ (∅) = 0. Now that we know µ (∅) = 0, we have additivity for finite
sequences.

For monotonicity, given A,B ∈ Msrbl (X) with A ⊆ B, let us decompose B = A∪(B \A) which are now disjoint.
Hence additivity implies

µ (B) = µ (A) + µ (B \A)

and using positivity of the measure, we find this is larger than or equal to µ (A).
Let us now establish the approximation properties. To do so, given any increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · ,

we decompose it into disjoint parts as follows:

B1 := A1

Bn := An \An−1 (n ≥ 2) .
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Note that An =
⋃n
j=1Bj . So by (2.2) we find

µ (An) =

n∑
j=1

µ (Bj)

and moreover, since
⋃
nAn =

⋃
nBn, we get

µ

(⋃
n

An

)
=

∞∑
n=1

µ (Bn) .

The result now follows by taking the limit n→ ∞ on the penultimate displayed equation.
For approximation from outside, we make the following new variables.

Cn := A1 \An (n ≥ 1) .

This implies C1 ⊆ C2 ⊆ C3 ⊆ · · · and
µ (Cn) = µ (A1)− µ (An) .

Moreover, A1 \ (
⋂
An) =

⋃
n Cn, so now we may invoke the previous statement on the sequence Cn to get

µ (A1)− µ

(⋂
n

An

)
= µ

(
A1 \

⋂
n

An

)

= µ

(⋃
n

Cn

)
= lim

n
µ (Cn)

= lim
n

(µ (A1)− µ (An))

= µ (A1)− lim
n
µ (An)

from which our result follows.

Our main example for a positive measure will be the Lebesgue measure on Rn, but it will be a little while before we can
define it.

Example 2.30 (Counting measure). Let Msrbl (X) = P (X) and define c : Msrbl (X) → [0,∞] via

S 7→ |S|

(the cardinality of a set, ∞ if it is countable or higher). c is called the counting measure. Usually we only define the
counting measure if X is countable.

Example 2.31 (Unit mass; “Dirac delta measure”). Let Msrbl (X) = {∅, X, { x0 } , X \ { x0 } } be a σ-algebra and
define δx0

: Msrbl (X) → [0,∞] by

S 7→

{
1 x0 ∈ S

0 x0 /∈ S
≡ χS (x0) .

In cryptic symbols,
δx0

= χ· (x0) .

δx0
is called the unit mass concentrated at x0. It is closely related to the Dirac delta function. While the latter is not

actually a function (it is a distribution), the unit mass is a very simple object.

Example 2.32. If we take the counting measure c on N and set An := N≥n then
⋂
nAn = ∅ and yet µ (An) = ∞.

This does not violate the theorem above since the assumption µ (A1) <∞ is clearly violated here.

Definition 2.33 (Complete measure). A measure µ : Msrbl (X) → C is called complete iff for any Z ∈ Msrbl (X)
such that µ (Z) = 0, any subset A ⊆ Z is also measurable A ∈ Msrbl (X).
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Example 2.34. We will later on see that the Lebesgue measure µ on R is not complete if we insist its domain is
B (R) since there are Lebesgue measurable subsets which are not Borel.

Theorem 2.35. Let (X,M, µ) be a measure space. Define

M := { E ∈ P (X) | ∃AE , BE ∈ M : AE ⊆ E ⊆ BE ∧ µ (BE \AE) = 0 }

and µ : M → C via

µ (E) := µ (AE)
(
E ∈ M

)
.

Then M is a σ-algebra in X and µ is a measure.

Proof. TODO

Claim 2.36. Let X,Y be two measurable spaces and µ : Msrbl (X) → [0,∞] be a complete measure. If f : X → Y is
measurable and g : X → Y equals to f µ-almost-everywhere then g is also measurable.

Proof. Let

N := { x ∈ X | f (x) ̸= g (x) } .

By hypothesis,
µ (N) = 0 .

In particular part of the hypothesis is that N ∈ Msrbl (X)!
Let A ∈ Msrbl (Y ). We want to show that g−1 (A) ∈ Msrbl (X). Again, by hypothesis, f−1 (A) ∈ Msrbl (X).

g−1 (A) ≡ { x ∈ X | g (x) ∈ A }
= [{ x ∈ X | g (x) ∈ A } ∩N ] ⊔ [{ x ∈ X | g (x) ∈ A } ∩N c]

= [{ x ∈ X | g (x) ∈ A } ∩N ] ⊔ [{ x ∈ X | f (x) ∈ A } ∩N c]

= [{ x ∈ X | g (x) ∈ A } ∩N ] ⊔
[
f−1 (A) ∩N c

]
Since µ is complete, µ (N) = 0 and

{ x ∈ X | g (x) ∈ A } ∩N ⊆ N ,

[{ x ∈ X | g (x) ∈ A } ∩N ] ∈ Msrbl (X) .

Hence, g−1 (A) is a σ-algebra-closed combination of procedures on measurable sets, and is hence measurable itself.

Definition 2.37 (σ-finite measure). A measure µ : Msrbl (X) → C is called σ-finite iff ∀A ∈ Msrbl (X), there is a
sequence { Ei }∞i=1 ⊆ Msrbl (X) such that A ⊆

⋃∞
i=1Ei and µ (Ei) <∞ for all i ∈ N.

Example 2.38. The counting measure c : P (X) → [0,∞] is not σ-finite if X is uncountable.

Example 2.39. We will see that the Lebesgue measure on R is σ-finite.

2.5 Integrating positive functions
Given a positive measure µ : Msrbl (X) → [0,∞], we now proceed to define the Lebesgue integral associated to µ.
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Definition 2.40 (The Lebesgue integral of positive simple measurable functions). Let s =
∑n
i=1 αiχAi

be a nonneg-
ative measurable simple function. Then we define the integral of s on a set w.r.t. µ as∫

E

sdµ :=

n∑
i=1

αiµ (Ai ∩ E) (E ∈ Msrbl (X)) . (2.6)

We use the convention 0 · ∞ = 0 in case αi = 0 yet µ (Ai ∩ E) = ∞.

Definition 2.41 (The Lebesgue integral of positive functions). Let f : X → [0,∞] be measurable. Then∫
E

fdµ := sup
s

∫
E

sdµ

where the supremum ranges over all simple measurable functions s which obey 0 ≤ s ≤ f . Note if f is simple the two
definitions coincide, since then the supremum is attained on f itself.

Example 2.42 (The integral against the counting measure). Recall the counting measure from Example 2.30

S
c7→ |S| .

What then is ∫
S

fdc?

We claim that if S is countable then ∫
S

fdc =
∑
x∈S

f (x) .

(If S is not countable then the expression
∑
x∈S f (x) requires a bit more definition) To prove this however we will

need a limit theorem (see Claim 2.50 below for the proof). We contend ourselves with just the simple function case
for now. Let f =

∑n
i=1 αiχAi be a simple function. Then∫

S

fdc =

n∑
i=1

αic (S ∩Ai) =
n∑
i=1

αi |S ∩Ai|

since, by definition, Ai ≡ f−1 ({ αi }) ≡ { x ∈ X | f (x) = αi }, we get the result of the claim.

Example 2.43 (The integral against the delta measure). Recall the delta measure δx0
from Example 2.31. If

f : X → Y is measurable, then what is
∫
S
fdδx0

? We claim∫
S

fdδx0
= χS (x0) f (x0) .
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Indeed, by definition, ∫
S

fdδx0
= sup

s simple s.t. 0≤s≤f

∫
S

sdδx0

= sup
s simple s.t. 0≤s≤f

n∑
i=1

αiδx0
(Ai ∩ S)

= sup
s simple s.t. 0≤s≤f

n∑
i=1

αiχAi∩S (x0)

= sup
s simple s.t. 0≤s≤f

χS (x0) s (x0)

= χS (x0) sup
s simple s.t. 0≤s≤f

s (x0)

= χS (x0) f (x0) .

Proposition 2.44. In the following statements, all functions are assumed to be measurable from a measure space X
into [0,∞] and all sets are elements of Msrbl (X):

1. If 0 ≤ f ≤ g then ∫
E

fdµ ≤
∫
E

gdµ . (2.7)

2. If A ⊆ B and f ≥ 0 then
∫
A
fdµ ≤

∫
B
fdµ.

3. If f ≥ 0 and c ∈ [0,∞) then ∫
E

cfdµ = c

∫
E

fdµ . (2.8)

4. If f = 0 for all x ∈ E then
∫
E
fdµ = 0. Note this holds even if µ (E) = ∞.

5. If µ (E) = 0 then ∫
E

fdµ = 0 (2.9)

, even if f takes on the value ∞ on E.

6. If f ≥ 0 then ∫
E

fdµ =

∫
X

χEfdµ . (2.10)

Proposition 2.45. Let s : X → [0,∞) be a measurable simple function and µ : Msrbl (X) → [0,∞] be a positive
measure. Define φ : Msrbl (X) → [0,∞] via

φ (E) :=

∫
E

sdµ (E ∈ Msrbl (X)) .

Then φ is also a measure on Msrbl (X).

Proof. Since µ is a measure, µ (∅) = 0 so that φ (∅) = 0 via (2.9) and this satisfies the first condition on a measure
having at least one measurable set not have infinite-measure.

Next, we verify the countable additivity. Let {An }n ⊆ Msrbl (X) be a sequence of pairwise disjoint sets and
write

s =

J∑
j=1

αjχBj .
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Then

φ

( ∞⋃
n=1

An

)
=

∫
⋃∞

n=1 An

sdµ

=

J∑
j=1

αjµ

(
Bj ∩

∞⋃
n=1

An

)

=

J∑
j=1

αj

∞∑
n=1

µ (Bj ∩An)

=

∞∑
n=1

J∑
j=1

αjµ (Bj ∩An)

=

∞∑
n=1

∫
An

sdµ

=

∞∑
n=1

φ (An) .

Proposition 2.46. (Additivity of integral on simple functions) Let s, t : X → [0,∞) be two measurable simple
functions and µ : Msrbl (X) → [0,∞] be a positive measure. Then∫

X

(s+ t) dµ =

∫
X

sdµ+

∫
X

tdµ .

Proof. Write s = α1χA1
+ · · ·+ αnχAn

and t = β1χB1
+ · · ·+ βmχBm

. Then

s+ t = α1χA1
+ · · ·+ αnχAn

+ β1χB1
+ · · ·+ βmχBm

is not necessarily of the form Definition 2.24 since there might be intersections between the Ai’s and the Bj ’s, and
on those intersections, the value of s+ t is αi + βj . Hence let us write

s+ t = γ1χC1 + · · ·+ γlχCl

where the γ’s and C’s correctly account for the intersections. Then we are allowed to write∫
X

(s+ t) dµ ≡ γ1µ (C1) + · · ·+ γlµ (Cl) .

Now, when γi = αir +βip , that means we are on an intersection, in which case we can write that intersection set Cij
as Cij = Ai ∩Bj and then

Ai = (Ai \Bj) ⊔ Cij
and similarly

Bj = (Bj \Ai) ⊔ Cij

and hence the result.

2.6 Limit theorems I
The importance of the following result on sequences of positive measurable functions cannot overstated.
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Theorem 2.47 (Lebesgue’s monotone convergence). Let fn : X → [0,∞] be a sequence of measurable functions such
that

fn (x) ≤ fn+1 (x) (x ∈ X,n ∈ N) . (2.11)

Assume further that fn converges pointwise. Then (as we saw in Corollary 2.23) limn fn is measurable and

lim
n

(∫
X

fndµ

)
=

∫
X

(
lim
n
fn

)
dµ .

Proof. The monotonicity (2.11) implies that∫
X

fndµ ≤
∫
X

fn+1dµ (n ∈ N)

so that
∫
X
fndµ ⊆ [0,∞] is a monotone increasing sequence of numbers, and as such necessarily has a (possibly

infinite) limit in [0,∞]. Moreover, we also have

fn ≤ lim
ñ
fñ (n ∈ N)

and by Corollary 2.23, limn fn is measurable too, so∫
X

fndµ ≤
∫
X

(
lim
ñ
fñ

)
dµ (n ∈ N)

and taking the limit of both sides of this w.r.t. n we obtain

lim
n

∫
X

fndµ ≤
∫
X

(
lim
n
fn

)
dµ .

For the other direction, let s be a simple measurable function such that 0 ≤ s ≤ limn fn and c ∈ (0, 1). In particular,
0 ≤ cs < limn fn when limn fn > 0. Then defining

En := { x ∈ X | fn (x) ≥ cs (x) } (n ∈ N)

which are all measurable, and obey En ⊆ En+1 by (2.11). We claim that X =
⋃
nEn. Indeed, let x ∈ X. Then

either limn fn (x) = 0 in which case s (x) = 0 so that x ∈ E1. Otherwise, limn fn (x) > 0, so cs (x) < limn fn (x) and
so there must be some n such that fn (x) ≥ cs (x) and for that n, x ∈ En.

Finally, ∫
X

fndµ ≥
∫
En

fndµ ≥ c

∫
En

sdµ (n ∈ N) .

Taking the limit n→ ∞ of both sides we obtain

lim
n

∫
X

fndµ ≥ c lim
n

∫
En

sdµ .

By the above, we know that s, µ define a new measure E 7→
∫
E
sdµ on X, and applying the monotonicity result (2.4)

we obtain

lim
n

∫
X

fndµ ≥ c

∫
X

sdµ .

Now take the limit c→ 1 here to get

lim
n

∫
X

fndµ ≥
∫
X

sdµ .
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Now take the supremum over simple functions s obeying 0 ≤ s ≤ limn fn to get

lim
n

∫
X

fndµ ≥
∫
X

lim
n
fndµ

which is what we were trying to show.

Theorem 2.48 (Exchanging the sum with the integral). Let f, g : X → [0,∞] be measurable. Then∫
X

(f + g) dµ =

∫
X

fdµ+

∫
X

gdµ .

Proof. Let sn, tn be sequences of positive measurable functions which approximate f, g respectively, according to
Theorem 2.27. Since these approximating sequences are monotone, we have by Theorem 2.47 that

lim
n

∫
X

sndµ =

∫
X

fdµ .

Moreover, we know that sn + tn is a sequence of positive simple functions which approximates f + g monotonically
from below. Hence again via Theorem 2.47

lim
n

∫
X

(sn + tn) dµ =

∫
X

(f + g) dµ .

But by Proposition 2.46 we know that ∫
X

(sn + tn) dµ =

∫
X

sndµ+

∫
X

tndµ

since these are simple functions.

Theorem 2.49 (Exchanging series summation with the integral). Let fn : X → [0,∞] be a sequence of measurable
functions. Then ∫

X

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

(∫
X

fndµ

)
.

Proof. The sequence of partial sums
∑N
n=1 fn itself converges monotonically to f from below, so we apply Theo-

rem 2.47 to it, after applying Theorem 2.48 N times on the partial sum.

Claim 2.50. If f : X → [0,∞] and X is countable, and c : P (X) → [0,∞] is the counting measure, then∫
S

fdc =
∑
x∈S

f (x) .

Proof. Since X is countable, let η : N → X be an enumeration of it. Let us then define, for each n ∈ N, the simple
function

sn (x) := χ{ 1,··· ,n }
(
η−1 (x)

)
f (x) =

n∑
j=1

f (ηj)χ{ ηj } (x) (x ∈ X) .

Then clearly sn → f pointwise, and since f ≥ 0, sn ≥ 0. In fact sn+1 ≥ sn for all n ∈ N so this sequence obeys the
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conditions of the monotone convergence theorem. Then∫
S

fdc = lim
n

∫
S

sndc

= lim
n

n∑
j=1

f (ηj) |S ∩ { ηj }|

=
∑
x∈S

f (x) .

Remark 2.51. If X is not countable we can still make sense of this, however, then we need a definition of∑
x∈X

f (x)

for X uncountable. One such possible definition which is common is∑
x∈X

f (x) := sup
F⊆X:|F |<∞

∑
x∈F

f (x) .

It turns out that with this definition the integral against the counting measure is precisely
∑
x∈X f (x) but we do not

pursue this here.

Yet another corollary of Theorem 2.47 is the fact we can exchange double summation on positive double sequences.

Corollary 2.52. If a : N2 → [0,∞] is a double-sequence then

∞∑
n=1

∞∑
m=1

anm =

∞∑
m=1

∞∑
n=1

anm .

Proof. We set up the problem as N being our measure space with Msrbl (N) := P (N) and we choose c as the counting
measure. Then for any M ∈ N we define bM : N → [0,∞] via

bM (n) :=

M∑
m=1

anm (n ∈ N) .

This is an increasing positive sequence so Theorem 2.47 applies to it:

lim
M→∞

∫
N
bMdc =

∫
N

lim
M→∞

bMdc . (2.12)

By Claim 2.50 the LHS of (2.12) equals

lim
M→∞

∑
n∈N

bM (n) = lim
M→∞

∑
n∈N

M∑
m=1

anm

= lim
M→∞

M∑
m=1

∑
n∈N

anm

=
∑
m∈N

∑
n∈N

anm .
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On the other hand the RHS of (2.12) yields∫
N

lim
M→∞

bMdc =
∑
n∈N

lim
M→∞

bM (n)

=
∑
n∈N

lim
M→∞

M∑
m=1

anm

=
∑
n∈N

∑
m∈N

anm .

Lemma 2.53 (Fatou’s). Let fn : X → [0,∞] be a measurable sequence on a measure space (X,Msrbl (X) , µ). Then∫
X

(
lim inf

n
fn

)
dµ ≤ lim inf

n→∞

∫
X

fndµ .

Proof. We use the characterization of lim inf given in (2.1). Then

lim inf
n→∞

fn = lim
n→∞

(
inf
m≥n

fm

)
= sup
n∈N

inf
m≥n

fm .

Hence, let us define the sequence gn := infm≥n fm. Then gn ≤ fn and so∫
X

gndµ ≤
∫
X

fndµ (n ∈ N) . (2.13)

Moreover, gn is an increasing measurable sequence whose limit is lim infn→∞ fn, So applying Theorem 2.47 to
this sequence we find

lim
n→∞

∫
X

gndµ =

∫
X

lim
n→∞

gndµ

↕

lim
n→∞

∫
X

gndµ =

∫
X

(
lim inf
n→∞

fn

)
dµ .

Hence taking the lim inf on (2.13) we find

lim inf
n

∫
X

fndµ ≥ lim inf
n

∫
X

gndµ

= lim
n

∫
X

gndµ

=

∫
X

(
lim inf
n→∞

fn

)
dµ

which is what we were trying to show.

With the monotone convergence theorem we can also generalize Proposition 2.45 from simple functions to general mea-
surable functions.

Theorem 2.54. Let f : X → [0,∞] be measurable and define φ : Msrbl (X) → [0,∞] via

φ (E) :=

∫
E

fdµ (E ∈ Msrbl (X)) .

Then φ is a positive measure on Msrbl (X) and∫
X

gdφ =

∫
X

gfdµ (g : X → [0,∞] measurable) .
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Proof. Since µ is a measure, µ (∅) = 0 so that φ (∅) = 0 via (2.9). Next, we want to verify countable additivity
of φ. To that end, let {Ai }i∈N be a sequence of pairwise disjoint measurable sets. Our goal is to show that
φ
(⋃

i∈N Ai
)
=
∑
i∈N φ (Ai). Then using (2.10) we have

φ

(⋃
i∈N

Ai

)
=

∫
⋃

i∈N Ai

fdµ

=

∫
X

(
χ⋃

i∈N Ai
f
)
dµ

=

∫
X

(∑
i∈N

χAif

)
dµ

Now using Theorem 2.49 we get

φ

(⋃
i∈N

Ai

)
=

∑
i∈N

∫
X

χAi
fdµ

=
∑
i∈N

∫
Ai

fdµ

=
∑
i∈N

φ (Ai)

which is what we wanted to prove.

2.7 Integrating complex-valued functions
Here again

(X,Msrbl (X) , µ)

is a measure space. As we mentioned above in the beginning of Section 2.3, we shall write a so-called polarization identity.
For any f : X → C, we may decompose it as the complex linear combination of four non-negative functions as

f = Re {f}+ − Re {f}− + i Im {f}+ − i Im {f}− . (2.14)

However, as it turns out, we don’t want to just define∫
E

fdµ :=

∫
E

Re {f}+ dµ−
∫
E

Re {f}− dµ+ i

∫
E

Im {f}+ dµ− i

∫
E

Im {f}− dµ (2.15)

because that might cause some weird algebraic cancelations of the form ∞ − i∞. For that reason, we prefer to first
define

Definition 2.55 (L1 (X,µ) space). Recall that if f : X → C is measurable, then so is |f | : X → [0,∞) by
Corollary 2.23. It is then legitimate to consider the integral∫

X

|f |dµ

and using it we define the space

L1 (X,µ) :=

{
f : X → C

∣∣∣∣ f is msrbl. and
∫
X

|f |dµ <∞
}
.

We then only define (2.15) only for f ∈ L1 (X,µ). We note that since

Re {f}+ ≤ |f |

etc we have ∫
X

fdµ ≤ 4

∫
X

|f |dµ

but actually we will quickly get rid of the factor 4 in Theorem 2.60 below.
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Theorem 2.56. L1 (X,µ) is a C-vector space.

Proof. We want to show that if f, g ∈ L1 (X,µ) and α ∈ C then αf + g ∈ L1 (X,µ) too. First, we know that αf + g
is measurable by Theorem 2.20. Moreover,

|αf + g| ≤ |α| |f |+ |g|

so that ∫
X

|αf + g| ≤ |α|
∫
X

|f |dµ+

∫
X

|g|dµ <∞ .

Theorem 2.57. The map ∫
X

·dµ : L1 (X,µ) → C

is itself C-linear, so that the integral is a linear functional on the C-vector space L1 (X,µ).

Proof. Let f, g ∈ L1 (X,µ) and α ∈ C. We want to show that∫
X

(αf + g) dµ = α

∫
X

fdµ+

∫
X

gdµ . (2.16)

To that end, let u, v ∈ L1 (X,µ) be two real-valued functions. Set h := u+ v and note that the decomposition into
the positive and negative parts obeys

h+ − h− = u+ − u− + v+ − v−

↕
h+ + u− + v− = u+ + v+ + h− .

Each side of this latter equation is non-negative, and so obeys additivity as stipulated by Theorem 2.48, i.e.,∫
X

h+dµ+

∫
X

u−dµ+

∫
X

v−dµ =

∫
X

u+dµ+

∫
X

v+dµ+

∫
X

h−dµ .

By the u, v ∈ L1, each of these integrals is finite, so we may move sides again to get∫
X

h+dµ−
∫
X

h−dµ =

∫
X

u+dµ−
∫
X

u−dµ+

∫
X

v+dµ−
∫
X

v−dµ .

Now by definition in (2.15) we have ∫
X

hdµ =

∫
X

h+dµ−
∫
X

h−dµ

and similarly for u, v, so we get ∫
X

(u+ v) dµ =

∫
X

udµ+

∫
X

vdµ

which is additivity for real-valued functions. Also note that if u = u+ − u− is the decomposition into positive and
negative parts of u : X → R, then −u = −u+ + u− so the positive and negative parts switch and so∫

X

(−u) dµ ≡
∫
X

u−dµ−
∫
X

u+dµ

= −
(∫

X

u+dµ−
∫
X

u−dµ

)
= −

∫
X

udµ
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so that still with u, v : X → R∫
X

(u− v) dµ =

∫
X

udµ+

∫
X

(−v) dµ =

∫
X

udµ−
∫
X

vdµ

and ∫
X

(u+ iv) dµ ≡
∫
X

u+dµ−
∫
X

u−dµ+ i

∫
X

v+dµ− i

∫
X

v−dµ

=

∫
E

udµ+ i

∫
X

vdµ .

Finally, we learn then that if f, g : X → C then∫
X

(f + g) dµ =

∫
X

(Re {f + g}+ i Im {f + g}) dµ

=

∫
X

Re {f + g} dµ+ i

∫
X

Im {f + g}dµ

=

∫
X

(Re {f}+ Re {g}) dµ+ i

∫
X

(Im {f}+ Im {g}) dµ

=

∫
X

Re {f}dµ+

∫
X

Re {g} dµ+ i

∫
X

Im {f} dµ+ i

∫
X

Im {g} dµ

=

∫
X

fdµ+

∫
X

gdµ .

Now we want to show that
∫
αfdµ = α

∫
X
fdµ for any α ∈ C and f ∈ L1. To that end, we already know from (2.8)

that if α ≥ 0 then∫
X

αfdµ ≡
∫
E

Re {αf}+ dµ−
∫
E

Re {αf}− dµ+ i

∫
E

Im {αf}+ dµ− i

∫
E

Im {αf}− dµ

=

∫
E

αRe {f}+ dµ−
∫
E

αRe {f}− dµ+ i

∫
E

α Im {f}+ dµ− i

∫
E

α Im {f}− dµ

= α

∫
E

Re {f}+ dµ− α

∫
E

Re {f}− dµ+ iα

∫
E

Im {f}+ dµ− iα

∫
E

Im {f}− dµ

= α

∫
X

fdµ .

Clearly if α = −1 or α = i then this just rearranges the quadruplet Re {f}+ ,Re {f}− , Im {f}+ , Im {f}−.

Corollary 2.58. We may exchange real and imaginary parts with integration.

Claim 2.59. If u, v : X → R are L1 and u ≤ v then
∫
X
udµ ≤

∫
X
vdµ.

Proof. We have

u+ − u− ≤ v+ − v−

↕
u+ + v− ≤ v+ + u− .

Now invoking (2.7) we get ∫
X

(
u+ + v−

)
dµ ≤

∫
X

(
v+ + u−

)
dµ .

Using Theorem 2.57 and re-arranging we obtain the result.
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Theorem 2.60 (The triangle inequality). For all f ∈ L1 (µ) we have∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f |dµ .

Proof. If
∫
X
fdµ = 0 we are finished. Otherwise,

0 <

∣∣∣∣∫
X

fdµ

∣∣∣∣
=

∫
X
fdµ(∫

X
fdµ/

∣∣∫
X
fdµ

∣∣)
=

∫
X

[
1(∫

X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
fdµ

where in the last line we simply inserted the scalar into the integral thanks to linearity Theorem 2.57. Taking the
real part of the equation ∣∣∣∣∫

X

fdµ

∣∣∣∣ = ∫
X

[
1(∫

X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
fdµ

yields ∣∣∣∣∫
X

fdµ

∣∣∣∣ = Re

{∫
X

[
1(∫

X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
fdµ

}
=

∫
X

Re

{[
1(∫

X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
f

}
dµ .

Next, thanks to Claim 2.59 and u ≤ |u| for u ∈ L1 which is real valued, we have∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

∣∣∣∣∣Re
{[

1(∫
X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
f

}∣∣∣∣∣dµ ≤
∫
X

∣∣∣∣∣
[

1(∫
X
fdµ/

∣∣∫
X
fdµ

∣∣)
]
f

∣∣∣∣∣ dµ
where in the last inequality we used |Re {z}| ≤ |z| and then Claim 2.59 once more. But we note that

∣∣∣∣[ 1

(
∫
X
fdµ/|∫X fdµ|)

]∣∣∣∣ =
1 so we obtain ∣∣∣∣∫

X

fdµ

∣∣∣∣ ≤
∫
X

|f |dµ

which is what we were trying to show.

2.8 Limit theorems II
We come to a basic result in Lebesgue integration, one of the most powerful limit theorems.

Theorem 2.61 (Lebesgue dominated convergence). Let fn : X → C be a sequence of measurable functions which
converges pointwise on X. Assume further there is some g ∈ L1 (µ) which dominates the entire sequence:

|fn (x)| ≤ g (x) (x ∈ X,n ∈ N) . (2.17)

(note this inequality automatically implies im (g) ⊆ [0,∞))
Then limn fn ∈ L1 (µ),

lim
n

∫
X

∣∣∣fn − lim
n′
fn′

∣∣∣dµ = 0

and
lim
n

∫
X

fndµ =

∫
X

lim
n
fndµ .
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Proof. Recall from Theorem 2.22 that limn fn is measurable. Taking the limit on (2.17) we obtain |limn fn| ≤ g so
that limn fn ∈ L1 (µ) indeed. Moreover, by the triangle inequality we have∣∣∣fn − lim

n′
fn′

∣∣∣ ≤ |fn|+
∣∣∣lim
n′
fn′

∣∣∣ ≤ g + g = 2g

so that 2g−|fn − limn′ fn′ | ≥ 0 and hence Fatou’s lemma Lemma 2.53 applies to the sequence { 2g − |fn − limn′ fn′ | }n.
It implies ∫

X

lim inf
n

[
2g −

∣∣∣fn − lim
n′
fn′

∣∣∣] dµ ≤ lim inf
n

∫
X

[
2g −

∣∣∣fn − lim
n′
fn′

∣∣∣] dµ
↕∫

X

2gdµ ≤ lim inf
n

∫
X

2gdµ− lim sup
n

∫
X

∣∣∣fn − lim
n′
fn′

∣∣∣dµ
↕

lim sup
n

∫
X

∣∣∣fn − lim
n′
fn′

∣∣∣dµ ≤ 0

↓

lim
n

∫
X

∣∣∣fn − lim
n′
fn′

∣∣∣dµ = 0 .

Next, we have by Theorem 2.60 that

lim
n

∫
X

(
fn − lim

n′
fn′

)
dµ = 0 .

Corollary 2.62 (The bounded convergence theorem). Let (X,Msrbl (X) , µ) be a measure space such that µ (X) <∞
and assume that fn : X → C is a sequence of measurable functions which converges pointwise and such that

sup
n
∥fn∥∞ <∞ .

Then
lim
n

∫
X

fndµ =

∫
X

lim
n
fndµ .

Proof. Let g : X → C be given by
g (x) := sup

n
∥fn∥∞ (x ∈ X) .

Then as a constant function g is measurable and it dominates the sequence. Moreover, since µ (X) <∞, g ∈ L1 (µ):∫
X

|g|dµ =

∫
X

gdµ =

(
sup
n
∥fn∥∞

)
µ (X) <∞ .

Hence, Theorem 2.61 implies the result.

2.9 Construction of non-trivial measures [Folland]
In our journey so far we have encountered only two measures: the counting measure and the Dirac delta measure. To
get more interesting measures we outline a construction whereby we define not a measure, but an outer measure, on the
entire power set P (X) and then restrict the domain to get an honest measure; see Figure 2. The definition of the outer
measure is a bit easier and follows geometric intuition.

Remark 2.63. Outer measures are NOT measures according to Definition 2.28.
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Some function ρ : E → [0,∞] for some E ⊆ P(X)

Outer Measure φρ : P(X) → [0,∞]

Measure µφρ : Aφρ → [0,∞]
restriction of φρ to a σ-algebra Aφρ

Proposition 2.66

Theorem 2.70

Figure 2: The process of constructing measures. If the initial input to this process ρ happens to be a premeasure defined
on an algebra, then Theorem 2.76 guarantees further properties to µφρ .

2.9.1 Outer measures

An outer measure is a map defined on more sets than just measurable sets, in fact, it is defined on the entire power set,
but it is required to obey less axioms than an actual measure.

Definition 2.64 (Outer measure). Let X be some non-empty set (we don’t need to choose Msrbl (X) on it yet). An
outer measure φ on it is a map

φ : P (X) → [0,∞]

such that

1. (zero on empty set) φ (∅) = 0.

2. (monotonicity) φ (A) ≤ φ (B) if A ⊆ B.

3. (countable sub-additivity) φ (
⋃∞
n=1An) ≤

∑∞
n=1 φ (An) for all sequences An ∈ P (X).

We see that φ obeys less than a measure: it is merely countably sub-additive rather than countably additive. But it
is defined on the entire P (X).

We could define outer measures directly, for example

Example 2.65. An outer measure on R is given by

φ (A) :=

{
0 A = ∅
1 A ̸= ∅

(A ∈ P (R)) .

One easily verifies the axioms.

A more useful way for us will be to get outer measures out of more primitive functions:

Proposition 2.66. Let E ⊆ P (X) such that ∅, X ∈ E and ρ : E → [0,∞] be given such that ρ (∅) = 0. Define
φρ : P (X) → [0,∞] via

φρ (A) := inf

({ ∞∑
n=1

ρ (En)

∣∣∣∣∣ { En }n ⊆ E ∧A ⊆
⋃
n

En

})
(A ∈ P (X)) .

Then φρ is an outer measure.
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Proof. First we want to show that φρ (∅) = 0. Since ∅ ∈ E, we may take the cover En = ∅ for all n. Since ρ (∅) = 0,
we get that we are taking an infimum over a set of positive numbers which contains zero, and hence the infimum
equals zero, so φρ (∅) = 0.

Next, if A ⊆ B are two subsets of X, then every cover of B is also a cover of A, so necessarily{
{ En }n ⊆ E

∣∣∣∣∣ B ⊆
⋃
n

En

}
⊆

{
{ En }n ⊆ E

∣∣∣∣∣ A ⊆
⋃
n

En

}

so the infimum over the bigger set will be smaller, and hence φρ (A) ≤ φρ (B) as desired.
Finally, we need to establish countable sub-additivity. Let {An }n ⊆ P (X) be some sequence, and choose ε > 0

and another sequence { εn }n ⊆ (0,∞) such that
∑
n εn = ε. By the approximation property for the infimum, we

have for every n,

φρ (An) >

∞∑
m=1

ρ (Eεnnm)− εn

for some sequence { Eεnnm }m ⊆ E which covers An. Moreover, since each such sequence covers An for fixed n, taking
the union of all sequences covers the union of all An’s. I.e.,⋃

n

An ⊆
⋃
n

⋃
m

Eεnnm .

Since we have established monotonicity of φρ, we invoke it now on this last inclusion to obtain

φρ

(⋃
n

An

)
≤ φρ

(⋃
n

⋃
m

Eεnnm

)
.

But now, we can explicitly estimate the term on the right hand side since Eεnnm covers itself so the infimum is attained
on itself and we obtain

φρ

(⋃
n

An

)
≤ φρ

(⋃
n

⋃
m

Eεnnm

)
≤
∑
n,m

ρ (Eεnnm) =
∑
n

∑
m

ρ (Eεnnm) <
∑
n

[φρ (An) + εn] = ε+
∑
n

φρ (An) .

Since ε > 0 was arbitrary we obtain the result.

Example 2.67. An example that will be actually the raison d’être of this entire construction is to take X = R,

E := { [a, b) | a < b ∈ R }

and
ρ ([a, b)) := b− a .

There are still some pitfalls with this construction.

Claim 2.68. If ρ is not countably additive, φρ could fail to coincide with ρ when restricted to E.

Proof. Consider X = N, E := {A ⊆ N | |A| <∞∨ |Ac| <∞} and define

ρ (A) :=

{
1 |Ac| <∞
0 |A| <∞

.

Then one may verify that φρ = 0 always, and so, does not agree with ρ when restricted to E: (Chayim Lowen) It is
clear that ∅, X ∈ E and that ρ(∅) = 0, so φρ is well-defined. Note that since every set forms a cover of itself, we
have φρ(S) ≤ ρ(S) for all S ⊆ E.a Since φρ is an outer measure, it is countably subadditive. Hence

φρ (N) = φρ

( ∞⋃
i=1

{i}

)
≤

∞∑
i=1

φρ({i}) ≤
∞∑
i=1

ρ({i}) =
∞∑
i=1

0 = 0
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Thus φρ(X) = 0 ̸= 1 = ρ(X)b.
aThis holds in complete generality.
bSince φρ is an outer measure, it will follow that φρ = 0.

2.9.2 Constructing measures out of outer measures

Now that we have some idea of what an outer measure would be, we want a systematic process to get from an outer
measure φ to a measure µφ. To do so, we must restrict the domain of the resulting measure µφ. Indeed, it is not realistic
that the measure we shoot for will have P (X) as its domain since we know that eventually some sets will need to be non
measurable. It turns out that the correct criterion for this is as follows

Definition 2.69 (Measurable sets w.r.t. an outer measure). Let X be a non-empty set and φ : P (X) → [0,∞] be
some outer measure on it. Let

Aφ := {A ∈ P (X) | ∀Q ∈ P (X) , φ (Q) = φ (Q ∩A) + φ (Q ∩ (X \A)) } .

We call the elements of Aφ the φ-measurable subsets of X.

Note that since Q = (Q ∩A) ∪ (Q ∩ (X \A)), by subadditivity we always have

φ (Q) ≤ φ (Q ∩A) + φ (Q ∩ (X \A))

so one could just as well define

Aφ := {A ∈ P (X) | ∀Q ∈ P (X) : φ (Q) <∞, φ (Q) ≥ φ (Q ∩A) + φ (Q ∩ (X \A)) } .

Theorem 2.70 (Carathéodory’s restriction theorem). Aφ is a σ-algebra on X and µφ : Aφ → [0,∞] defined via

A 7→ φ (A)

is a measure on X.

Proof. Following Definition 2.1, we show that X ∈ Aφ. If φ (Q) <∞, then we want to show that

φ (Q) ≥ φ (Q ∩X) + φ (Q ∩ (X \X))

= φ (Q) + φ (Q ∩∅)

= φ (Q) + φ (∅) = φ (Q)

which is true, so X ∈ Aφ.
Next, we want to show closure under complements. Let A ∈ Aφ. Then we want to show if φ (Q) <∞,

φ (Q) ≥ φ (Q ∩ (X \A)) + φ (Q ∩ (X \ (X \A)))
= φ (Q ∩ (X \A)) + φ (Q ∩A)

which is true since A ∈ Aφ.
Finally, we want to show closure under countable unions. Let us first show closure under finite unions. So let

A,B ∈ Aφ and Q ∈ P (X) with φ (Q) <∞. Then invoking A ∈ Aφ we get

φ (Q) ≥ φ (Q ∩A) + φ (Q ∩Ac)

and invoking now B ∈ Aφ on each term on the RHS yields

φ (Q) ≥ φ (Q ∩A ∩B) + φ (Q ∩A ∩Bc) + φ (Q ∩Ac ∩B) + φ (Q ∩Ac ∩Bc) .

Note that A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), so since φ is subadditive, we get

φ (Q ∩ (A ∪B)) ≤ φ (Q ∩A ∩B) + φ (Q ∩A ∩Bc) + φ (Q ∩Ac ∩B)
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and so all together
φ (Q) ≥ φ (Q ∩ (A ∪B)) + φ (Q ∩Ac ∩Bc) .

Finally, observe that Ac ∩Bc = (A ∪B)
c which leads to the closure under finite unions we seek.

Now we want to go to closure under countable unions. Note that it will suffice to show this for pairwise disjoint
sequences via the construction

Bn := An \

(
n−1⋃
k=1

Ak

)
given a sequence {An }n. So assume WLOG that {An }n ⊆ Aφ is pairwise disjoint. Our goal is to show that⋃
nAn ∈ Aφ. Let Q ∈ P (X) with φ (Q) < ∞. Since we know that finitely many unions are in Aφ, for any N we

have

φ (Q) ≥ φ

(
Q ∩

(
N⋃
n=1

An

))
+ φ

(
Q ∩

(
N⋃
n=1

An

)c)
.

Let us invoke now AN ∈ Aφ on the set Q ∩
(⋃N

n=1An

)
to get

φ

(
Q ∩

(
N⋃
n=1

An

))
≥ φ

(
Q ∩

(
N⋃
n=1

An

)
∩AN

)
+ φ

(
Q ∩

(
N⋃
n=1

An

)
∩AcN

)

= φ (Q ∩AN ) + φ

(
Q ∩

(
N−1⋃
n=1

An

))
.

Performing now induction on N shows that

φ

(
Q ∩

(
N⋃
n=1

An

))
≥

N∑
n=1

φ (Q ∩An) .

Hence we find

φ (Q) ≥
N∑
n=1

φ (Q ∩An) + φ

(
Q ∩

(
N⋃
n=1

An

)c)
.

Note that
⋃N
n=1An ⊆

⋃∞
n=1An so

(⋃N
n=1An

)c
⊇ (
⋃∞
n=1An)

c and hence by monotonicity of φ we get

φ (Q) ≥
N∑
n=1

φ (Q ∩An) + φ

(
Q ∩

( ∞⋃
n=1

An

)c)
.

Take now the limit N → ∞ to get

φ (Q) ≥
∞∑
n=1

φ (Q ∩An) + φ

(
Q ∩

( ∞⋃
n=1

An

)c)
.

By countable subaddivitiy of φ, we have
∑∞
n=1 φ (Q ∩An) ≥ φ (

⋃
n (Q ∩An)) so

φ (Q) ≥ φ

(⋃
n

(Q ∩An)

)
+ φ

(
Q ∩

( ∞⋃
n=1

An

)c)

= φ

(
Q ∩

⋃
n

An

)
+ φ

(
Q ∩

( ∞⋃
n=1

An

)c)
(2.18)

which is what we were trying to show.
Next, we want to show that µφ is a measure. To that end, we may take ∅ ∈ Aφ as that set for which

µφ (∅) = 0 <∞ .
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So we are left with showing countable additivity on pairwise disjoint sets. First let us show additivity. Let A,B ∈ Aφ

with A ∩B = ∅. We already know that A ∪B ∈ Aφ, and so

µφ (A ∪B) ≡ φ (A ∪B)

= φ ((A ∪B) ∩A) + φ ((A ∪B) ∩Ac)
= φ (A) + φ (B) .

To get countable additivity, we invoke the above demonstration that Aφ is closed under countable unions, in
particular, Section 2.9.2, with Q =

⋃
nAn. This yields

φ

(⋃
n

An

)
≥

∞∑
n=1

φ (An)

and since the other direction of the inequality is true by definition, we get countable additivity on pairwise disjoint
sets which belong to Aφ, and hence, of µφ.

Claim 2.71. µφ as constructed above is complete, in the sense that if A ∈ Aφ has µφ (A) = 0 and B ⊆ A then
B ∈ Aφ too.

Proof. Let Q ∈ P (X) such that φ (Q) <∞. Then we want to show that

φ (Q) ≥ φ (Q ∩B) + φ (Q ∩Bc) .

Note that Q ∩B ⊆ Q ∩A ⊆ A so 0 ≤ φ (Q ∩B) ≤ φ (A) = 0. So we only have to show

φ (Q) ≥ φ (Q ∩Bc) .

But this is of course true since Q ∩Bc ⊆ Q and φ is monotone.

Again there are issues with this construction
ρ→ φρ → µφρ

.

Claim 2.72. There are choices of ρ such that Aφρ does not contain the σ-algebra generated by E.

Proof. The example presented in the proof of Claim 2.68 will not do, because for that, actually σ (E) = P (N) = Aφρ .
For an actual counter example, consider X = [0, 1] with E := {∅, [0, 1] } ∪ { [0, a) | a ∈ (0, 1) } and define

ρ (∅) := 0

as well as

ρ ([0, 1]) := 1

and

ρ ([0, a)) := 0 (a ∈ (0, 1)) .

One verifies that the resulting outer measure is given by

φρ (E) :=

{
0 sup (E) < 1

1 sup (E) = 1
.

Moreover, a set A ⊆ [0, 1] is φρ-measurable iff sup (A) < 1 or sup (Ac) < 1. BUT, σ (E) = B ([0, 1]), so that it is not
true that

Aφρ
⊇ σ (E) .
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2.9.3 Constructing outer measures out of premeasures

In principle we are now already prepared to define a new measure out of a given outer measure. For example, this
construction applied on Example 2.67 yields the Lebesgue measure. The problem is that stopping now would lead to the
problems outlined in Claim 2.68 and Claim 2.72. We need a somewhat more systematic construction to get outer measures
compared with Proposition 2.66 which will guarantee all the properties we want. For that reason, we turn our attention
to

Definition 2.73 (Premeasures). Let A be an algebra (the definition is as in Definition 2.1 but replacing closure
under countable unions with closure under finite unions). A map ρ : A → [0,∞] is called a premeasure iff

• ρ (∅) = 0.

• If {Aj }∞j=1 ⊆ A is a pairwise disjoint sequence such that
⋃∞
j=1Aj happens to lie in A, then

ρ

 ∞⋃
j=1

Aj

 =

∞∑
j=1

ρ (Aj) .

We see that a premeasure and measure basically obey the same axioms, the main issue is that the domain of a
premeasure is merely an algebra and that of a measure is a σ-algebra. In particular, every measure is itself a premea-
sure.

Remark 2.74. Premeasures are also monotone: If A ⊆ B then ρ (A) ≤ ρ (B) for all A,B ∈ A, for the same reason as
is true for measures.

Since a pre-measure obeys ρ (∅) = 0, it may well be the input for Proposition 2.66 so as to obtain an outer measure
out of it, φρ.

However, since φρ is now coming with the assumption that ρ is a premeasure, we have additionally

Proposition 2.75. If A ⊆ P (X) is an algebra and ρ : A → [0,∞] is a premeasure, with φρ : P (X) → [0,∞] the
outer measure induced by it in accordance to Proposition 2.66, then φρ|A = ρ and A ⊆ Aφρ

.

Proof. (Thanks to Ary Cheng and Joshua Lin) Let Q ∈ A. We want to show that

φρ (Q) = ρ (Q) .

With the cover E1 = Q and En = ∅ for all n ≥ 2 we get

φρ (Q) ≤ ρ (Q) .

For the reverse inequality, suppose that Q is covered by some sequence { En }∞n=1 ⊆ A. In principle
⋃∞
n=1En need not

lie in A since it is merely an algebra and not a σ-algebra, so we may not plug it into ρ. However, Q = Q∩
⋃∞
n=1En,

so { En ∩Q }n is a sequence of elements in the algebra whose countable union, Q, happens to lie in the algebra.
Then by monotonicity and countable subadditivity of ρ,

ρ (Q) = ρ

(
Q ∩

∞⋃
n=1

En

)
≤
∑
n

ρ (Q ∩ En) ≤
∑
n

ρ (En) .

Now take infimum over all covers En to get
ρ (Q) ≤ φρ (Q) .

Next, we want to show that A ⊆ Aφρ
. Let then A ∈ A. We want to show that for any Q ∈ P (X),

φρ (Q) ≥ φρ (Q ∩A) + φρ (Q ∩Ac) .

34



By the approximation property of the infimum, for any ε > 0 there exists a sequence { Eεn }n ⊆ A such that

φρ (Q) >

∞∑
n=1

ρ (Eεn)− ε .

Then

φρ (Q) + ε >

∞∑
n=1

ρ (Eεn)

=

∞∑
n=1

ρ (Eεn ∩A) + ρ (Eεn ∩Ac)

=

∞∑
n=1

φρ (E
ε
n ∩A) + φρ (E

ε
n ∩Ac)

where in the last line we used the fact that φρ restricts to ρ on A. But now, Q ∩A ⊆
⋃
n (E

ε
n ∩A) so by countable

subaddivitiy of φρ we get

φρ (Q ∩A) ≤ φρ

(⋃
n

(Eεn ∩A)

)
≤

∞∑
n=1

φρ (E
ε
n ∩A)

and same for Ac so all together
φρ (Q) + ε ≥ φρ (Q ∩A) + φρ (Q ∩Ac)

and since ε > 0 was arbitrary we get the result.

Theorem 2.76 (Carathéodory’s extension theorem). Let A ⊆ P (X) be an algebra and ρ : A → [0,∞] a premeasure.
In this scenario we already know that there exists a measure µφρ

induced by ρ via Theorem 2.70. Then, since ρ is a
premeasure, we have the following additional properties:

1. The σ-algebra generated by A, σ (A) is contained within Aφρ
(defined according to Definition 2.69).

2. If ν : σ (A) → [0,∞] is any measure such that ν|A = ρ then ν (E) ≤ µφρ (E) for all E ∈ σ (A) and

ν (E) = µφρ (E)
(
E ∈ σ (A) : µφρ (E) <∞

)
.

3. If X is σ-finite w.r.t. ρ, in the sense that there exists some {An }∞n=1 ⊆ A such that ρ (An) < ∞ and
X ⊆

⋃∞
n=1An then µφρ is the unique extension of ρ to σ (A).

Proof. For the first statement, we know that A ⊆ Aφρ by the previous claim and since the latter is a σ-algebra and
σ (A) is the smallest σ-algebra containing A, we get the claim.

For the second statement, let E ∈ σ (A) and pick some cover { En }n ⊆ A such that
⋃
nEn ⊇ E. Then

ν (E) ≤
∞∑
n=1

ν (En) =

∞∑
n=1

ρ (En) .

Taking now infimum over the covers we get

ν (E) ≤ µφρ (E) .

Moreover, by (2.4) we have

ν

(⋃
n

En

)
= lim
n→∞

ν

 n⋃
j=1

Ej

 = lim
n→∞

µφρ

 n⋃
j=1

Ej

 = µφρ

(⋃
n

En

)
.
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Now, if µφρ
(E) <∞, by the approximation property of the infimum let us choose for any ε > 0 the cover so that

µφρ

 ∞⋃
j=1

Ej

 < µφρ
(E) + ε

which implies

µφρ

 ∞⋃
j=1

Ej

 \ E

 < ε

so that

µφρ
(E) ≤ µφρ

 ∞⋃
j=1

Ej


= ν

 ∞⋃
j=1

Ej


= ν

 ∞⋃
j=1

Ej

 ∩ E

+ ν

 ∞⋃
j=1

Ej

 ∩ Ec


= ν (E) + ν

 ∞⋃
j=1

Ej

 \ E


≤ ν (E) + µφρ

 ∞⋃
j=1

Ej

 \ E


≤ ν (E) + ε

but since ε > 0 was arbitrary we get equality.
Lastly, if X is σ-finite w.r.t. ρ, i.e., X =

⋃∞
j=1Aj with Aj ∈ A and ρ (Aj) <∞ then (WLOG assuming Aj ’s are

disjoint) we get for any E ∈ σ (A),

µφρ
(E) =

∞∑
j=1

µφρ
(E ∩Aj) =

∞∑
j=1

ν (E ∩Aj) = ν (E)

so really ν = µφρ
.

Remark 2.77. As we presented the theory so far, it may well happen that σ (A) ⊊ Aφρ
. For an example: let X := R

and pick ρ so we get the Lebesgue measure on R. Then σ (A) = B (R). Now pick any subset of R which has measure
zero, for example the Cantor set C. Thanks to Claim 2.71 the Lebesgue measure µ is complete in the sense of
Definition 2.33, i.e., any subset of a zero measure set is Lebesgue measurable. That means that since µ (C) = 0 then
any subset of C is in Lebesgue measure, i.e., in Aφρ

. But there are certainly non-Borel subsets of C. Indeed, by
Theorem 2.15, the cardinality of B (C) is 2ℵ0 (since the Borel sigma algebra on C can be generated by a countable
subset, even though C itself is uncountable, just like the Borel sigma algebra of R may be generated by a countable
set though R is uncountable; e.g. take the collection C ∩ (a, b) where a, b have rational endpoints) yet the power set
equals P (C) ≡ 2C so its cardinality is |P (C)| = 22

ℵ0
> 2ℵ0 , so there must be way more subsets of C than there are

Borel subsets of C.

Actually, one can also go in the reverse direction:

Theorem 2.78. Let a measurable space (X,M) and a measure on it µ : M → [0,∞] be given, such that µ is σ-
finite as in Definition 2.37. Then there exists an outer measure φµ : P (X) → [0,∞] such that when we apply the
Caratheodory restriction Theorem 2.70 to it to get µφµ

we get back µ and Aφµ
⊇ M.
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Proof. Let us define

φµ (A) := inf

({ ∞∑
n=1

µ (Mn)

∣∣∣∣∣ {Mn }n∈N ⊆ M ∧
∞⋃
n=1

Mn ⊇ A

})
(A ∈ P (X)) .

Then using the very same proof Proposition 2.66 we get that φµ is an outer measure. In doing so, we treat µ as an
“arbitrary” function such that µ (∅) = 0, we don’t need any of its additional structure to show that φµ defined so is an
outer measure. The main issue is rather to show µφµ

= µ. Since every measure is itself a premeasure, Theorem 2.76
applies to µφµ to get a complete measure on Aφµ (completeness thanks to Claim 3.10). The assumption that X is
σ-finite in particular implies that µφµ is the unique extension of µ to σ (M) = M.

2.9.4 The Kakutani-Markov-Riesz representation theorem [extra, Folland and Rudin]

Thanks to Olivia Kwon for contributing this section about the KMR theorem.
So far we have seen one way to construct new measures:

ρ→ φρ → µφρ

where ρ is a premeasure. This general strategy uses the Caratheodory extension theorem.
It turns out that there is yet another way to construct measures. It would yield yet another way to construct the

Lebesgue measure. First, we start with a

Definition 2.79 (Radon measure). A radon measure is a positive Borel measure such that:

1. It is finite on every compact set
2. (Outer Regularity) It is outer regular on all Borel sets
3. (Inner Regularity) It is inner regular on all open sets.

Definition 2.80. We say a set E in a measure space is σ-finite if there exists {Ej}j∈N such that E =
⋃
j∈N Ej with

µ(Ej) <∞ for all j ∈ N.

Proposition 2.81. (Folland 7.5) Every Radon measure µ is inner regular on all of its σ-finite sets.

Proof. Suppose E is σ-finite. We first consider the case in which µ(E) < ∞. Then, given ϵ > 0, find an open set U
containing E such that µ(U) < µ(E)+ ϵ/2 and a compact set F such that µ(F ) > µ(U)− ϵ/2 using the definition of
Radon measure. Then, since µ(U −E) < ϵ/2, we can choose an open set V containing U −E such that µ(V ) < ϵ/2
as well. Define the compact set K = F − V . Notice that K ⊂ E and that

µ(K) = µ(F )− µ(F ∩ V ) > (µ(E)− ϵ/2)− µ(V ) > µ(E)− ϵ.

Therefore, we have that E is inner regular.
Now consider the case when µ(E) = ∞. By σ-finiteness, we can find {Ej}j∈N such that E =

⋃
j∈N Ej with

µ(Ej) < ∞ for all j ∈ N. We know that for every N ∈ N, there exists Nj such that N < µ(
⋃Nj

i=1Ej) < ∞. By
argument from the above paragraph, find compact set KN ⊂

⋃Nj

i=1Ej such that µ(KN ) > N as well. Because N is
arbitrary, we have that E is inner regular in this case as well.

Corollary 2.82. (Folland 7.6) Every σ-finite Radon measure is regular. If X is σ-compact, every Radon measure on
X is regular.

Definition 2.83. We say that a linear function Λ : Cc(X) → R is positive if Λ(f) ≥ 0 for all f ≥ 0.
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Theorem 2.84 (Kakutani-Markov-Riesz). Let X be a locally compact Hausdorff space and Λ a positive linear func-
tional on Cc(X → C). Then, there exists a unique positive measure µ such that it satisfies

1. The equality:

Λ(f) =

∫
X

f dµ (f ∈ Cc(X → C)) .

2. µ(K) <∞ for every K compact.

3. (Outer regularity)
µΛ(E) = inf ({µΛ(U) | E ⊆ U ∧ U ∈ Open(X)}) (E ∈ B(X))

4. (Inner regularity)

µΛ(E) = sup ({µΛ(K) | E ⊇ K ∧K ∈ Compact(X)}) (E ∈ B(X) : µ(E) <∞)

5. µ is complete.

In addition, µ satisfies:
7. µ(U) = sup{Λ(f) : f ∈ Cc(X), f ≺ U} for all open U ⊂ X.
8. µ(K) = inf{Λ(f) : f ∈ Cc(X),K ≺ f} for all compact K ⊂ X.

Proof. Notice that by Proposition Proposition 2.81, it is enough to show that µ is a complete measure satisfying
the first condition such that when restricted to the borel sets, it is a Radon measure, as well as properties 7 and 8.
We prove the theorem in 5 steps. The moral of the proof is that we define an outer measure µ and restrict it to a
sigma-algebra that satisfies the desired property, using Carathodory’s construction.

Step 1 (Uniqueness) This is the easiest part of the proof. Assuming the existence of such µ, we show that it
must be unique.

Note that because µ is a Radon measure, it is determined by its values on compact sets of X. This is because by
inner regulariy, the measure of open sets is determined by that of compact sets, and by outer regularity, the measure
of every Borel set is determined by that of open sets.

Therefore, given two measures µ1, µ2 satisfying the above properties, it is enough to show that they agree on
compact sets to prove the uniqueness.

Given two measures µ1, µ2 satisfying the above properties, fix arbitrary compact set K ⊂ X and ϵ > 0. By outer
regularity property, find V containing K such that µ2(V ) < µ2(K) + ϵ. Using Theorem E.6, find f ∈ Cc(X) such
that K ≺ f ≺ V . Then we have,

µ1(K) =

∫
X

χKdµ1 ≤
∫
X

fdµ1 = Λ(f) =

∫
X

fdµ2 ≤
∫
X

χV dµ2 = µ2(V ) < µ2(K) + ϵ.

Taking ϵ → 0, we have that µ1(K) ≤ µ2(K). By symmetric argument, we have that µ2(K) ≤ µ1(K) as well, giving
as the desired conclusion. □

Step 2 (Defining φ and Proving that it is an Outer Measure) We first define φ on P (X). First, for all
open sets, define

φ(U) = sup{Λ(f) : f ∈ Cc(X), f ≺ U}.

Then for any arbitrary set E ⊂ X, define

φ(E) = inf{φ(U) : E ⊂ U,U open}.

We claim that φ is an outer measure.
First, notice that φ(∅) = 0 because the only function satisfying f ≺ ∅ is f ≡ 0.
Secondly, φ is monotone. This property follows because if A ⊂ B, then for all U open containing B also contains

A and therefore µ(A) ≤ µ(B) by construction.
Lastly, φ satisfies countable subadditivity. To prove this, we first prove finite subadditivity for open sets and

then generalize to the desired claim. Given V1, V2 open in X, find g ∈ Cc(X) such that g ≺ V1 ∪ V2. Then, by the
Corollary E.7 on K = supp(g), V1, and V2, we can find h1 and h2 in Cc such that h1(x) + h2(x) = 1 on supp(g) and
hi ≺ Vi for 1 ≤ i ≤ 2. Therefore, we have that g = h1g + h2g and hence

Λg = Λh1g + Λh2g ≤ µ(V1) + µ(V2).
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Thus by the definition of µ(V1 ∪ V2), we get that µ(V1 ∪ V2) ≤ µ(V1) + µ(V2).
Now given {Ei} ⊂ X, we assume for all i, µ(Ei) < ∞ for if there exists some i such that µ(Ei) = ∞, then the

inequality becomes immediate. Given arbitrary ϵ > 0, using the definition of µ(Ei), for all Ei, find Vi open such that
µ(Vi) < µ(Ei) +

ϵ
2i . Denote V =

⋃
i Vi. Given arbitrary f such that f ≺ V, by compactness of supp(f), we can take

finite subcover of supp(f) such that supp(f) ⊂ Vn1
∪ · · · ∪ VnN

. Therefore,

Λf ≤ µ(Vn1
∪ · · · ∪ VnN

) ≤ µ(Vn1
) + · · ·+ µ(VnN

) ≤
∑
i∈N

µ(Vi) <
∑
i∈N

µ(Ei) + ϵ.

Hence, for fn ∈ Cc such that Λfn → µ(V ), we get that:

Λfn <
∑
i∈N

µ(Ei) + ϵ

µ(V ) ≤
∑
i∈N

µ(Ei) + ϵ ( ∵ Λfn → µ(V ))

µ(V ) ≤
∑
i∈N

µ(Ei) (∵ Take ϵ to 0.)

µ(
⋃
i

Ei) ≤
∑
i∈N

µ(Ei) (∵ µ is monotone.)

as desired.
Step 3 (Proving that every open set is φ-measurable.) To show the claim, it is enough to show that if U

is open and E is any subset of X with φ(E) <∞, we have that φ(E) ≥ φ(E ∩U) +φ(E ∩U c). We first prove it for
the case when E is open, then generalize it to prove the claim.

Suppose E is open. Then, given ϵ > 0, because E ∩ U is open, we can find f ∈ Cc(X) such that f ≺ E ∩ U
and Λ(f) > φ(E ∩ U) − ϵ. Also, E − supp(f) is open, so we can find g ∈ Cc(X) such that g ≺ E − supp(f) and
Λ(g) > φ(E − supp(f))− ϵ. Notice that by construction, f + g ≺ E. So,

φ(E) ≥ Λ(f) + Λ(g)

> φ(E ∩ U) + φ(E − supp(f))− 2ϵ

≥ φ(E ∩ U) + φ(E ∩ U c)− 2ϵ (∵ φ is monotone and (E ∩ U c) ⊂ (E − supp(f)))

Thus letting ϵ→ 0, we have the desired inequality.
Now suppose E is an arbitrary set with φ(E) < ∞. By definition of φ, find open set V containing E such that

φ(V ) < φ(E) + ϵ. Then, we get that:

φ(E) + ϵ > φ(V )

≥ φ(V ∩ U) + φ(V ∩ U c) (∵ By the case when E open applied on V )
≥ φ(E ∩ U) + φ(E ∩ U c) (∵ φ is monotone)

Letting ϵ→ 0, we have the desired inequality. □
Now define µ to be the measure generated by this outer measure via Caratheodory’s construction µφ. µ’s

completeness follows automatically by this Caratheodory construction. Step 3 tells us that Mµ contains all the Borel
sets and therefore φ |B(X) is a Borel measure. By definition of φ, it is immediate that it is outer regular for all sets
and satisfies (1) of the property we want. Therefore, it remains for us to show the other two properties of Radon
measure, the fact that Λ(f) =

∫
X
f dµ (f ∈ Cc(X → C)) for all f ∈ Cc(X), and that µ satisfies property (2).

Step 4 (µ satisfies (2), i.e. µ(K) = inf{Λ(f) : f ∈ Cc(X),K ≺ f} for all compact K ⊂ X.) Suppose that
K is compact and f ∈ Cc(X) such that K ≺ f. For every 0 < ϵ < 1, define Uϵ = {x : f(x) > 1 − ϵ}. Because
f is continuous, we see that Uϵ is open. Given any gϵ ≺ Uϵ, we have that (1 − ϵ)−1f − gϵ ≥ 0 because for all
x ∈ supp(gϵ) ⊂ Uϵ, we must have that (1 − ϵ)−1f(x) > 1. This means that because Λ is positive linear functional,
we get that Λ(gϵ) ≤ (1− ϵ)−1Λ(f). This means that µ(Uϵ) ≤ (1− ϵ)−1Λ(f). Hence, µ(K) ≤ µ(Uϵ) ≤ (1− ϵ)−1Λ(f).
Letting ϵ→ 0, we then get that µ(K) ≤ Λ(f). Taking infimum over all such f ’s, we get that

µ(K) ≤ inf{Λ(f) : f ∈ Cc(X),K ≺ f}.
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On the other hand, given ϵ > 0, we can find open set Vϵ containing K with µ(K) > µ(Vϵ)−ϵ. By Theorem E.6 find
fϵ ∈ Cc(X) such that K ≺ fϵ ≺ Vϵ. This means Λ(fϵ) ≤ µ(Vϵ) by definition of φ. So we get that Λ(fϵ) < µ(K) + ϵ.
Because Λ is monotone i.e. f ≥ g implies Λ(f) ≥ Λ(g), we have that taking ϵ → 0, the left hand side goes to
inf{Λ(f) : f ∈ Cc(X),K ≺ f} while the right hand side goes to µ(K). Therefore, we have that

inf{Λ(f) : f ∈ Cc(X),K ≺ f} ≤ µ(K)

and hence the desired equality follows. □
Step 4 tells us that µ is finite on compact sets because inf{Λ(f) : f ∈ Cc(X),K ≺ f} <∞ for all compact set K.

It also tells us that µ is inner regular on open sets: If U is open, given α < µ(U), we can choose fα ∈ Cc(X) such
that fα ≺ U and λ(fα) > α (by the definition of φ via supremum). Let Kα = supp(fα). Then, given g ∈ Cc(X) such
that Kα ≺ g, we have that g − fα ≥ 0 by construction and hence Λ(g) ≥ Λ(fα) > α. This means that µ(Kα) > α
by Step 4. This means that by the definition of infimum, µ is inner regular on U. Hence we have also shown that µ
restricts to a Radon measure when restricted to its Borel sets. Now it remains us to show the last property.

Step 5 (Λ(f) =
∫
X
f dµ for all f ∈ Cc(X → C).) It is enough to show the claim for f ∈ Cc(X, [0, 1]), i.e.

compactly supported continuous functions with range [0,1]. This is because Cc(X) is linear span of f ∈ Cc(X, [0, 1]).
Given N ∈ N, for 1 ≤ j ≤ N , define Kj = {x : f(x) ≥ j

N } and let K0 = supp(f). Note then KN ⊂ KN−1 ⊂ · · · ⊂
K1 ⊂ K0. Also, define f1, · · · , fN ∈ Cc(X) by

fj(x) =


0 if x /∈ Kj−1

f(x)− j−1
N if x ∈ Kj−1 −Kj

1
N if x ∈ Kj .

= min

(
max

(
f − j − 1

N
, 0

)
,
1

N

)
.

Then, N−1χKj ≤ fj ≤ N−1χKj−1 . Hence by monotonicity of integrals,

1

N
µ(Kj) ≤

∫
X

fjdµ ≤ 1

N
µ(Kj−1).

Also, if U is an open set containing Kj−1 we have Nfj ≺ U and so Λ(fj) ≤ N−1µ(U) by the definition of φ. Hence,
by outer regularity, we get that Λ(fj) ≤ 1

N µ(Kj−1). Moreover, by Step 4, we know that 1
N µ(Kj) =

1
N inf{Λ(f) : f ∈

Cc(X),Kj ≺ f} and thus 1
N µ(Kj) ≤ Λ(fj). Putting them together we get:

1

N
µ(Kj) ≤ Λ(fj) ≤

1

N
µ(Kj−1).

Observe now that f =
∑N
j=1 fj . Hence, summing above two equations for 1 ≤ j ≤ N,

1

N

N∑
j=1

µ(Kj) ≤
∫
X

fdµ ≤ 1

N

N−1∑
j=0

µ(Kj)

1

N

N∑
j=1

µ(Kj) ≤ Λ(f) ≤ 1

N

N−1∑
j=0

µ(Kj)

Therefore, it follows that:

∣∣∣∣Λ(f)− ∫ fdµ

∣∣∣∣ ≤ 1

N

N−1∑
j=0

µ(Kj)−
N∑
j=1

µ(Kj)

 =
µ(K0)− µ(KN )

N
≤ µ(supp(f))

N

Since supp(f) is compact, µ(supp(f)) < ∞. Since N is arbitrary, we can let N → ∞. Then we have that
µ(supp(f))

N → 0 and thus we get that

Λ(f) =

∫
fdµ

as desired.□
With this, we have proved the Kakutami-Markov-Riesz Representation theorem.
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3 Borel measures on topological spaces
In this chapter we want to explore the special properties of Borel measures. These are measures defined on the Borel
σ-algebra of a topological space X: given a topological space X, we saw in Definition 2.16 that there is a natural σ-algebra
induced by the topology of X, namely the Borel σ-algebra B (X). It is the smallest σ-algebra containing all of Open (X).
It turns out that the topological structure of X implies some regularity properties on Borel measure µ : B (X) → C.
Loosely speaking, the measure of any Borel set may be approximated by open sets containing it or compact sets contained
within it. To establish this regularity one needs to make additional assumptions on X as a topological space.

Let us make precise the regularity properties we seek to establish on our Borel measures:

Definition 3.1 (Regular measures and µ-regular sets). Let a Borel measure µ : B (X) → [0,∞] be given. A set
A ∈ B (X) is called µ-outer regular iff

µ (A) = inf ({ µ (U) | A ⊆ U ∈ Open (X) }) .

A set A ∈ B (X) is called µ-inner regular iff

µ (A) = sup ({ µ (K) | Compact (X) ∋ K ⊆ A }) .

Note that it is not a-priori clear that compact sets are measurable, but we shall only invoke this definition on
Hausdorff spaces where compact implies closed and hence Borel measurable, as we see right below.

If all Borel sets are µ-outer regular, then µ is called outer regular. For inner regularity, some authors differ. Rudin
defines the measure µ to be inner regular only if either all open sets and all Borel sets with finite µ measure are inner
regular. Others ask that all Borel sets be µ-inner regular.

If µ is both outer regular and inner regular, it is called regular. Some authors also use the name Radon for measures
which are both inner regular and locally finite, which, depending on the topological properties of X, may imply outer
regularity.

3.1 Some topological notions
Let us present the topological definitions we will need to make on X.

In general we are interested in separation axioms. These are axioms that allow to separate elements, or sets, of X
by open neighborhoods. These axioms are usually denoted by the label T♯ where ♯ is an increasing nonnegative rational
number: the higher the number the stronger the axiom, and generally if X is T♯ then it is also T

(
♯̃
)

for all ♯̃ ≤ ♯ (but
not always).

Definition 3.2 (Hausdorff topological space, T2). A topological space X is called Hausdorff or T2 iff for any
x, y ∈ X : x ̸= y, there exist Uxy, Uyx ∈ Open (X) such that x ∈ Uxy, y ∈ Uyx and Uxy ∩ Uyx = ∅.

Example 3.3. R is Hausdorff, since given any x, y ∈ R with x ̸= y and, WLOG, x < y, we may choose, say, ε := y−x
3

whence (x− ε, x+ ε) and (y − ε, y + ε) are two disjoint neighborhoods of x, y respectively. In fact any metric space
is Hausdorff.

Example 3.4. Take X = { 1, 2 } and Open (X) = {X,∅ }. Then X is not Hausdorff.

Example 3.5. R with the cofinite topology is not Hausdorff (but it is T1 in fact). The cofinite topology T is given
by

T := {A ⊆ R | A = ∅ ∨ |Ac| <∞} .

Claim 3.6. In a Hausdorff topological space, every compact set is closed.

Proof. Let K ∈ Compact (X) and let x ∈ Kc. By the Hausdorff property, then, ∀y ∈ K, ∃Uxy, Uyx ∈ Open (X) such
that x ∈ Uxy, y ∈ Uyx and Uxy ∩ Uyx = ∅. Then

K ⊆
⋃
y∈K

Uyx
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is an open cover which by compactness has a finite subcover by some { y1, · · · , yn } ⊆ K:

K ⊆
n⋃
j=1

Uyjx .

Define now

U :=

n⋂
j=1

Uxyj

which is open (as a finite intersection of open) and also contains x, since each of the sets in the intersection contain
x. We claim U ∩K = ∅. Assume otherwise. Then ∃z ∈ U ∩K. Then z ∈

⋃n
j=1 Uyjx and so ∃jz ∈ { 1, · · · , n } such

that z ∈ Uyjzx. But we also have z ∈ U and hence z ∈ Uxyjz which is a contradiction since we have that

Uyjzx ∩ Uxyjz = ∅ .

We have thus established that Kc ∈ Open (X), i.e., K ∈ Closed (X).

Remark 3.7. Note that this does not mean that every compact is bounded. We have no notion of bounded for general
topological spaces: we need at least a topological vector space for that [Sha23b]. More commonly, we need a metric
space, which further has what is known as the Heine-Borel property.

Corollary 3.8. In a Hausdorff topological space, every compact set is Borel.

Definition 3.9 (Locally finite measure). A Borel measure µ : B (X) → C is called locally finite iff ∀x ∈ X there is
some U ∈ Open (X) such that x ∈ U and µ (U) <∞.

Claim 3.10. Let X be a Hausdorff topological space. If a Borel measure µ : B (X) → C is locally finite then µ (K) <∞
for any compact subset K.

Proof. Consider the open cover of K as
K ⊆

⋃
x∈K

Ux

where Ux is the open neighborhood of any x ∈ K which is guaranteed to have finite measure by the locally finite
property of µ. By the fact that K is compact there are x1, · · · , xn such that

K ⊆
n⋃
j=1

Uxj
.

Then

µ (K) ≤
n∑
j=1

µ
(
Uxj

)
≤ n max

j=1,··· ,n
µ
(
Uxj

)
<∞ .

Definition 3.11 (σ-compact topological space). A topological space X is called σ-compact or countably-compact iff
X =

⋃∞
n=1Kn and each Kn is a compact subset of X.

Note that without loss of generality, since the finite union of compact is compact, we may define K̃n :=
⋃n
j=1Kj so

that
⋃
nKn =

⋃
n K̃n and K̃n ⊆ K̃n+1 is an increasing sequence.

Example 3.12. R is σ-compact, since we may write R =
⋃∞
n=1 [n− 1, n] ∪ [−n,−n+ 1].
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Example 3.13. The product space RN (countable Cartesian product of R with the product topology) is not σ-
compact.

Proof. RN is the space of all sequences a : N → R. Recall according to the product topology, we define Open
(
RN
)

as the coarsest topology such that the projections

πn : RN → R

a 7→ a (n)

are continuous. First we note that if K ⊆ RN is compact then it is coordinate-wise bounded. Indeed, since πn are by
definition continuous, and the continuous image of a compact set is compact, we have that πn (K) ∈ Compact (R)
for all n ∈ N. Then by Heine-Borel on R, that means that πn (K) is closed and bounded, so there must exist some
Mn <∞ such that

sup
a∈K

|πn (a)| ≤Mn .

Now if RN were σ-compact, we would have
RN =

⋃
m∈N

Km

for some sequence of compacts Km. Hence for all n,m ∈ N there exists Mnm <∞ such that

sup
a∈Km

|πn (a)| ≤Mnm (n,m ∈ N) .

Define now a new sequence b ∈ RN via

bn := max ({Mn1, · · · ,Mnn }) + 1 .

Now by construction b /∈ Kn for all n since

bn > Mnn .

Definition 3.14 (Locally compact topological space). A topological space X is called locally compact iff ∀x ∈ X∃U ∈
Open (X) : x ∈ U ∈ Compact (X). In words: every point has a compact neighborhood.

Example 3.15. R is locally compact, because for any x ∈ R, the interval (x− ε, x+ ε) has a closure [x− ε, x+ ε]
which is indeed compact (by, say, Heine-Borel); this holds for any ε > 0.

Example 3.16. Q (with the subspace topology from R) is not locally compact (prove this).

Definition 3.17 (Normal topological space, T4). A topological space X is termed normal iff any two disjoint closed
sets have disjoint open neighborhoods: ∀F1, F2 ∈ Closed (X) such that F1 ∩ F2 = ∅ ∃U1, U2 ∈ Open (X) such that
Fi ⊆ Ui for i = 1, 2 and U1 ∩ U2 = ∅. It is termed T4 iff it is both normal and Hausdorff.

Definition 3.18 (Perfectly normal topological space, T6). A topological space X is termed perfectly normal iff any
closed set is Gδ, i.e., if for any F ∈ Closed (X) there exists some { Un }n∈N ⊆ Open (X) such that F =

⋂
n∈N Un. We

say that X is T6 iff it is perfectly normal and Hausdorff.

Clearly we can make the sequence Un nested and decreasing by defining

Vn :=

n⋂
j=1

Uj

and noting that
⋂
n Vn =

⋂
Un, that all the Vn’s are open, and Vn ⊇ Vn+1.
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Example 3.19. Clearly every metric space is T6. The product of uncountably many non-compact metric spaces is
not normal. Consider the space

X := [0, 1]× { 0, 1 }

with
(x, a) < (y, b) ⇐⇒ (x < y ∨ [x = y ∧ a < b]) .

This makes X totally ordered and every such totally ordered set has a natural topology on it. Let Open (X) be given
the order topology, i.e., the topology generated by the basis of “open intervals” (α, β) ≡ { x ∈ X | α < x < β } together
with { x ∈ X | a < x } and { x ∈ X | x < b }. Then X with this topology is a Hausdorff compact normal topological
space which is not perfectly normal.

3.2 Establishing regularity properties of measures from topological properties of X [Fol-
land]

Thanks to Olivia Kwon for contributing this section about deriving Borel regularity via the KMR theorem.
In this section, we discuss further properties of Radon measures, assuming Theorem 2.84.

Proposition 3.20 (Folland 7.7). Suppose that µ is σ-finite Radon measure on X and E is a Borel set in X. Then
1. For every ϵ > 0, there exists an open set U and a closed set F with F ⊂ E ⊂ U and µ(U − F ) < ϵ.
2. There exists A ∈ Fσ and B ∈ Gδ such that A ⊂ E ⊂ B and µ(B −A) = 0.

Proof. 1. Write E =
⋃
j∈N Ej where Ej are pairwise disjoint and satisfies µ(Ej) < ∞. Given ϵ > 0, for every j,

because µ is a Radon measure, we can find Uj open such that Ej ⊂ Uj and

µ(Uj) < µ(Ej) + 2−(j+1)ϵ.

Let us moreover define U =
⋃
j∈N Uj . Then U is open and contains E by construction, Moreover,

µ(U − E) ≤
∑
j∈N

µ(Uj − Ej) <
ϵ

2

∑
j∈N

1

2j
= ϵ/2.

Similarly, find an open set V that contains Ec and satisfies µ(V −Ec) < ϵ/2. Now, define F = V c. By construction
F is closed and satisfies F ⊂ E ⊂ U. Note also that E − F = V − Ec. Therefore, we have that:

µ(U − F ) = µ(U − E) + µ(E − F ) = µ(U − E) + µ(V − Ec) < ϵ.

Hence we have the first statement.
2. Now, using the first statement, we prove the second statement. For every n ∈ N, we find Un open and Fn

compact such that Fn ⊂ E ⊂ Un and µ(Un − Fn) <
1
n . Define A =

⋂
n∈N Un and B =

⋃
n∈N Fn. Then, we see that

B ⊂ E ⊂ A by construction. What’s more, we have that

A−B =

(⋂
n∈N

Un

)⋂(⋃
n∈N

Fn

)c
=
⋂
n∈N

(Un ∩ F cn) =
⋂
n∈N

(Un − Fn).

Therefore, by (2.5), we have that

µ(A−B) = lim
n→∞

µ(Un − Fn) ≤ lim
n→∞

1

n
= 0.

We are done.

Theorem 3.21. Let X be a locally compact Hausdorff space in which every open set is σ-compact. Then, every Borel
measure on X that is finite on compact sets is regular and hence Radon.
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Proof. If µ is Borel measure that is finite on compact sets, then we have that then Cc(X) ⊂ L1(µ). Therefore, the
map Λ : Cc(X) → R defined by

Λ(f) =

∫
X

fdµ

is a positive linear functional. Let ν be the restrictions of the associated unique measure given by Theorem 2.84 to
the Borel sets.

We first show that µ and ν agree on open sets. Given open set U ⊂ X, using the σ−compact properties, write
U =

⋃
j∈N Kj where each Kj compact. Using Theorem E.6, find f1 ∈ Cc(X) such that

K1 ≺ f1 ≺ U.

Recursively, for all n ≥ 2, find fn ∈ Cc(X) satisfying n⋃
j=1

Kj

⋃n−1⋃
j=1

supp(fj)

 ≺ fn ≺ U,

using Theorem E.6. Then, by construction, fn pointwise to χU as n → ∞. Therefore, by the Theorem 2.47 twice,
we get that

µ(U) =

∫
X

χUdµ = lim
n→∞

∫
X

fndµ = lim
n→∞

Λ(fn) = lim

∫
X

fndν =

∫
X

χUdν = ν(U).

Now, we show that µ is regular. Given ϵ > 0 and E an arbitrary Borel measure, by Proposition Proposition 2.81,
we can find open set V and compact set F such that ν(V − F ) < ϵ and satisfies F ⊂ E ⊂ U. Note that V − F is in
particular open, and hence µ(V − F ) = ν(V − F ).

By monotonicity,
µ(V ) < µ(F ) + ϵ ≤ µ(E) + ϵ,

proving that µ is outer regular.
Moreover, by motonocity again,

µ(F ) > µ(E)− ϵ ≥ µ(E)− ϵ.

Since F is σ compact (as X is), we can find compact sets {Kj} such that
⋃
j∈N Kj = F and hence µ(Kj) → µ(F ).

Thus, we can find N big enough such that µ(KN ) + ϵ ≥ µ(F ). Thus, we have that

µ(Kn) ≥ µ(E)− 2ϵ,

proving that µ too is inner regular thus Radon.

Remark 3.22. By the uniqueness of ν, we in fact have that µ = ν.

Corollary 3.23. Let X be a locally compact Hausdorff space in which every open set is σ-compact. If Radon measures
µ1, µ2 agree on all open sets then they are equal.

4 The Lebesgue measure on R

We focus our attention now to the special case of the measurable space X := R with the choice Msrbl (X) := B (R), i.e.,
the Borel sigma-algebra generated by open sets on R. Our goal is to define a positive measure λ : B (R) → [0,∞] which has
all the robust abstract properties discussed in the previous chapter (in particular that we could invoke the limit theorems
on its associated integral) and on the other hand, that it extends the notion of length when applied on intervals. It turns
out that to zero in on a unique such object we need an additional property on this measure:
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Definition 4.1 (translation invariance). Let X be a measurable space which also has the structure of a vector space.
A positive measure µ : Msrbl (X) → [0,∞] is translation invariant iff

µ (S + x) = µ (S) (S ∈ Msrbl (X) , x ∈ X)

where by S + x we mean the translation of the set S by x, which is a new set defined by

S + x ≡ { y + x | y ∈ S } .

Our main and most immediate goal in this chapter is to prove

Theorem 4.2 (Existence and uniqueness of the Lebesgue measure on R). There exists a unique positive, translation
invariant measure λ : B (R) → [0,∞] such that λ ([0, 1]) = 1.

We call the measure λ guaranteed by the above theorem the Lebesgue measure on R and the associated integral

(f : R → C Borel msrbl.) 7→
∫

R
fdλ ∈ C

the Lebesgue integral on R.
To prove this theorem we employ the machinery to actually construct measures out of more primitive objects, the

premeasures, which we studied in Section 2.9.

4.1 The premeasure which generates the Lebesgue measure

Claim 4.3. Let

A0 := {∅ } ∪ { (a, b] | a ∈ [−∞,∞) , b ∈ R, a < b } ∪ { (a,∞) | a ∈ [−∞,∞) } .

Then A0 is an elementary family in the sense of Definition B.1 below.

Proof. By definition we have ∅ ∈ A0. Next, we want to show closure under intersection. This is clear if we take an
intersection of anything with ∅. If we have

(a, b] ∩ (a′, b′] =


∅ b < a′ ∨ b′ < a

(a′, b] a < a′ < b < b′

etc.

we see that in all cases we obtain a set of one of the forms in A0. Finally, if we take complements we get a finite
disjoint union of elements in A0. Indeed,

∅c = (−∞,∞) ∈ A0 .

(a, b]
c
= (−∞, a] ∪ (b,∞)

each of which lies in A0 etc.

Hence by Claim B.2 below, the set A of finite disjoint unions of members of A0 is an algebra.

Claim 4.4. The σ-algebra generated by A, σ (A), equals B (R).

Proof. We can write

(a, b] =

∞⋂
j=1

(
a, b+

1

j

)
so certainly σ (A) ⊆ B (R). Conversely, every open set in R is the countable union of open intervals, and we may
write any open interval as an element in σ (A). For example,

(a, b) =

∞⋃
j=1

(
a, b− 1

j

]
∈ σ (A) .
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Theorem 4.5. Define ρ : A → [0,∞] via: If
⋃n
j=1 (aj , bj ] is a disjoint union of finite intervals,

ρ

 n⋃
j=1

(aj , bj ]

 :=

n∑
j=1

bj − aj , (4.1)

ρ
(⋃n

j=1 (aj , bj ]
)
= ∞ if the disjoint union contains an infinite interval, and of course,

ρ (∅) := 0 .

Then ρ is a pre-measure.

Proof. First let us verify that ρ is well-defined, since the representation
⋃n
j=1 (aj , bj ] for elements of A is not unique.

For example

(0, 1] =

(
0,

1

2

]
∪
(
1

2
, 1

]
=

(
0,

1

3

]
∪
(
1

3
, 1

]
and so on. But clearly, the sum in Theorem 4.5 telescopes so this does not a problem for us. We leave the remaining
cases as an exercise to the reader.

Once we know that ρ is well-defined, we need to verify the axioms in Definition 2.73. See HW3Q5 for a complete
description.

Definition 4.6 (The Lebesgue measure). The Lebesgue measure on R is the measure obtained by ρ → φρ → µφρ

according to Theorem 2.76, with the choice of ρ as in Theorem 4.5.

Theorem 2.76 yields a σ-algebra of all Lebesgue measurable subsets, named there Aφρ
. We call such sets Lebesgue

measurable. One of the conclusions of the theorem, combined with Claim 4.4, is that all Borel subsets are Lebesgue
measurable. Note that the reverse inclusion is not true: there are Lebesgue measurable sets which are not Borel measurable.

Since R is σ-finite, another conclusion of the theorem is that the Lebesgue measure is the unique extension of ρ to
σ (A) = B (R).

4.2 Proof of the uniqueness theorem
We are now ready for the

Proof of Theorem 4.2 . For existence, we take the Lebesgue measure µφρ : Aφρ → [0,∞] from above and restrict it
to

λ : B (R) → [0,∞] .

Clearly, since λ is an extension of ρ and [0, 1] ∈ A, we have λ ((0, 1]) = ρ ((0, 1]) = 1 as desired. In a minute we shall
see that singletons do not matter for λ so that will imply that λ ([0, 1]) = 1. Moreover, λ is translation invariant
because ρ is, since it is defined via differences of the endpoints of half intervals.

We finally get to uniqueness. Let λ̃ : B (R) → [0,∞] be some other translation invariant measure such that
λ̃ ([0, 1]) = 1. We want to show that λ = λ̃. By translation invariance, we immediately have

λ ([t, t+ 1]) = λ̃ ([t, t+ 1]) (t ∈ R) .

By ?? it is sufficient to show λ and λ̃ agree on open subsets. Now, let U ∈ Open (R). We know that U is the
countable disjoint union of open intervals, so by countable-additivity of both measures we only need to show

λ ((a, b)) = λ̃ ((a, b)) (a < b ∈ R)

↕ (transl. invar.)
λ ((0, b)) = λ̃ ((0, b)) (b > 0) .
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to show λ (U) = λ̃ (U). Let us show that translation invariant measures with λ̃ ([0, 1]) = 1 have a scaling property.
Before we start, let us also show that singletons cannot matter for λ̃, i.e., that λ̃ ({ x }) = 0 for any x ∈ R and any
normalized translation invariant Borel measure λ̃. By additivity of λ̃, let { xj }Nj=1 be N distinct points within [0, 1].
Then by translation invariance

Nλ̃ ({ 0 }) =

N∑
j=1

λ̃ ({ xj })

= λ̃

 N⋃
j=1

{ xj }


≤ λ̃ ([0, 1]) = 1 .

But we can certainly pick N as large as we want, so pick it so that Nλ̃ ({ 0 }) ≤ 1 to get a contradiction with
λ̃ ({ 0 }) > 0; thus λ̃ ({ 0 }) = 0. Hence for both λ̃ and λ we may ignore singletons a.

Let us now start with showing that

λ̃

([
0,

1

n

])
=

1

n
.

To that end, write the “almost” disjoint union [0, 1] =
⋃n−1
k=0

[
k
n ,

k+1
n

]
. Using additivity and translation invariance

we get

1 = λ̃ ([0, 1])

= λ̃

(
n−1⋃
k=0

[
k

n
,
k + 1

n

])
⋆
=

n−1∑
k=0

λ̃

([
k

n
,
k + 1

n

])

=

n−1∑
k=0

λ̃

([
0,

1

n

))
= nλ̃

([
0,

1

n

))
= nλ̃

([
0,

1

n

])
so λ̃

([
0, 1

n

])
= 1

n indeed. In ⋆ we used

λ̃ (A ∪B) = λ̃ (A \B) + λ̃ (B \A) + λ̃ (A ∩B)

to add and remove singletons of measure zero as necessary. In a similar fashion we can extract out of this the scaling
property for rational end points

λ̃
([

0,
m

n

])
=

m

n
.

Write [0,m] =
⋃n−1
k=0 m

[
k
n ,

(k+1)
n

]
so

m = λ̃ ([0,m])

= λ̃

(
n−1⋃
k=0

[
mk

n
,
m (k + 1)

n

])

=

n−1∑
k=0

λ̃

([
mk

n
,
m (k + 1)

n

])
= nλ̃

([
0,
m

n

])
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yielding the result λ̃
([
0, mn

])
= m

n . We then extend this to all end points b ∈ R by monotone approximation and the
monotone property:

λ̃ ([0, rj ]) ≤ λ̃ ([0, b]) ≤ λ̃ ([0, qj ])

for all rational sequences rj → b from below and qj → b from above. Taking the limit j → ∞ on both sides of the
inequality yields

b = lim
j
rj ≤ λ̃ ([0, b]) ≤ lim

j
qj = b .

We conclude λ̃ = λ on B (X) which is what we were trying to prove.
aNote that for λ we should rather use [0, 1) rather than [0, 1] since we don’t a-priori know yet that λ ([0, 1]) = 1. This, however,

doesn’t change the argument at all since we know that λ is also translation invariant and certainly [0, 1) contains as many points as we
need. Thanks to Kevin Xu for pointing out this discrepancy.

4.3 The Lebesgue measure on Rn

To define the Lebesgue measure on Rn, we appeal to the construction of a product measure which appears below in
Section 5.1.1.

Definition 4.7 (Lebesgue measure on Rn). We define the Lebesgue measure on Rn to be the result of the product
measure of n copies of the Lebesgue measure on the n-fold Cartesian product of R.

Remark 4.8. In our convention the Lebesgue measure on Rn is indeed complete as it should be, because in our
convention product measures are always complete, being the result of the Caratheodory construction.

Remark 4.9. Clearly we could have defined the Lebesgue measure on Rn directly using a similar premeasure as in
Section 4.1, defining volumes of boxes instead of lengths of intervals. The two constructions yield the same measure
by a uniqueness theorem identical to the one we proved in the one dimensional case.

Remark 4.10. What about C or Cn? One also defines the Lebesgue measure on these, and the complex structure here
plays no role. For the purposes of both topology (and hence measure theory, since we are using the Borel σ-algebra
to construct everything) Cn ∼= R2n.

Theorem 4.11. The Lebesgue measure on Rn is invariant not only under translations, but also under reflections and
rotations. Under dilations it has a simple transformation formula.

Proof. The invariance under translations is immediate from the fact that each constituent in the product measure
is invariant w.r.t. translations and we can break an arbitrary translation in Rn into composition of translations in
each axis. The other properties will be a direct consequence of Theorem 6.18.

We also phrase an analog of Theorem 4.2:

Theorem 4.12. There exists a unique positive, translation invariant measure λ : B (Rn) → [0,∞] such that
λ ([0, 1]

n
) = 1.

The proof follows a similar pattern to the one-dimensional proof, with the fact that we only need to work on boxes,
and on those, we may show a scaling property to get that any translation invariant Borel measure µ : B (Rn) → [0,∞]
must satisfy

µ ([0, b1]× · · · × [0, bn]) = b1 · · · bn .

4.4 Exotic phenomena
In this section we want to explore sets which are Lebesgue measurable but not Borel, or sets which are not even Lebesgue
measurable. We first encountered such questions in Remark 2.77 where we saw that since λ (C) = 0 for C the Cantor set,
any subset of it must be Lebesgue measurable by completeness of λ. But, since the cardinality of B (C) is c = 2ℵ0 , and
the cardinality of P (C) is 22

ℵ0 , there must be Lebesgue measurable but non-Borel sets! Can we study these sets directly?
What do they “look” like?

In HW4Q8 and HW4Q9 we explore some of these explicit constructions.
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4.5 The relation between the Riemann and the Lebesgue integral
Now that we have defined the Lebesgue integral with respect to the Lebesgue measure on R and on Rn it is natural to
study the relationship between the preexisting Riemann integral.

Recall that we only want to Riemann integrate bounded functions f : [a, b] → R for some a < b ∈ R and that according
to Lebesgue’s Theorem 1.3, f is Riemann integrable iff it is continuous λ-almost-everywhere, i.e.,

λ ({ x ∈ [a, b] | f is not continuous at x }) = 0 .

The first step in our study is to verify that any Riemann integrable function is at all Lebesgue measurable:

Claim 4.13. If f : [a, b] → R is Riemann integrable then it is measurable w.r.t. L ([a, b]) (the Lebesgue measurable
sets, on which λ is complete) on its domain and B (R) (the Borel subsets of R) on its codomain.

Cf. with Claim 2.36.

Proof. By Theorem 1.3, f is continuous outside a set N ⊆ [a, b] of measure zero. Hence by Corollary 2.18, f |Nc :
N c → R is continuous and hence measurable w.r.t. (B (N c) ,B (R)). Let A ∈ B (R). Then

f−1 (A) =
[
f−1 (A) ∩N

]
⊔
[
f−1 (A) ∩N c

]
.

Since λ is complete and λ (N) = 0, f−1 (A) ∩N is L ([a, b])-measurable. Moreover,

(f |Nc)
−1

(A) = f−1 (A) ∩N c

so

f−1 (A) ∩N c ∈ B (N c)

= σ (Open (N c))

= σ ({ U ∩N c | U ∈ Open ([a, b]) })
= {B ∩N c | B ∈ B ([a, b]) }
⊆ {B ∩N c | B ∈ L ([a, b]) }

so that f−1 (A) ∩N c ∈ L ([a, b]) as desired.

Now, if f : [a, b] → R is Riemann integrable, then it is measurable. Since it is bounded, we necessarily we have

|f | ≤M

with M := supx∈[a,b] |f (x)| <∞ so that f ∈ L1 ([a, b] → R, λ) and

∥f∥L1 ≤M (b− a) .

Hence we can also Lebesgue-integrate f . Do the two integrals always agree?

Theorem 4.14. Let f : [a, b] → R be Riemann integrable. Then its Riemann integral and its Lebesgue integral agree.

Proof. We use the characterization of Riemann integrable as in Definition 1.1 to get that the two limits in the
following equation exist and agree,

lim
N
LN (f) = lim

N
UN (f)

and they are both equal to the Riemann integral of f , where

LN (f) ≡ b− a

N

N−1∑
n=0

inf

({
f (x)

∣∣∣∣ x ∈
(
a+ [n, n+ 1]

b− a

N

)})
.

Now we define the simple function ln (f) : [a, b] → R via

lN (f) (x) =

N−1∑
n=0

χIn (x) in (f) (x ∈ [a, b])
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with
In := a+ [n, n+ 1]

b− a

N

and
in (f) := inf ({ f (x) | x ∈ In }) .

It doesn’t quite matter that In ∩ Im ̸= ∅ for n ̸= m since the overlap has Lebesgue measure zero (this could be
avoided with uglier notation). Then, observe that∫

[a,b]

lN (f) dλ = LN (f)

by definition of an integral of a simple function. However, it is also clear that

lim
N→∞

lN (f) = f

pointwise wherever f is continuous (a set of full measure by Theorem 1.3), and that

|lN (f)| ≤ |f | .

Hence with |f | a dominating L1 function, we have

Riemann integral of f = lim
N→∞

LN (f)

= lim
N→∞

∫
[a,b]

lN (f) dλ

DCT
=

∫
[a,b]

fdλ .

This deals with functions which are bounded on a bounded interval. We know, using the notion of an improper Riemann
integral, that we can also Riemann integrate functions on unbounded intervals, or unbounded functions, via limits outside
of the integral.

Example 4.15. Going back to Example 1.4, we study

f : (0, 1) → R

given by

x 7→ 1√
x

and ask whether this function is Lebesgue integrable, since it is unbounded, so we may not ask whether it is Riemann
integrable (and indeed only the improper Riemann integral of f exists). Since it is continuous on (0, 1) it is clearly
Lebesgue measurable there, and as it is positive, we may well calculate its integral (though it may be infinite).
Consider the sequence of positive measurable functions

fn := χ[ 1
n ,1]

f

which converge to f pointwise from below monotonically. As such, using the monotone convergence Theorem 2.47 we
find ∫

(0,1)

fdλ =

∫
(0,1)

lim
n
fndλ

= lim
n

∫
(0,1)

fndλ .

Once we are dealing with
∫
(0,1)

fndλ, fn is a bounded Riemann integrable function and so using the previous theorem
we can replace its Lebesgue integral with its Riemann integral 2− 2√

n
to get the result 2.
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Lebesgue Improper R.Riemann

Figure 3: A Venn diagram comparing the Riemann and the Lebesgue integrals.

Be that as it may, one has to be careful because sometimes functions are improperly Riemann integrable only due
to oscillations, which cannot help a function being Lebesgue integrable (since it always deals with absolute integrabil-
ity):

Example 4.16. Consider the function f : (0,∞) → R given by x 7→ sin(x)
x . We can show (e.g. using contour integrals,

see e.g. Example 6.40 in [Sha23a]) that the (improper) Riemann integral yields∫ ∞

0

sin (x)

x
dx =

π

2

whereas (0,∞) ∋ x 7→ |sin(x)|
x is Lebesgue measurable, but does not decay to infinity quickly enough to be integrable.

Another possible (possibly simpler) example is N ∋ n 7→ (−1)n

n w.r.t. the counting measure on N.

Of course, there are many Lebesgue measurable functions which are L1 and yet not at all Riemann integrable. An
obvious example is χ[0,1]∩Q : [0, 1] → [0, 1].

5 More abstract measure theory
In this chapter we want to continue with the abstract theory that is not necessarily linked to X being a topological space.
We start with the notion of product spaces. These have already been explored in HW1Q6 and in fact above we used the
product structure to define the Lebesgue measure on Rn. For the sake of completeness let us present this again in full
detail.

5.1 Products [Folland]
5.1.1 Products of measurable spaces

Let {Xα }α∈A be an indexed collection of non-empty sets (indexed by some set A, not necessarily countable) and let

∏
α∈A

Xα ≡

{
f : A→

⋃
α

Xα

∣∣∣∣∣ f (β) ∈ Xβ∀β ∈ A

}
be the Cartesian product of this collection of sets. For any β ∈ A, let

πβ :
∏
α∈A

Xα → Xβ

be the canonical projections, i.e.,
πβ (f) ≡ f (β) .
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Definition 5.1 (The product σ-algebra). If we furnish each Xα with a σ-algebra Mα then we define σ-algebra
⊗α∈AMα on the product via

⊗α∈AMα := σ
({
π−1
α (Eα)

∣∣ Eα ∈ Mα ∧ α ∈ A
})

.

I.e., this is the smallest σ-algebra on the Cartesian product so that all projections πα are measurable.

Claim 5.2. If A is countable then actually

⊗α∈AMα = σ

({ ∏
α∈A

Eα

∣∣∣∣∣ Eα ∈ Mα∀α ∈ A

})
.

Proof. See HW2Q6.

5.1.2 The product measure

We may continue the product construction also at the level of measures (for now only for finite products): |A| < ∞
and assume µα : Mα → [0,∞] is a measure for any α ∈ A. We seek to define a measure µ on ⊗α∈AMα as defined
above.

Definition 5.3 (Rectangular sets). Any subset A ⊆
∏
α∈AXα of the form

A =
∏
α∈A

Eα

where Eα ⊆ Xα for all α ∈ A is called a rectangular set. We denote all rectangular sets of measurable sets by the
symbol A0.

Claim 5.4. A0 is an elementary family in the sense of Definition B.1.

Proof. Indeed, ∅ ∈ A0, the intersection of two rectangular sets is again rectangular, and the complement of a
rectangular set is a finite disjoint union of such rectangular sets (since |A| <∞).

The collection of finite disjoint unions of elements in A0, the rectangular sets, forms an algebra A by Claim B.2. Then
σ (A) = ⊗α∈AMα, as we saw in Claim 5.2. Hence let us define a premeasure ρ : A → [0,∞] given by

ρ
(
⊔nj=1E1,j × · · · × E|A|,j

)
:=

n∑
j=1

∏
α∈A

µα (Eαj) . (5.1)

Claim 5.5. ρ is indeed a premeasure.

Proof. We need to verify the axioms of Definition 2.73. Clearly we have ρ (∅) = 0. From the definition of ρ it
is clear that it is finitely additive. Now, let {Aj }∞j=1 ⊆ A. We assume all Aj ’s are pairwise disjoint, and that⋃∞
j=1Aj happens to lie within A. But A is itself finite disjoint unions of rectangles. So somehow the countable

union
⋃∞
j=1Aj of rectangles happens to be a finite union of rectangles.

We write
Aj := ⊔nj

i=1E
j
1,i × · · · × Ej|A|,i

so

ρ (Aj) ≡
nj∑
i=1

∏
α∈A

µα

(
Ejα,i

)
.

53



Now by hypothesis,
⋃∞
j=1Aj ∈ A, so

∞⋃
j=1

Aj =

∞⋃
j=1

⊔nj

i=1E
j
1,i × · · · × Ej|A|,i

is a finite disjoint union of rectangles, i.e.,

∞⋃
j=1

⊔nj

i=1E
j
1,i × · · · × Ej|A|,i = ⊔Nk=1F1,k × · · · × F|A|,k .

Hence

ρ

 ∞⋃
j=1

Aj

 = ρ
(
⊔Nk=1F1,k × · · · × F|A|,k

)
≡

N∑
k=1

∏
α∈A

µα (Fα,k) .

Now,
N∑
k=1

∏
α∈A

χFα,k
=

N∑
k=1

χ×α∈A Fα,k
=

∞∑
j=1

nj∑
i=1

χ×α∈A E
j
α,i

=

∞∑
j=1

nj∑
i=1

∏
α∈A

χEj
α,i
.

Integrate both sides of this equation on Xα w.r.t µα we get

N∑
k=1

∏
α∈A

µα (Fα,k) =

∞∑
j=1

nj∑
i=1

∏
α∈A

µα

(
Ejα,i

)
where on the RHS we have used the monotone convergence theorem Theorem 2.47 to exchange the j series with the
integrals. As a result,

ρ

⋃
j

Aj

 =

∞∑
j=1

ρ (Aj)

as desired.

Definition 5.6 (The product measure). By Caratheodory’s procedure Theorem 2.76, ρ→ φρ → µφρ
yields a complete

measure on a σ-algebra ⊗α∈AMα which contains ⊗α∈AMα. That resulting measure is defined as the product measure∏
α∈A µα (for |A| < ℵ0).

Note that by definition, on rectangular sets where each factor in the product is measurable, we have(∏
α∈A

µα

)(∏
α∈A

Eα

)
≡
∏
α∈A

µα (Eα) .

Remark 5.7. We caution the reader that there may be a strict gap between ⊗α∈AMα, the product σ-algebra, and the
σ-algebra ⊗α∈AMα given by the Caratheodory construction starting from the premeasure (5.1). Indeed, the latter
contains the former and there are cases when the inclusion is strict.
Thus, according to our convention the σ-algebra on which the product measure acts is automatically complete since it
is the result of the Caratheodory construction. This is at odds with some authors, e.g., Folland, who let the product
measure act on the product sigma-algebra, which may be incomplete. They then consider the completion of this
measure, which is the same thing.

Example 5.8. Consider L the σ-algebra of Lebesgue measurable subsets of R. Then the product σ-algebra of L⊗L

is strictly smaller than the σ-algebra of Lebesgue measurable subsets of R2 (which is defined using the Caratheodory
construction as L ⊗L). Indeed, the latter is complete whereas the former may fail to be. There are measure zero
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subsets of R2(in particular they are Lebesgue measurable) which are not Lebesgue measurable in L ⊗L. Indeed, let
A ⊆ R be any non-Lebesgue measurable subset (e.g. a Vitali set) and consider the set A × { 0 } which is Lebesgue
measurable (verify this) and of measure zero.

5.1.3 The Fubini-Tonelli Theorem

Let (X,M, µ) and (Y,N, ν) be two σ-finite measure spaces and f : X × Y → C be measurable w.r.t. M ⊗ N. In this
subsection we shall use the two projections

π1 : X × Y → X

and
π2 : X × Y → Y .

We also have two induced functions: for each fixed x ∈ X,

fx : Y → C

y 7→ f (x, y)

and for each fixed y ∈ Y ,

fy : X → C

x 7→ f (x, y) .

Claim 5.9. For any M ⊗ N-measurable f : X × Y → C, x ∈ X and y ∈ Y , fx : Y → C and fy : X → C are both
measurable. Moreover, for any A ∈ M ⊗ N and fixed x ∈ X, y ∈ Y , the sets

A2 (x) := π2 (({ x } × Y ) ∩A) = { y ∈ Y | (x, y) ∈ A } ⊆ Y

and
A1 (y) := π1 ((X × { y }) ∩A) = { x ∈ X | (x, y) ∈ A } ⊆ X

are both measurable. The sets A1, A2 are called the sections of A.

Proof. Let
R := { E ⊆ X × Y | E1 (y) ∈ M∀y ∈ Y ∧ E2 (x) ∈ N∀x ∈ X } .

Clearly, if E is rectangular, i.e., if E = U × V with U ⊆ X and V ⊆ Y then its sections are E1 (y) =

{
∅ y /∈ V

U y ∈ V

and E2 (x) =

{
∅ x /∈ U

V x ∈ U
. Hence R contains all rectangular sets. In fact R is a σ-algebra. Indeed, X × Y ∈ R.

Moreover, R is closed under complements. Assume E ∈ R. Let x ∈ X. We want to show that (Ec)2 (x) ∈ N. We
have

(Ec)2 (x) = { y ∈ Y | (x, y) ∈ Ec } .

We claim that (Ec)2 (x) = (E2 (x))
c. Indeed,

y ∈ (Ec)2 (x) ⇐⇒ (x, y) ∈ Ec

⇐⇒ (x, y) /∈ E

⇐⇒ y /∈ E2 (x)

⇐⇒ y ∈ (E2 (x))
c
.

So we see that really R is closed under complements. Actually also under countable unions, using the identity ∞⋃
j=1

Ej


2

(x) =

∞⋃
j=1

(Ej)2 (x)

which may be proven similarly. But M ⊗ N is the smallest σ-algebra containing the rectangular sets.
The first statement follows from

(fx)
−1

(B) =
(
f−1 (B)

)
2
(x)
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and similarly for the other function.

Definition 5.10 (Monotone class). Let X be a non-empty set. A monotone class C on X is a subset of P (X) which
is closed under countable increasing unions and countable decreasing intersections.

Claim 5.11. Every σ-algebra is a monotone class, and the intersection of any family of monotone classes is a monotone
class. Hence for any E ⊆ P (X), there is a unique smallest monotone class generated by E, C (E).

Proof. TODO

Lemma 5.12 (Monotone class lemma). If A is an algebra of subsets of X then

C (A) = σ (A) .

Proof. By the above claim, any σ-algebra is itself a monotone class, so by definition

C (A) ⊆ σ (A) .

We will show that C (A) is actually a σ-algebra (due to the fact A is not just any set, but an algebra) which will
finish the proof. To this end, for any E ∈ C (A), let

DE (A) := { F ∈ C (A) : E \ F, F \ E,E ∩ F ∈ C (A) } .

Clearly we have ∅, E ∈ DE (A), and
F ∈ DE (A) ⇐⇒ E ∈ DF (A) .

Actually DE (A) is itself also a monotone class. In fact, if E ∈ A then F ∈ DE (A) for all F ∈ A as A is an
algebra, so

A ⊆ DE (A)

and hence
C (A) ⊆ DE (A) .

Hence if F ∈ C (A), F ∈ DE (A) for all E ∈ A. But that means that E ∈ DF (A) for all E ∈ A, so

A ⊆ DF (A)

and hence
C (A) ⊆ DF (A) .

Hence, if E,F ∈ C (A), then E \F , F \E and E ∩F are all in C (A). Now X ∈ A ⊆ C (A), so C (A) is an algebra.
Now if { Ej }∞j=1 ⊆ C (A) then

n⋃
j=1

Ej ∈ C (A)

as it is an algebra. But moreover, C (A) is closed under countable increasing unions such
{⋃n

j=1Ej

}
n
, i.e.,

∞⋃
j=1

Ej =

∞⋃
n=1

n⋃
j=1

Ej ,

so
∞⋃
j=1

Ej ∈ C (A)

and we are done.

56



Theorem 5.13 (Relate product measure to integral on sections). Let (X,M, µ) and (Y,N, ν) be two σ-finite measure
spaces. If E ∈ M ⊗ N then

x 7→ ν (E2 (x)) , y 7→ µ (E1 (y))

are measurable on X and Y respectively, and

(µ× ν) (E) =

∫
X

ν (E2) dµ =

∫
Y

µ (E1) dν .

Proof. Case 1: µ and ν are finite.
Let C be the set of all subsets E ∈ M⊗N for which the statement of the theorem hold. Clearly, if E is rectangular

of the form E = A×B then

ν (E2 (x)) = χA (x) ν (B) , µ (E1 (y)) = µ (A)χB (y)

and so E ∈ C. By additivity the same is true for finite disjoint unions of rectangles, and we know that those form an
algebra, so by Lemma 5.12 it is sufficient to show that C is a monotone class generated by rectangular measurable
sets. Let { En }n be an increasing sequence in C. Want to show that E :=

⋃
nEn ∈ C. Consider

fn (y) := µ ((En)1 (y)) (y ∈ Y ) .

This forms a sequence of measurable functions which increase pointwise to

f (y) = µ (E1 (y)) .

So f is measurable and by the monotone convergence theorem Theorem 2.47,∫
µ (E1) dν = lim

n

∫
µ ((En)1) dν = lim

n
(µ× ν) (En) = (µ× ν) (E)

where in the last step we have used (2.4). Similarly for the other integral.
Next, if { En }n is a decreasing sequence in C, we want E :=

⋂
nEn ∈ C. The function

y 7→ µ (E1 (y))

is in L1 (ν) since
µ (E1 (y)) ≤ µ (X) <∞

and ν (Y ) < ∞ by assumption. Hence we may invoke the bounded convergence theorem Corollary 2.62 may be
applied to show E ∈ C.

Case 2: If µ, ν are σ-finite, we write X×Y as the union of an increasing sequence of rectangles {Xj × Yj }j each
of which has finite (product) measure. Now for any E ∈ M ⊗ N, Case 1 applies to E ∩ (Xj × Yj) for each j to give

(µ× ν) (E ∩ (Xj × Yj)) =

∫
Xj

ν (E2 (x) ∩ Yj) dµ

and now we apply the monotone convergence theorem again to get the result.

Theorem 5.14 (Tonelli). Let (X,M, µ) and (Y,N, ν) be two σ-finite measure spaces (as in Definition 2.37) and
f : X × Y → [0,∞] be measurable w.r.t. M ⊗ N . Then∫

X×Y
fdµ× ν =

∫
X

(
x 7→

∫
Y

fxdν

)
dµ =

∫
Y

(
y 7→

∫
X

fydµ

)
dν .

Proof. If f is a characteristic function onto a measurable set then we are finished by Theorem 5.13. By linearity of
the integral it therefore holds for nonnegative simple functions. For the general case, let { fn }n be a sequence of
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simple functions that increase pointwise to f as in Theorem 2.27. By Theorem 2.47,

x 7→
∫
Y

(fn)x dν

is an increasing sequence to

x 7→
∫
Y

fxdν

and similarly for fy, so that these limits are measurable. It also implies that∫
X

(
x 7→

∫
Y

fxdν

)
dµ = lim

n

∫
X

(
x 7→

∫
Y

(fn)x dν

)
dµ

= lim
n

∫
fnd(µ× ν)

=

∫
fd(µ× ν)

and similarly for fy.

Theorem 5.15 (Fubini). Let (X,M, µ) and (Y,N, ν) be two σ-finite measure spaces and f : X×Y → C be measurable
w.r.t. M ⊗ N such that

f ∈ L1 (X × Y, µ× ν) .

Then ∫
X×Y

fdµ× ν =

∫
X

(
x 7→

∫
Y

fxdν

)
dµ =

∫
Y

(
y 7→

∫
X

fydµ

)
dν .

Proof. Apply the above to the positive and negative parts of the real and imaginary parts of f separately. Moreover,(
x 7→

∫
Y
fxdν

)
is finite ν-almost-everywhere, i.e., fx ∈ L1 (ν) for almost every x and similarly for fy.

Note that if f : X × Y → C is measurable w.r.t. M ⊗ N then it is automatically measurable w.r.t. M ⊗ N since

M ⊗ N ⊆ M ⊗ N .

The reverse is of course false, and sometimes we may want to consider functions measurable w.r.t. M ⊗ N.

Theorem 5.16 (Fubini-Tonelli for complete products). Let (X,M, µ) and (Y,N, ν) be two σ-finite complete measure
spaces and f : X × Y → C be measurable w.r.t. M ⊗ N such that either

f ∈ L1 (X × Y, µ× ν)

or f ≥ 0. Then fx : Y → C, fy : X → C are measurable for almost-all x, y respectively,

x 7→
∫
Y

fxdν, y 7→
∫
X

fydµ

are measurable and, if f ∈ L1, they are also integrable, and∫
X×Y

fdµ× ν =

∫
X

(
x 7→

∫
Y

fxdν

)
dµ =

∫
Y

(
y 7→

∫
X

fydµ

)
dν .

Proof. TODO

Example 5.17. Let R := [0, 2]× [0, 1] ⊆ R2 and define F : R→ R via

F (x, y) := xey .
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We want to calculate ∫
R

Fdλ .

Since F is continuous, it is measurable. Since F ≥ 0 and λ (R) <∞, Theorem 5.14 applies and we may thus calculate
this integral iteratively: ∫

R

Fdλ =

∫
[0,2]

x 7→

[∫
[0,1]

(y 7→ xey) dλ

]
dλ

=

∫
[0,2]

x 7→ x
(
e1 − e0

)
dλ

= (e− 1)
1

2
(4− 0)

= 2 (e− 1) .

Example 5.18 (Counter-example). Consider the product space

N × N

with the counting measure c on it. Now consider the function

f (x, y) :=


1 x = y

−1 x = y + 1

0 else
= δxy − δx,y+1 .

This function is measurable since everything is measurable w.r.t. P (N). It is not L1 since

|f | (x, y) :=


1 x = y

1 x = y + 1

0 else
= δxy + δx,y+1

and so by Tonelli’s theorem,∫
N×N

|f |d(c× c) =

∫
y∈N

[∫
x∈N

|f | (x, y) dc (x)
]
dc (y)

=

∫
y∈N

[∫
x∈N

(δxy + δx,y+1) dc (x)

]
dc (y)

=
∞∑
y=1

∞∑
x=1

(δxy + δx,y+1)

=

∞∑
y=1

2 = ∞ .

As a result, Fubini’s theorem is not applicable. And indeed we see that the iterated integrals do not agree:

∞∑
y=1

∞∑
x=1

(δxy − δx,y+1) =

∞∑
y=1

0 = 0 ̸= 1 =

∞∑
y=1

δy,1 =

∞∑
x=1

∞∑
y=1

(δxy − δx,y+1) .

Example 5.19 (Counter-example). Let X = Y = [0, 1] both with B ([0, 1]). On X choose the Lebesgue mea-
sure but on Y choose the counting measure. Then one may verify that X × Y is not σ-finite. Indeed, if D :=
{ (x, y) ∈ X × Y | x = y } then∣∣∣∣{ ∫

X×Y
χDdµ× ν,

∫
X

(∫
Y

χDdν

)
dµ,

∫
Y

(∫
X

χDdµ

)
dν

}∣∣∣∣ = 3 .
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5.2 Push forward and pull back measures [Not sure about the source]
Let (X,M, µ) be a measure space, (Y,N) be a measurable space and φ : X → Y be measurable.

Definition 5.20 (The push-forward measure). Define a new measure µφ : N → C on Y via

µφ (A) := µ
(
φ−1 (A)

)
(A ∈ N) .

µφ is called the push forward of µ by φ. In terms of maps,

µφ := µ ◦ φ−1

which makes sense since φ−1, while not being a function Y → X, is a function P (Y ) → P (X); of course φ−1 (A) is
the preimage of A under φ: we are not assuming φ is invertible.

Claim 5.21. The push-forward measure is a well-defined measure.

Proof. Clearly as φ is measurable, φ−1 (A) ∈ M for all A ∈ N, so the formula for µφ makes sense on its domain. It
obeys the axioms of a measure Definition 2.28. Indeed, first we show that µφ is not infinite on all sets. Take

µφ (∅) ≡ µ
(
φ−1 (∅)

)
= µ (∅) = 0 <∞

since µ is a measure. For countable additivity, let {Aj }j ⊆ N be a disjoint sequence. Then

µf

⋃
j

Aj

 ≡ µ

f−1

⋃
j

Aj


= µ

⋃
j

f−1 (Aj)


=

∑
j

µf (Aj)

where we have used the fact that the preimage preserves disjointness: If A ∩ B = ∅ then f−1 (A) ∩ f−1 (B) = ∅.
Indeed,

f−1 (A) ∩ f−1 (B) = f−1 (A ∩B) = f−1 (∅) = ∅ .

The following result is the weakest form of change of variable formula, which relates the integral w.r.t. the push forward
measure µφ to integrals w.r.t. µ. It is so general that it doesn’t even need any type of invertibility for φ.

Theorem 5.22 (Abstract measure-theoretic change of variables formula). Let (X,M, µ) be a measure space, (Y,N)
be a measurable space and φ : X → Y be measurable. Then for any f : Y → C in L1 (Y, µφ),

f ◦ φ ∈ L1 (X,µ)

and ∫
X

f ◦ φdµ =

∫
Y

fdµφ . (5.2)

Proof. Step 1 : Assume that f is a simple nonnegative measurable function of the form:

f =

n∑
i=1

αiχAi .
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Then ∫
Y

fdµφ ≡
n∑
i=1

αiµφ (Ai) (def of int on simple func)

=

n∑
i=1

αiµ
(
φ−1 (Ai)

)
(def of msr)

=

n∑
i=1

αi

∫
X

χφ−1(Ai)dµ (int of char func is msr)

=

∫
X

n∑
i=1

αiχφ−1(Ai)dµ (linearity)

=

∫
X

f ◦ φdµ .

In the last line we have used the fact that
χφ−1(A) = χA ◦ φ .

Indeed,

χφ−1(A) (x) = 1 ⇐⇒ x ∈ φ−1 (A)

⇐⇒ φ (x) ∈ A

⇐⇒ χA (φ (x)) = 1 .

So we learn that (5.2) holds for nonnegative simple measurable functions.
Step 2 : Assume f : Y → [0,∞] is measurable. Then by Theorem 2.27 there is a sequence { fn }n of simple

nonnegative measurable functions which converges monotonically from below, pointwise, to f :

0 ≤ fn ≤ fn+1 ≤ f .

Then by the monotone convergence Theorem 2.47 we have∫
Y

fdµφ = lim
n→∞

∫
Y

fndµφ

= lim
n→∞

∫
X

fn ◦ φdµ .

But now, fn ◦φ is a monotone sequence that converges to f ◦φ, by construction. Thus, invoking again the monotone
convergence theorem we get

lim
n→∞

∫
X

fn ◦ φdµ =

∫
X

f ◦ φdµ

and hence (5.2) for f : Y → [0,∞] measurable.
Step 3: Assume f : Y → C is measurable and L1 (Y, µφ). Then by (2.14) we have∫

Y

fdµφ ≡
∫
Y

Re {f}+ dµφ −
∫
Y

Re {f}− dµφ + i

∫
Y

Im {f}+ dµφ − i

∫
Y

Im {f}− dµφ

=

∫
X

Re {f}+ ◦ φdµ−
∫
X

Re {f}− ◦ φdµ+ i

∫
X

Im {f}+ ◦ φdµ− i

∫
X

Im {f}− ◦ φdµ

=

∫
X

Re {f ◦ φ}+ dµ−
∫
X

Re {f ◦ φ}− dµ+ i

∫
X

Im {f ◦ φ}+ dµ− i

∫
X

Im {f ◦ φ}− dµ

≡
∫
X

f ◦ φdµ .

If, however, we do assume that φ is at least somewhat invertible (i.e. it is injective but we don’t even assume that the left
inverse is measurable!) then we may localize the integrals to subsets.
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Corollary 5.23 (Change of variables formula with injective map). Let (X,M, µ) be a measure space, (Y,N) be a
measurable space and φ : X → Y be measurable and injective. Then for any f : Y → C in L1 (Y, µφ),

f ◦ φ ∈ L1 (X,µ)

and ∫
A

f ◦ φdµ =

∫
φ(A)

fdµφ (A ∈ M) . (5.3)

Proof. We have by the above ∫
φ(A)

fdµφ =

∫
Y

χφ(A)fdµφ

=

∫
X

(
χφ(A) ◦ φ

)
(f ◦ φ) dµ .

But we claim that if φ is injective then χφ(A) ◦ φ = χA. Indeed,(
χφ(A) ◦ φ

)
(x) = 1 ⇐⇒ φ (x) ∈ φ (A)

⇐⇒ φ (x) = φ (a)∃a ∈ A .

Now if x ∈ A then take a = x. If x /∈ A then there cannot exist a ∈ A with φ (x) = φ (a) because that would imply
x = a which would imply x ∈ A. We conclude φ (x) = φ (a)∃a ∈ A if and only if x ∈ A.

We note that we could have localized without assuming φ is injective also previously but we then would’ve been stuck
with ∫

φ(A)

fdµφ =

∫
X

(
χφ(A) ◦ φ

)
(f ◦ φ) dµ .

If φ is not injective then
χφ(A) ◦ φ ≥ χA

but the two could fail to be equal.

Example 5.24. Consider φ (t) = t2 for t ∈ R which is not injective and A = [−1, 2]. Then φ (A) = [0, 4] and then

χ[0,4]

(
t2
)
= χ[0,2] (|t|) = χ[−2,2] (t) > χ[−1,2] (t) .

5.3 Important inequalities

Theorem 5.25 (Jensen). Let (X,M, µ) be a measure space with µ : M → [0,∞) a measure such that µ (X) = 1. Let
f ∈ L1 (X → (a, b) , µ) for some a < b ∈ R and φ : (a, b) → R be convex. Then

φ

(∫
X

fdµ

)
≤
∫
X

φ ◦ fdµ .

Note we do not require φ ◦ f ∈ L1 (µ). It may well happen the RHS is ∞.

Proof. This is in HW5Q6.

Definition 5.26 (Conjugate pairs). Let p, q ∈ [1,∞]. If 1
p +

1
q = 1 then we say that p and q are conjugate pairs.

Theorem 5.27 (Hölder’s inequality). Let p, q ≥ 1 be a conjugate pair with p ∈ (1,∞) and (X,M, µ) a measure space.
Let f, g : X → [0,∞] be two measurable functions. Then∫

X

fgdµ ≤
(∫

X

fpdµ

) 1
p
(∫

X

gqdµ

) 1
q

.
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Proof. This is in HW5Q8.

Theorem 5.28 (Minkowski). Let p ∈ (1,∞) and (X,M, µ) a measure space. Let f, g : X → [0,∞] be two measurable
functions. Then (∫

X

(f + g)
p
dµ

) 1
p

≤
(∫

X

fpdµ

) 1
p

+

(∫
X

gpdµ

) 1
p

.

Proof. This is in HW5Q7.

5.4 The L2 structure of a measure space
We have seen that given a measure space (X,M, µ) there is a space of integrable functions

L1 (µ) ≡
{
f : X → C

∣∣∣∣ f is msrbl. and
∫
X

|f |dµ <∞
}
.

We saw that L1 (µ) is a C-vector space. Actually one has to be aware of the fact that this vector space is infinite
dimensional and it is in this sense that it is way richer than the space Cn, which is basically entirely determined by its
dimension. For infinite dimensional vector spaces, the topology becomes much important. One convenient way to deal
with topological questions in Hilbert space is via a norm. In fact L1 (µ) is a normed vector space with the norm

∥f∥L1(µ) ≡ ∥f∥1 :=

∫
X

|f |dµ . (5.4)

Claim 5.29. The formula in (5.4) yields a norm.

Proof. We follow the axioms of Definition C.1 below: Let α ∈ C and f ∈ L1 (µ). Then

∥αf∥1 ≡
∫
X

|αf |dµ =

∫
X

|α| |f |dµ ⋆
= |α|

∫
X

|f |dµ ≡ |α| ∥f∥1

where in ⋆ we have used the linearity of the integral Theorem 2.57. For the triangle inequality, let f, g ∈ L1 (µ).
Then

∥f + g∥1 ≡
∫
X

|f + g|dµ .

Now we invoke the triangle inequality at the level of the complex plane: for any x ∈ X,

|f (x) + g (x)| ≤ |f (x)|+ |g (x)| .

Plug this in and use the linearity of the integral to find∫
X

|f + g|dµ ≤
∫
X

|f |dµ+

∫
X

|g|dµ ≡ ∥f∥1 + ∥g∥1 .

Finally, we want to show that if f ∈ L1 (µ) has ∥f∥1 = 0 then f = 0. This is actually false. Consider for instance
the function

f = χC

where C is the Cantor set, X = R and µ = λ. Then

∥f∥1 ≡ λ (C) = 0

yet f is clearly not the zero function.
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Let’s try again. We define an equivalence relation on L1 (µ):

f ∼ g ⇐⇒ µ ({ x ∈ X | f (x) ̸= g (x) }) = 0 .

Before we begin we must show that the set { x ∈ X | f (x) ̸= g (x) } is measurable. We have proven in HW1Q10 that this
is indeed so for functions whose domain is R. Here it is even easier:

{ x ∈ X | f (x) ̸= g (x) } = { x ∈ X | f (x)− g (x) ̸= 0 }
= (f − g)

−1
({ 0 }c)

and we are done since { 0 }c is measurable in B (C).
∼ is indeed an equivalence relation:

1. Reflexive: f ∼ f since
µ ({ x ∈ X | f (x) ̸= f (x) }) = µ (∅) = 0 .

2. Symmetric: f ∼ g ⇐⇒ g ∼ f since f (x) ̸= g (x) is symmetric.

3. Transitive: f ∼ g ∧ g ∼ h =⇒ f ∼ h. First we note that

f (x) ̸= g (x) ⇐⇒ |f (x)− g (x)| > 0 .

Next, write

|f (x)− h (x)| ≤ |f (x)− g (x)|+ |g (x)− h (x)|

so if x ∈ X is such that 0 < |f (x)− h (x)| then one of |f (x)− g (x)| or |g (x)− h (x)| must be nonzero. This means
that

{ x ∈ X | f (x) ̸= h (x) } ⊆ { x ∈ X | f (x) ̸= g (x) } ∪ { x ∈ X | g (x) ̸= h (x) }
and so taking µ of this equation we find

µ ({ x ∈ X | f (x) ̸= h (x) }) ≤ µ ({ x ∈ X | f (x) ̸= g (x) } ∪ { x ∈ X | g (x) ̸= h (x) })
≤ µ ({ x ∈ X | f (x) ̸= g (x) }) + µ ({ x ∈ X | g (x) ̸= h (x) })
= 0 + 0 = 0 .

Hence f ∼ h.

The result is that ∼ is an equivalence relation on L1 (µ). We denote the equivalence classes with

[f ]L1(µ) :=
{
g ∈ L1 (µ)

∣∣ f ∼ g
}

and now define
L̃1 (µ) :=

{
[f ]L1(µ)

∣∣∣ f ∈ L1 (µ)
}
.

One easily verifies that is also a C-vector space with

[f ]L1(µ) + [g]L1(µ) := [f + g]L1(µ)

α [f ]L1(µ) := [αf ]L1(µ)

and the same norm (5.4) now is an honest norm:∥∥∥[f ]L1(µ)

∥∥∥
L1(µ)

:=

∫
X

|f |dµ .

Proof. First, it is clear this formula is a well-defined function at the level of the equivalence classes. Indeed, if f ∼ g
then since the two functions differ on a set of measure zero, the integral of their absolute values will agree. Same
goes with the proof of homogeneity and the triangle inequality. So we are left with showing that∥∥∥[f ]L1(µ)

∥∥∥
L1(µ)

= 0 =⇒ [f ]L1(µ) = 0

i.e., that ∫
X

|f |dµ = 0 =⇒ µ

{ x ∈ X | |f (x)| > 0 }︸ ︷︷ ︸
=:N

 = 0 .
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To see this, let us define

Nn :=

{
x ∈ X

∣∣∣∣ |f (x)| > 1

n

}
(n ∈ N) .

Then
1

n
µ (Nn) =

∫
Nn

1

n
dµ ≤

∫
Nn

|f |dµ ≤
∫
N

|f |dµ = 0 .

Hence µ (Nn) = 0 for all n ∈ N. But
N =

⋃
n∈N

Nn

so the claim follows.

It is time to lighten up the notation a little. First, a piece of terminology:

Definition 5.30 (Almost-everywhere). If for two measurable functions f, g : X → C we have

µ ({ x ∈ X | f (x) ̸= g (x) }) = 0

we say that f = g µ-almost-everywhere, abbreviated as µ-a.e.. In the context of probability one says µ-almost-surely
or just almost surely.

Thus, even though ∥·∥L1 is not honestly a norm on L1 (µ) and strictly speaking one should work with∥∥∥[·]L1(µ)

∥∥∥
L1(µ)

, L̃1 (µ)

with abuse of notation, we avoid this notation and shall use the previous notation, even though whenever we appeal to
this normed vector space structure we really mean to talk about equivalence classes of L1 functions which only differ on
sets of measure zero.

Another important fact is that the norm (5.4) makes L1 (µ) complete: any Cauchy sequence w.r.t. the norm con-
verges.

Proposition 5.31. The norm (5.4) is complete.

Proof. Let { fn }n ⊆ L1 (µ) such that for any ε > 0 there exists some Nε ∈ N such that if n,m ∈ N are such that
n,m ≥ Nε then

∥fn − fm∥1 < ε .

We want to show that implies there exists some f ∈ L1 (µ) such that fn → f in the L1 (µ) norm. From this
Cauchy condition, for any j ∈ N, if n,m ≥ N2−j then

∥fn − fm∥1 < 2−j .

This allows us to find a strictly increasing sequence { nj }j∈N ⊆ N such that∥∥fnj+1 − fnj

∥∥ < 2−j (j ∈ N) .

Define now, for any x ∈ X for which it makes sense,

f (x) := fn1
(x) +

∞∑
j=1

[
fnj+1

(x)− fnj
(x)
]
. (5.5)

We claim that this series converges absolutely for almost-every x ∈ X. Indeed, set

gk :=

k∑
j=1

∣∣fnj+1 − fnj

∣∣ , g := lim
k
gk .
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By the Minkowski inequality Theorem 5.28,

∥gk∥1 ≤
k∑
j=1

2−j < 1 .

Hence by Fatou’s lemma Lemma 2.53,∫
X

(
lim inf

k
gk

)
dµ ≤ lim inf

k

∫
X

gkdµ < lim inf
k

1 = 1

so that
∥g∥1 ≤ 1 .

This implies that g (x) < ∞ for µ-almost-every x and we indeed get absolute convergence of (5.5) µ-almost-
everywhere. Set f = 0 on the measure-zero complement of this set. Since the sum in the definition telescopes,
it is clear that wherever the sum does converge,

f (x) = lim
j→∞

fnj
(x) .

We now want to boost this almost-everywhere pointwise convergence to L1 (µ) convergence. By Fatou’s lemma, for
any m ≥ Nε we have ∫

X

|f − fm|dµ ≤ lim inf
j→∞

∫
X

∣∣fnj − fm
∣∣dµ ≤ ε

so that f ∈ L1 (µ) and fm → f in L1 (µ).

A complete normed vector space is called a Banach space. We have thus exhibited L1 (µ) as a Banach space.
A basic question one may pose is: does this norm arise from an inner product?
The answer is that this is so if and only if the norm obeys the parallelogram rule.

Claim 5.32. If a norm satisfies the parallelogram law:

∥ψ + φ∥2 + ∥ψ − φ∥2 ≤ 2∥ψ∥2 + 2∥φ∥2 (∀φ,ψ in the normed vector space)

then
⟨ψ,φ⟩ := 1

4

[
∥ψ + φ∥2 − ∥ψ − φ∥2 + i∥iψ − φ∥2 − i∥iψ + φ∥2

]
defines an inner product whose associated norm is ∥·∥ ≡

√
⟨·, ·⟩. Conversely if the parallelogram law is violated then

no inner-product may be defined compatible with that norm.

Proof. Left as an exercise to the reader.

Claim 5.33. The L1 norm does not in general satisfy the parallelogram law.

Proof. TODO

If we seek to work with an inner product then there is a space we can work with: the L2 space. We define

L2 (µ) ≡
{
f : X → C

∣∣∣∣ f is msrbl. and
∫
X

|f |2 dµ <∞
}

with the associated norm

∥f∥L2(µ) :=

√∫
X

|f |2 dµ . (5.6)
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Claim 5.34. The formula in (5.6) induces a complete norm (again with the song and dance about equivalence classes
of functions which differ on sets of measure zero) which does satisfy the parallelogram law. The associated inner
product is

⟨f, g⟩L2(µ) :=

∫
X

fgdµ .

This makes L2 (µ) into a Hilbert space: an inner product space whose associated norm is complete.

Proof. The same completeness proof presented above for L1 (µ) works for any p ∈ [1,∞).

5.5 The Lebesgue decomposition theorem [Rudin]
In this chapter we want to perform the opposite operation as in Theorem 2.54. Recall from there that if f : X → [0,∞]
is measurable then given a measure µ : Msrbl (X) → [0,∞] we may induce a new one φµ,f : Msrbl (X) → [0,∞] via

φµ,f (E) ≡
∫
E

fdµ (E ∈ Msrbl (X)) . (5.7)

Question: Can we do the opposite? Given two measures µ, φ, does there exist a function f so that (5.7) holds? This
is what we want to explore here.

Let (X,M) be a measurable space and µ : M → [0,∞] , ν : M → C be two measures on it.

Definition 5.35 (Absolute continuity). We say that ν is absolutely continuous w.r.t. µ, and write

ν ◀ µ ,

iff for any E ∈ M,
µ (E) = 0 =⇒ ν (E) = 0 .

Said differently,
µ−1 ({ 0 }) ⊆ ν−1 ({ 0 }) .

Example 5.36. Let f : X → [0,∞] be measurable and µ : Msrbl (X) → [0,∞] be a measure. Define φµ,f as in (5.7).
Then

φµ,f ◀ µ .

Proof. Assume that E ∈ Msrbl (X) is such that µ (E) = 0. Then we want to show that

0
?
= φµ,f (E) ≡

∫
E

fdµ = sup
s simple s.t. 0≤s≤f

∫
E

sdµ = sup
s simple s.t. 0≤s≤f

∑
i

αiµ (Ai ∩ E) = 0 .

Example 5.37. Let (X,M, µ) be a measure space with µ : Msrbl (X) → [0,∞] and let φ : X → X be a measure-
preserving map: µ (A) = µ

(
φ−1 (A)

)
for all A ∈ M. Then the push-forward measure µφ given in Definition 5.20

has
µφ ◀ µ .

Definition 5.38 (Concentration). Let ν : M → C be a measure. If ∃A ∈ M such that

ν (E) = ν (A ∩ E) (E ∈ M)

then we say that ν is concentrated on A. This condition is equivalent to

E ∩A = ∅ =⇒ ν (E) = 0 (E ∈ M) .
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Definition 5.39 (Mutually singular measures). Let µ, ν be two measures on (X,M) and let A,B ∈ M be such that
A∩B = ∅ and such that µ is concentrated on A and ν is concentrated on B. Then we say that µ and ν are mutually
singular and write

µ ⊥ ν .

Proposition 5.40. Let (X,M) be a measurable space and µ, λ, λ1, λ2 be measures on M. Assume further that µ is
a positive measure. Then

1. If λ1 ◀ µ and λ2 ⊥ µ then λ1 ⊥ λ2.

2. If λ ◀ µ and λ ⊥ µ then λ = 0.

Proof. For the first claim, since λ2 ⊥ µ, there is some A ∈ M such that µ (A) = 0 and λ2 is concentrated on A. But
λ1 ◀ µ so, λ1 (E) = 0 for all E ⊆ A so that λ1 is concentrated on Ac.

For the second claim, using the first one we have λ ⊥ λ which forces λ = 0.

Lemma 5.41. If µ is a positive σ-finite measure on a σ-algebra M in a set X, then there is a function w : X → (0, 1)
such that w ∈ L1 (µ).

Proof. Since µ is σ-finite, ∃ { En }n∈N ⊆ M such that X =
⋃
n∈N En and µ (En) <∞. Define

wn (x) :=

{
0 x /∈ En

1
2n(1+µ(En))

x ∈ En
(x ∈ X)

and w :=
∑
n∈N wn. Then w has the required properties. Indeed, we clearly see that w ≥ 0, so |w| = w. Then,∫

X

wdµ =

∫
X

∑
n∈N

wndµ

=
∑
n∈N

∫
X

wndµ (MCT)

=
∑
n∈N

µ (En)

2n (1 + µ (En))

≤
∑
n∈N

1

2n

= 1 <∞ .

We conclude that w ∈ L1. Moreover, Since X =
⋃
n∈N En, given x ∈ X, there exists some nx ∈ N such that x ∈ Enx

.
For such x, we have

w (x) ≥ wnx
(x) =

1

2n (1 + µ (En))
> 0 .

Hence w > 0. The same argument also shows that w < 1.

The existence of this w allows us to construct a new, finite measure out of µ as follows. Using Theorem 2.54 we may
define a new measure µ̃ : M → [0,∞] via

µ̃ (E) :=

∫
E

wdµ .

Clearly we have µ̃ (X) <∞ and for all N ∈ M, µ̃ (N) = 0 iff µ (N) = 0, since w > 0.
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Theorem 5.42 (Lebesgue-Radon-Nikodym decomposition theorem). Let µ be a positive σ-finite measure on a σ-
algebra M in a set X, and let λ be a (finite) complex measure on M. Then

1. (Lebesgue decomposition) There is a unique pair of measures λa, λs : M → C such that

λ = λa + λs, λa ◀ µ, λs ⊥ µ .

Moreover, if λ is positive and finite, so are λa, λs; here by λa + λs we mean the pointwise sum of measures,
which is a new measure.

2. (Radon-Nikodym derivative) There is a unique element of L1 (µ), denoted as dλa

dµ , such that

λa (E) =

∫
E

dλa
dµ

dµ (E ∈ M) .

Proof due to von Neumann. Case 1 : Assume that λ is a positive bounded measure on M and let w be associated
with µ as in Lemma 5.41. Define now a new measure φ via

φ (E) := λ (E) +

∫
E

wdµ︸ ︷︷ ︸
=:µ̃(E)

(E ∈ M) .

Then φ is also a positive bounded measure on M, and∫
X

fdφ =

∫
X

fdλ+

∫
X

fwdµ

holds for any measurable function f : X → C of the form f = χE by definition, hence for any simple f and hence by
the monotone convergence Theorem 2.47 for any nonnegative measurable f .

Moreover, we have ∣∣∣∣∫
X

fdλ

∣∣∣∣ ≤ ∫
X

|f |dλ

=

∫
X

|f |dφ−
∫
X

|f |wdµ

≤
∫
X

|f |dφ

≤

√∫
X

|f |2 dφ
√
φ (X)

where in the last inequality we invoked the Cauchy-Schwarz inequality Claim D.6. But we have φ (X) <∞ so

f 7→
∫
X

fdλ

is a bounded linear functional on the Hilbert space L2 (X → C, φ). Hence by the Riesz representation theorem
Theorem D.10 there exists a unique g ∈ L2 (X → C, φ) such that∫

X

fdλ = ⟨g, f⟩L2(X→C,φ) ≡
∫
X

fgdφ
(
f ∈ L2 (X → C, φ)

)
. (5.8)

Note that elements of L2 (X → C, φ) are only defined up to a set of φ measure zero, so g can only be determined
up to that equivalence class. Now let E ∈ M be such that φ (E) > 0 (there must be such a set or else φ is the zero
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measure; since both λ, µ̃ ≥ 0, that implies both of these measures are the zero measure, in which case we are anyway
finished). Then plugging in f = χE into (5.8) we get

λ (E) =

∫
E

gdφ .

But 0 ≤ λ ≤ φ as measures, or equivalently, 0 ≤ λ
φ ≤ 1 and hence

0 ≤ λ (E)

φ (E)
≤ 1

↕

0 ≤
∫
E
gdφ

φ (E)
≤ 1 .

Right below in Lemma 5.43 we show this implies g ∈ [0, 1] φ-almost-everywhere, so we may re-define g for this to
hold for every x while still keeping (5.8) (and thus we can drop the bar g 7→ g since g is anyway real-valued) and
hence we rewrite (5.8) as ∫

X

fgdφ =

∫
X

fgdλ+

∫
X

fgwdµ

↕∫
X

fdλ =

∫
X

fgdλ+

∫
X

fgwdµ

↕∫
X

(1− g) fdλ =

∫
X

fgwdµ . (5.9)

Define now
A := g−1 ([0, 1)) , B := g−1 ({ 1 }) ,

These are measurable sets as g is measurable as a member of L2. Define two new measures

λa (E) := λ (A ∩ E) , λs (E) := λ (B ∩ E) (E ∈ M) .

Insert f = χB into (5.9) to get

0 =

∫
B

wdµ .

But since w > 0 for all x ∈ X, we conclude µ (B) = 0. Hence λs ⊥ µ.
We may moreover replace f = χE

∑n
j=0 g

j for n ∈ N and E ∈ M into (5.9); here by gj we mean the jth power
of g. We get then ∫

E

gw

n∑
j=1

gjdµ =

∫
X

(1− g)χE

n∑
j=0

gjdλ

=

n∑
j=0

∫
E

(1− g) gjdλ

=

∫
E

n∑
j=0

(
gj − gj+1

)
dλ

telescoping
=

∫
E

(
1− gn+1

)
dλ .
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On B, g = 1 so 1 − gn+1 = 0. On A, gn+1 → 0 monotonically. Hence the RHS of the above converges to
λ (A ∩ E) = λa (E) as n→ ∞. On the LHS,  gw

n∑
j=1

gj


n

increases monotonically to a non-negative measurable limit, call it h, so by the monotone convergence Theorem 2.47,
the RHS converges to

∫
E
hdµ as n→ ∞. Hence we have proven

λa (E) =

∫
E

hdµ (E ∈ M) .

Taking E = X we find that h ∈ L1 (µ) since we assume λa (X) ≤ λ (X) < ∞. Moreover, this equation shows that
λa ◀ µ and the proof is complete for positive λ.

If λ is a complex measure, write λ = λ1 + iλ2 for λ1, λ2 real and apply the preceding case to the positive and
negative total variations of λ1 and λ2 respectively (TODO: cross-ref below).

We proceed to the uniqueness claims: Let λ̃a, λ̃s be another pair which satisfies λ = λ̃a + λ̃s. Then

λ̃a + λ̃s = λa + λs

↕
λ̃a − λa = λs − λ̃s .

But we also know that λ̃a − λa ◀ µ and λs − λ̃s ⊥ µ. So it must be that both sides of this equation are zero, via
Proposition 5.40. For the uniqueness of h we employ Lemma 5.44 right below.

Proof. If we now relax λ to have range in [0,∞] instead of C, and be σ-finite, most of the theorem is still true, since
we can write X =

⋃
nXn with µ (Xn) <∞ and λ (Xn) <∞ and then decompose each

λ (· ∩Xn)

w.r.t. µ. However, it is not longer true that h ∈ L1 (µ), although it is “locally in L1” in the sense that
∫
Xn

hdµ <∞
for each n.

Lemma 5.43 (Range of function vs. range of its normalized integral). Let µ : M → [0,∞) be a positive measure and
f ∈ L1 (X → C;µ). Let F ∈ Closed (C) such that∫

E
fdµ

µ (E)
∈ F (E ∈ M : µ (E) > 0) .

Then for µ-almost-all x ∈ X, f (x) ∈ F .

Proof. Assume F ̸= C since otherwise we are finished. Since F c is open, it contains some ball, say, Bε (z) ⊆ F c. It
is well-known that F c is the countable union of such balls, say {Bεn (zn) }n∈N:

F c =
⋃
n∈N

Bεn (zn) .

Let us show that for each n ∈ N,
µ
(
f−1 (Bεn (zn))

)
= 0 .

Assume otherwise. Then ∫
f−1(Bεn (zn))

fdµ

µ (f−1 (Bεn (zn)))
∈ F .
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And in particular, since Bεn (zn) ⊆ F c, ∣∣∣∣∣
∫
f−1(Bεn (zn))

fdµ

µ (f−1 (Bεn (zn)))
− zn

∣∣∣∣∣ > εn .

But now, ∣∣∣∣∣
∫
f−1(Bεn (zn))

fdµ

µ (f−1 (Bεn (zn)))
− zn

∣∣∣∣∣ =
1

µ (f−1 (Bεn (zn)))

∣∣∣∣∣
∫
f−1(Bεn (zn))

(f − zn) dµ

∣∣∣∣∣
≤ 1

µ (f−1 (Bεn (zn)))

∫
f−1(Bεn (zn))

|f − zn|dµ

<
1

µ (f−1 (Bεn (zn)))

∫
f−1(Bεn (zn))

εndµ

= εn

which leads to a contradiction (we have used the fact that on f−1 (Bεn (zn)), |f − zn| < εn). Hence we reach a
contradiction, so it must be that

µ
(
f−1 (Bεn (zn))

)
= 0 .

But since this is true for any n ∈ N, this is true for all of F c: µ
(
f−1 (F c)

)
= 0 which is tantamount to saying that

f ∈ F µ-almost-everywhere.

Lemma 5.44. Let f : X → [0,∞] be measurable and E ∈ M be such that
∫
E
fdµ = 0. Then f = 0 µ-almost-

everywhere on E. If f ∈ L1 (X → C;µ) and
∫
E
f = 0 for all E ∈ M then f = 0 µ-almost-everywhere.

Proof. For the first statement, let An := f−1
((

1
n ,∞

))
∩ E. Then

1

n
µ (An) ≤

∫
An

fdµ ≤
∫
E

fdµ = 0

by hypothesis. Hence µ (An) = 0 for any n ∈ N. But

f−1 ((0,∞)) =
⋃
n∈N

An ,

so
µ
(
f−1 ((0,∞))

)
≤
∑
n∈N

µ (An) = 0 .

Hence f = 0 µ-almost-everywhere.
Now assume f ∈ L1 (X → C;µ). Apply the first statement on the measurable set

Re {f}−1
([0,∞])

to obtain that ∫
Re{f}−1([0,∞])

Re {f}+ dµ = Re

{∫
Re{f}−1([0,∞])

fdµ

}
= Re {0} = 0 .

Hence by the first statement, Re {f}+ is zero µ-almost-everywhere on Re {f}−1
([0,∞]). Similarly we deal with the

other parts of f to get the result.

It is customary (at least in mathematical physics) to further decompose the singular part of a measure further into its
atomic, pure point part and its singular continuous part. To that end, let us define, for the measure space (X,M, µ) and
the measure λ : M → [0,∞) the set

Xpp := { x ∈ X | λ ({ x }) > 0 } .
Note that if X is σ-finite then |Xpp| ≤ ℵ0. Then the pure-point measure λpp is given by

λpp := λ (Xpp ∩ ·) .
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By definition, λpp is concentrated on Xpp. The singular continuous part is whatever remains of λs after removing λpp:

λsc := λs − λpp .

Hence by construction, λsc ({ x }) = 0 for all x ∈ X.

Example 5.45. Take f : R → [0,∞] given by x 7→ 1
1+x2 . Then clearly f ∈ L1 (R → C;λ). Hence

B (R) ∋ A 7→
∫
A

fdλ =: φλ,f (A) ∈ [0,∞)

defines a Borel measure on R, which is finite. This measure is absolutely continuous w.r.t. λ, and

dφλ,f
dλ

= f .

Example 5.46 (Atomic measures). The Dirac delta measure

A 7→ χA (x0) ≡ δx0
(A)

is a point mass measure that is mutually singular w.r.t. λ. In fact we can have infinitely many masses, and still have
a finite measure, via, e.g. ∑

n∈N

2−nδn =: µpp .

Then µpp is mutually singular w.r.t. λ.

Example 5.47 (The Cantor measure). We know that the middle- 13 Cantor set is bijective with 2N, because for any
x ∈ C, we may represent x unique in ternary as

x = 0.a1a2a3 · · ·

so that a : N → { 0, 2 } (this avoids possibly infinitely repeating 1s). Then we define the Cantor function fC : [0, 1] →
[0, 1] via

fC (x) :=

{∑∞
n=1

1
2an
2n x ∈ C

supy∈C:y≤x fC (y) x ∈ [0, 1] \ C
.

We now seek to define a measure µC on B ([0, 1]) such

µC ([0, x]) = fC (x) (x ∈ [0, 1]) .

To that end, recall from HW3Q5 the definition of the Lebesgue-Stieltjes measure associated with an increasing right-
continuous function (which fC is). Essentially we have

µC ([a, b]) ≡ fC (b)− fC (a)

and extended to a premeasure, outermeasure and then measure by the Caratheodory procedure Figure 2.
One can show (see the upcoming HW) that µC is concentrated on C, it is mutually singular w.r.t. λ, and that it

has no atoms, i.e., it is singular continuous.

In principle any given measure on R is the sum of these three basic types:

µ = µac + µsc + µpp

with
dµac = fdλ

for some f ∈ L1 (R → C, λ) and
µpp =

∑
n∈N

αnδxn

for some { xn }n ⊆ R and { αn }n ⊆ C. µsc is characterized as “anything that remains”.
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Definition 5.48 (The Stieltjes transform). Let µ : B (R) → [0,∞] be a Borel measure on R and denote by C+ the
open upper half complex plane

C+ := { z ∈ C | Im {z} > 0 } .

We define the Stieltjes transform of µ, Hµ : C+ → C+via

Hµ (z) :=

∫
x∈R

1

x− z
dµ (x) (z ∈ C+)

for all z for which the x 7→ 1
x−z ∈ L1 (R → C;µ).

Proposition 5.49. Given a Borel measure µ : B (R) → [0,∞] such that x 7→ 1
x2+1 ∈ L1 (R → C;µ), its Stieltjes

transform Hµ is a well-defined analytic function.

Analytic functions C+ → C+ are called Herglotz-Pick-Nevanlinna functions. There is a representation theorem for all
such functions, see [Tes09].

Proof. We first verify that that Hµ is well-defined, i.e., that Hµ (z) ∈ C+ for all z ∈ C+:

Im {Hµ (z)} ≡ 1

2i

[
Hµ (z)−Hµ (z)

]
=

1

2i

[∫
x∈R

1

x− z
dµ (x)−

∫
x∈R

1

x− z
dµ (x)

]
=

∫
x∈R

1

2i

[
1

x− z
− 1

x− z

]
dµ (x)

=

∫
x∈R

Im {z}
(x− Re {z})2 + Im {z}2

dµ (x)

= Im {z}
∫
x∈R

1

(x− Re {z})2 + Im {z}2
dµ (x) .

So Im {Hµ (z)} > 0 indeed. Next, we study analyticity, which follows similarly:

H ′
µ (z)

?
= lim

w→z

Hµ (w)−Hµ (z)

w − z

= lim
w→z

∫
x∈R

1
x−wdµ (x)−

∫
x∈R

1
x−zdµ (x)

w − z

= lim
w→z

∫
x∈R

1
x−w − 1

x−z
w − z

dµ (x)

= lim
w→z

∫
x∈R

1
x−w (w − z) 1

x−z
w − z

dµ (x)

= lim
w→z

∫
x∈R

1

x− w

1

x− z
dµ (x) .

Now, the dominated convergence (2.17) may be invoked. The sequence of measurable functions
{

1
x−w

1
x−z

}
w

converges pointwise to 1
(x−z)2 , and∣∣∣∣ 1

x− w

1

x− z

∣∣∣∣ =
1√

(x− Re {z})2 + Im {z}2
√
(x− Re {w})2 + Im {w}2

.

At x ≈ Re {z} and w ≈ z this expression is bounded from above by

1

|Im {z}|
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whereas at |x| → ∞ and w ≈ z it is bounded by 1
x2 . So there should be some constant C so that for all x and all

|w − z| sufficiently small, ∣∣∣∣ 1

x− w

1

x− z

∣∣∣∣ ≤ C
1

Im {z}
1

x2 + 1
.

In either case, by our assumption, this is integrable, so we may invoke the dominated convergence theorem and get
that H ′

µ (z) exists and equals

H ′
µ (z) =

∫
x∈R

1

(x− z)
2 dµ (x) .

Definition 5.50 (The support of a measure). Let X be a topological space and µ : B (X) → [0,∞] a Borel measure.
The support of the measure, a subset of X, is defined via

supp (µ) := { x ∈ X | ∀U ∈ Open (X) : x ∈ U, µ (U) > 0 } .

Theorem 5.51. Let a Borel measure µ : B (R) → [0,∞] be given such that x 7→ 1
x2+1 ∈ L1 (R → C;µ) and Hµ :

C+ → C+ is Stieltjes transform. Let
µ = µac + µsc + µpp

be the Lebesgue decomposition of µ w.r.t. the Lebesgue measure λ : B (R) → [0,∞]. Then there exists some M ∈ (0,∞)
such that

|Hµ (x+ iε)| ≤ M

ε
.

Moreover,

supp (µac) =

{
x ∈ R

∣∣∣∣ lim
ε→0+

Im {Hµ (x+ iε)} ∈ (0,∞)

}
and

dµac

dλ
(x) = lim

ε→0+

1

π
Im {Hµ (x+ iε)} (x ∈ R) .

Moreover,

supp (µs) =

{
x ∈ R

∣∣∣∣ lim
ε→0+

Im {Hµ (x+ iε)} = ∞
}
, supp (µpp) =

{
x ∈ R

∣∣∣∣ lim
ε→0+

ε Im {Hµ (x+ iε)} ∈ (0,∞)

}
.

Proof. TODO

5.6 Total variation and complex measures [Rudin]
We remind the reader that in our convention (following Rudin) complex measures µ : M → C are by definition finite
measures. Since they have countable additivity (as they are measures), we must have

µ (⊔jAj) =
∑
j∈N

µ (Aj)

for any collection {Aj }j ⊆ M of pairwise disjoint measurable sets. Since µ is a finite measure this implies that
∑
j∈N µ (Aj)

converges to some (finite) complex number. However, the order of terms here was arbitrary, so in principle the series
converges for any rearrangement.

Claim 5.52. If a series
∑
j aj of complex numbers { aj }j ⊆ C converges to the same value for any rearrangement of

its terms then it actually converges absolutely.
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Proof. Suppose for contradiction that
∑
j |aj | = ∞. Then

∞ =
∑
j

|aj | ≤
∑
j

|Re {aj}|+
∑
j

|Im {aj}|

so that either { Re {aj} }j or { Im {aj} }j defines a conditionally convergent series of real numbers. But then the
Riemann series theorem implies there is a rearrangement σ : N → Nsuch that, say,

∑
j Re

{
aσ(j)

}
converges to

something other than
∑
j Re {aj}. But that would contradict∑

j

Re
{
aσ(j)

}
+ i
∑
j

Im {aj} =
∑
j

aj .

As a result, we get the important fact about complex measures which is that the series associated to their countable
additivity converges absolutely, i.e., for any any {Aj }j ⊆ M pairwise disjoint,∑

j

|µ (Aj)|

converges. This suggests that there might be a positive measure |µ| associated to µ which dominated µ in the sense that

|µ (A)| ≤ |µ| (A) (A ∈ M) .

It turns out that defining
|µ| (A) := |µ (A)|

will not yield a measure (clearly, it will violate additivity). Instead, what works is:

Definition 5.53 (Total variation measure). Let µ : M → C be a measure. Let us define a new “measure” (putatively)
|µ| : M → [0,∞) called the total variation measure via

|µ| (A) := sup
{ Aj }j∈N

∑
j∈N

|µ (Aj)| (A ∈ M)

where the supremum is taken over all collections {Aj }j∈N ⊆ M such that Ai ∩ Aj = ∅ for all i ̸= j and such that⋃
j Aj = A. Such collections are called partitions of A.

Note that even though µ only takes on finite values (as it is a complex measure), it is not a-priori clear that |µ|, even
if it is a measure, is a finite measure (but it will turn out that it is indeed). This is because one could perhaps construct a
sequence of partitions of X, where, even though each sum of each partition is finite, increases to infinity. We will exclude
that possibility.

Theorem 5.54. Let µ : M → C be a measure. Then its total variation measure |µ| : M → [0,∞) is indeed a measure.
It satisfies:

1. |µ| (A) ≥ |µ (A)| for any A ∈ M.

2. |µ| is minimal in the sense that for any other positive measure ν : M → [0,∞), if ν (A) ≥ |µ (A)| for all A ∈ M
then ν ≥ |µ|.

3. If µ is a positive measure then |µ| = µ.

4. |µ| (X) <∞ indeed.

Proof. TODO
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Definition 5.55 (The C-vector space of complex measures). If µ, ν : M → C are two complex measures, we define
µ+ ν pointwise:

(µ+ ν) (A) := µ (A) + ν (A) (A ∈ M) .

This is indeed a complex measure. Moreover, for any α ∈ C, we define αµ also pointwise as

(αµ) (A) := αµ (A) (A ∈ M) .

This furnishes the set of all complex measures on M as a C-vector-space. It is in fact normed because

∥µ∥ := |µ| (X)

is indeed a norm.

Theorem 5.56. In fact µ 7→ |µ| (X) is complete so the C-vector space of complex measures on X is a Banach space.

Proof. TODO

Lemma 5.57. Given any complex measure µ : M → C, its real and imaginary parts Re {µ} , Im {µ} : M → R are
also (complex) measures.

Proof. Since µ is a measure, we have

Re {µ} (∅) ≡ Re {µ (∅)} = Re {0} = 0 ;

similarly for the imaginary part. Next, to show countable additivity, let {Ai }i ⊆ M be a sequence of pairwise
disjoint sets. Then

Re {µ} (⊔jAj) ≡ Re {µ (⊔jAj)} = Re

∑
j

µ (Aj)

 =
∑
j

Re {µ (Aj)} ≡
∑
j

Re {µ} (Aj) ;

similarly for the imaginary part.

Definition 5.58 (Jordan decomposition). For any complex measure, using the above lemma, we may decompose it
as

µ = Re {µ}+ i Im {µ} .

Moreover, for any real finite measure ν : M → R, we may decompose it as

ν = ν+ − ν− (5.10)

where

ν± :=
1

2
(|ν| ± ν) . (5.11)

The decomposition Definition 5.58 with the choice (5.11) is known as the Jordan decomposition of a real measure.
Clearly ν± are also finite measures.

Lemma 5.59. If ν : M → R is a measure then ν± from the Jordan decomposition are both finite positive measures.
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Proof. The fact ν± are finite measures is clear since we have proven in Theorem 5.54 that |µ| is a finite positive
measure. We are left to verify that ν± are positive measures. To that end, let A ∈ M. We want to show that

|ν| (A) ≥ ν (A) .

To that end, we use the definition
|ν| (A) ≡ sup

{ Aj }j∈N

∑
j∈N

|ν (Aj)| .

Let {Aj }j be any partition of A. Then

ν (A) ≤ |ν (A)| =

∣∣∣∣∣∣
∑
j

ν (Aj)

∣∣∣∣∣∣ ≤
∑
j

|ν (Aj)| .

Taking now supremum of the above inequality over all partitions we obtain the desired result.

Proposition 5.60. Let µ, ν : M → C be a measure.

1. If µ is concentrated on A ∈ M, so is |µ|.

2. If µ ⊥ ν then |µ| ⊥ |ν|.

3. If ν ◀ µ and µ is positive then |ν| ◀ µ.

Proof. TODO

Theorem 5.61 (Yet another characterization of absolute continuity). If µ : M → [0,∞] and ν : M → C are two
measures then ν ◀ µ iff

∀ε > 0∃δ > 0 : If A ∈ M : µ (A) < δ then |ν (A)| < ε . (5.12)

Proof. Assume (5.12) holds. Assume that A ∈ M is such that µ (A) = 0. We want to show that ν (A) = 0. But
(5.12) implies that |ν (A)| < ε for any ε > 0, and hence it is zero as needed.

Conversely, assume ν ◀ µ but somehow (5.12) were false. Then ∃ε > 0 and some sequence {An }n ⊆ M with
µ (An) < 2−n and yet

|ν (An)| ≥ ε .

This implies that |ν| (An) ≥ ε since the total variation measure dominates |ν (An)|. Now

µ

( ∞⋃
i=n

Ai

)
≤

∞∑
i=n

µ (Ai) ≤
∞∑
i=n

2−i = 2−n+1

so {
⋃∞
i=nAi }n is a decreasing sequence where at least one element is finite. Hence by (2.5) we have

µ

(⋂
n∈N

∞⋃
i=n

Ai

)
= lim
n→∞

µ

( ∞⋃
i=n

Ai

)
≤ 0

and moreover

|ν|

(⋂
n∈N

∞⋃
i=n

Ai

)
= lim
n→∞

|ν|

( ∞⋃
i=n

Ai

)
≥ ε > 0 .

So ν ◀ µ is violated.
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Theorem 5.62. Let µ : M → C be a complex measure. Then µ ◀ |µ| and

dµ

d|µ|
∈ L1 (X → C, |µ|)

actually takes values within S1 ≡ { z ∈ C | |z| = 1 }.

Proof. TODO

Theorem 5.63. Let µ : M → [0,∞] be a σ-finite positive measure and ν : M → C another measure such that ν ◀ µ.
Then |ν| ◀ µ too and

d|ν|
dµ

=

∣∣∣∣dνdµ
∣∣∣∣ .

Proof. TODO

Theorem 5.64 (Hahn decomposition theorem). Let µ : M → R be a measure. Then there exist sets A± ∈ M such
that

A+ ⊔A− = X ,

A+ ∩A− = ∅ and such that

µ+ (E) = µ
(
A+ ∩ E

)
, µ− (E) = −µ

(
A− ∩ E

)
(E ∈ M) .

Proof. By Theorem 5.62, we have µ ◀ |µ|, dµ
d|µ| ∈ L1 (|µ|) and∣∣∣∣ dµd|µ|

(x)

∣∣∣∣ = 1 (x ∈ X) .

Since µ is real, dµ
d|µ| may be chosen to take real values (by Lemma 5.43) (first |µ|-a.e., then redefine it to actually be

so on a set of measure zero). Thus,
dµ

d|µ|
(x) = ±1 (x ∈ X) .

Set

A± :=
dµ

d|µ|

−1

({ ±1 }) .

Then,

µ+ (E) =
1

2
(|µ| (E) + µ (E))

=
1

2

(∫
E

d|µ|+
∫
E

dµ

d|µ|
d|µ|

)
=

∫
E

1

2

(
1 +

dµ

d|µ|

)
d|µ|

=

∫
E∩A+

1

2

(
1 +

dµ

d|µ|

)
︸ ︷︷ ︸

= dµ
d|µ|

d|µ|+
∫
E∩A−

1

2

(
1 +

dµ

d|µ|

)
d|µ|︸ ︷︷ ︸

=0

=

∫
E∩A+

dµ

d|µ|
d|µ|

= µ
(
E ∩A+

)
.
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The other part follows similarly.

Corollary 5.65. If µ : M → R is a measure and µ = λ1 − λ2 for two non-negative measures λ1, λ2 : M → [0,∞)
then necessarily

λ1 ≥ µ+ , λ2 ≥ µ− .

Proof. We have µ ≤ λ1 so

µ+ (E) ≡ µ
(
E ∩A+

)
≤ λ1

(
E ∩A+

)
≤ λ1 (E) (E ∈ M) .

The other equation follows similarly, from the fact that −µ ≤ λ2.

5.6.1 Integration with respect to complex measures

Let µ : M → C be a complex measure. Then we know now we may write

µ = Re {µ}+ i Im {µ}

and each of which we can further decompose into positive and negative parts. Then we define, for any f : X → C
measurable, ∫

X

fdµ ≡
∫
X

fdRe {µ}+ −
∫
X

fdRe {µ}− + i

∫
X

fdIm {µ}+ − i

∫
X

fdIm {µ}− .

Each of these integrals is in turn further decomposed since f itself is written as the sum of four positive functions.

6 Differentiation of measures on Rn [Rudin]
In this chapter we are back to the special case of the Lebesgue measure λ : B (Rn) → [0,∞] (although some of the
definitions and theorems below may be generalized to any reference positive Borel measure on Rn, see e.g. [Jak06]).

6.1 The Lebesgue differentiation theorem
While we are motivated on our goal to prove the change of variables formula in Rn, another motivation to study the
Lebesgue differentiation theorem is to establish the analog of the fundamental theorem of calculus in the context of the
Lebesgue integral. The question is, if f : R → C is in L1, then

∂

∫ ·

a

fdλ
?
= f .

To answer this question we examine the definition of the derivative:(
∂

∫ ·

a

fdλ

)
(x) ≡ lim

ε→0+

1

ε

[∫ x+ε

a

fdλ−
∫ x

a

fdλ

]
= lim

ε→0+

1

ε

∫ x+ε

x

fdλ .

Clearly if f is continuous at x then we get the result we are looking for. Indeed,

1

ε

∫ x+ε

x

fdλ =
1

ε

∫ x+ε

x

[f (y)− f (x)] dλ (y) + f (x)

and ∣∣∣∣1ε
∫ x+ε

x

[f (y)− f (x)] dλ (y)

∣∣∣∣ ≤ 1

ε

∫ x+ε

x

|f (y)− f (x)|dλ (y) .

80



Now the continuity of f at x is tantamount to the fact that for any ε̃ > 0 there exists some δ̃ (ε̃) > 0 such that if
y ∈ Bδ̃(ε̃) (x) then f (y) ∈ Bε̃ (f (x)). Since ε → 0+, for fixed ε̃ > 0, eventually we will have ε < δ̃ (ε̃). Thus, for all

ε ∈
(
0, δ̃ (ε̃)

)
we get ∣∣∣∣1ε

∫ x+ε

x

[f (y)− f (x)] dλ (y)

∣∣∣∣ ≤ ε̃ .

But since ε̃ > 0 was arbitrary we get the result.
More generally, there is a vast gap between continuous functions and L1 functions, and it is not clear how to proceed

for L1 functions. Motivated by Theorem 2.54, fdλ defines a new measure φλ,f so we are essentially asking

lim
ε→0+

φλ,f ([x, x+ ε])

λ ([x, x+ ε])

?
= f (x) .

Motivated by this we make the

Definition 6.1 (The symmetric derivative). Let µ : B (Rn) → C be a complex measure. Then the symmetric
derivative of µ at x ∈ Rn w.r.t. λ, is given by

(Dλµ) (x) := lim
ε→0+

µ (Bε (x))

λ (Bε (x))

for all points x ∈ Rn at which this limit exists. Here

Bε (x) ≡ { y ∈ Rn | ∥x− y∥ < ε } .

We also define the Hardy-Littlewood maximal function Mλµ : Rn → [0,∞]

(Mλµ) (x) := sup
ε>0

|µ| (Bε (x))
λ (Bε (x))

(x ∈ Rn) .

In the special case of measures φλ,f which are derived from functions f , we use the shorthand notation

Mλf ≡ Mλφλ,f .

Note that in Rn,

λ (Bε (x)) =
π

n
2

Γ
(
n
2 + 1

)εn
where Γ is the Euler gamma function. Since the RHS is rather complicated and not more transparent than the LHS
(except that it gives the explicit scaling as ε→ 0) we will usually continue to use the LHS.

Our main motivation in studying the symmetric derivative is that if µ ◀ λ then we can calculate its Radon-Nikodym
derivative via the symmetric derivative. Indeed, we will see that in this case,

dµ

dλ
= Dµ .

To get to that statement we build some machinery.

Claim 6.2. If µ : B (Rn) → C is a complex measure then Mλµ is lower semicontinuous.

Proof. Let a ∈ R. Lower semicontinuity would be implied if we show that the following set is open:

E := { x ∈ Rn | (Mλµ) (x) > a } ∈ Open (Rn) .

Let x ∈ E. Then

sup
ε>0

|µ| (Bε (x))
λ (Bε (x))

> a .

So there must exist some ε > 0 such that there exists some b > a with which

|µ| (Bε (x))
λ (Bε (x))

= b .
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Since b
a > 1, pick some δ ∈

(
0, ε
((

b
a

) 1
n − 1

))
, so that (ε+ δ)

n
< b

aε
n. Now, if y ∈ Bδ (x), Bε+δ (y) ⊇ Bε (x) so that

|µ| (Bε+δ (y)) ≥ |µ| (Bε (x)) = bλ (Bε (x)) = b

(
ε

ε+ δ

)n
λ (Bε+δ (y)) > aλ (Bε+δ (y))

which implies
|µ| (Bε+δ (y))
λ (Bε+δ (y))

> a =⇒ (Mλµ) (y) > a =⇒ y ∈ E .

Hence we have established that Bδ (x) ⊆ E and hence E ∈ Open (Rn) as needed.

Corollary 6.3. The Hardy-Littlewood maximal function Mλµ is measurable, since every lower semicontinuous func-
tion is.

Example 6.4. We list a few examples of the Hardy-Littlewood maximal function for various measures:

• Clearly Mλλ equals the constant function 1.

• Consider the Dirac delta measure δx0
for some x0 ∈ Rn. Then |δx0

| = δx0
= χ· (x0). As such,

|µ| (Bε (x))
λ (Bε (x))

=
χBε(x) (x0)

π
n
2

Γ(n
2 +1)

εn
.

We see that for any given x ̸= x0, if ε < ∥x− x0∥ then we get zero, and if ε ≥ ∥x− x0∥ then the function starts
decreasing from its maximal value of

1

π
n
2

Γ(n
2 +1)

∥x− x0∥n

to zero as ε → ∞. Conversely, if x = x0 then any ball contains x0 and so we can shrink ε → 0 and get ∞.
Hence

(Mλδx0
) (x) =


1

π
n
2

Γ(n
2

+1)
∥x−x0∥n

x ̸= x0

∞ x = x0

∼ decays like
1

∥x− x0∥n
away from x0 .

Compare this with

(Dλδx0) (x) =

{
0 x ̸= x0

∞ x = x0
.

• Let f : Rn → C be continuous. Then as we saw,

(Dλφλ,f ) (x) = f (x) .

On the other hand, for the Hardy-Littlewood maximal function, we always have

(Mλf) (x) ≥ |f (x)| (x ∈ Rn) .

However, (Mλf) (x) may exceed |f (x)| if somehow the average over a point exceeds the value at that point, for
some ball. For example, fix some ε > 0. Then define

f (x) :=

{
∥x∥
ε ∥x∥ ≤ ε

1 ∥x∥ > ε
(x ∈ Rn)

which is clearly continuous. Now f (0) = 0 but if we average over balls of radius larger than ε, we get the value
1 for the function and the ε ball matters less and less, so that the supremum yields the value 1. Hence

(Mλf) (0) = 1 ̸= 0 = |f (0)| .
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• TODO: present example of measure µ where (Dλµ) (x) does not exist for some x.

Lemma 6.5 (Vitali’s covering). Let { xi }Ni=1 ⊆ Rn and { ri }Ni=1 ⊆ (0,∞). We use the abbreviation Bi := Bri (xi)
and 3Bi := B3ri (xi) for i = 1, · · · , N . Then there exists some S ⊆ { 1, · · · , N } such that:

1. Bi ∩Bj = ∅ if i, j ∈ S and i ̸= j.

2.
⋃N
i=1Bi ⊆

⋃
i∈S 3Bi.

3. λ
(⋃N

i=1Bi

)
≤ 3n

∑
i∈S λ (Bi).

Proof. Without loss of generality assume ri ≥ rj for all i < j ∈ { 1, · · · , N }. We define S by including it in
members of { 1, · · · , N } in descending order according to the following rule: 1 ∈ S. The next element in S should
be the smallest index j after 1 so that Bj ∩ B1 = ∅. Continue in this fashion until there are no more indices left.
The resulting collection S is clearly pairwise disjoint. Moreover,

⋃N
i=1Bi ⊆

⋃
i∈S 3Bi necessarily holds. Indeed, let

i ∈ { 1, · · · , N } \ S. That means there exists some j ∈ S with j < i such that Bi ∩Bj ̸= ∅. But since the radii are
ordered, necessarily ri ≤ rj , so in the worst case scenario, B3rj (xj) ⊇ Bri (xi) which is what we needed.

Theorem 6.6. Let µ : B (Rn) → C be a measure and a > 0. Then

λ ({ x ∈ Rn | (Mλµ) (x) > a }) ≤ 3n
∥µ∥
a

.

Proof. As we have seen in the proof of Claim 6.2, the set Ea := { x ∈ Rn | (Mλµ) (x) > a } is open. We know that
the Lebesgue measure λ is regular (see Definition 3.1), so we have

λ (Ea) = sup ({ λ (K) : Compact (Rn) ∋ K ⊆ Ea }) .

Hence, let a compact K ⊆ Ea be given. For any x ∈ K, by definition, since K ⊆ Ea, (Mλµ) (x) > a, there exists
some εx > 0 such that

|µ| (Bεx (x))
λ (Bεx (x))

> a .

Since K is compact, for the open cover ⋃
x∈K

Bεx (x) ⊇ K

there exists a finite sub-cover { x1, · · · , xN } ⊆ K:

N⋃
j=1

Bεxj
(xj) ⊇ K .

Now using the Vitali covering Lemma 6.5, we get a subcollection S ⊆ { 1, · · · , N } of pairwise disjoint balls whose
three-fold inflation covers the original union. Thus,

λ (K) ≤ λ

 N⋃
j=1

Bεxj
(xj)

 ≤ 3n
∑
j∈S

λ
(
Bεxj

(xj)
)
≤ 3n

∑
j∈S

1

a
|µ|
(
Bεxj

(xj)
)
= 3n

1

a
|µ|
(
⊔j∈SBεxj

(xj)
)
≤ 3n

1

a
|µ| (Rn) .

We note that in the equality used here, we invoked the pairwise disjoint property of the collection S (so that we
could invoke additivity rather than subadditivity in the opposite direction); taking now supremum over K we obtain
the desired result.

Corollary 6.7 (Hardy-Littlewood maximal inequality). Let f ∈ L1 (Rn → C, λ). Then for any a > 0,

λ ({ x ∈ Rn | (Mλf) (x) > a }) ≤ 3n

a
∥f∥L1 .
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This corollary prompts us to define a new space of functions which generalizes the L1 functions:

Definition 6.8 (Weak L1). We define a new space of functions,

L1
weak (R

n → C, λ) :=

{
f : Rn → C

∣∣∣∣ sup
a>0

aλ ({ x ∈ Rn | |f (x)| > a }) <∞
}
.

Claim 6.9. We have
L1 (Rn → C, λ) ⊊ L1

weak (R
n → C, λ) .

Proof. Let f ∈ L1 (Rn → C, λ). Then for any a > 0,

aλ ({ x ∈ Rn | |f (x)| > a }) ≤
∫
{ x∈Rn | |f(x)|>a }

|f |dλ

≤
∫

Rn

|f |dλ

≡ ∥f∥L1

< ∞ .

To show that the inclusion is strict, consider the function

(0, 1) ∋ x 7→ 1

x
.

That function is not L1 ((0, 1) → C, λ) but it is in L1
weak ((0, 1) → C, λ). Indeed,

aλ

({
x ∈ (0, 1)

∣∣∣∣ 1x > a

})
= a

1

a
= 1 <∞ .

Remark 6.10. Putting everything together, we find that the Hardy-Littlewood maximal function can be interpreted
as a map

Mλ : L1 (Rn → C, λ) → L1
weak (R

n → C, λ) .

Definition 6.11 (Lebesgue points). Let f ∈ L1 (Rn → C, λ). Then x ∈ Rn is called a Lebesgue point of f iff

lim
ε→0+

1

λ (Bε (0))

∫
Bε(x)

|f (y)− f (x)|dλ (y) = 0 .

In particular, at such points,

lim
ε→0+

1

λ (Bε (0))

∫
Bε(x)

f (y) dλ (y) = f (x) .

Hence, going back to our motivating question from the beginning of this section, we give a special name to those points
where the function equals its infinitesimal average. By that discussion, all points at which f is continuous are Lebesgue
points.

Theorem 6.12 (Lebesgue differentiation theorem). If f ∈ L1 (Rn → C, λ) then λ-almost-all points of Rn are Lebesgue
points. I.e., for almost all points of Rn we have

lim
ε→0+

1

λ (Bε (x))

∫
Bε(x)

fdλ = f (x) .
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Proof. Define for r > 0,

(Trf) (x) :=
1

λ (Br (0))

∫
Br(x)

|f (y)− f (x)|dλ (y) (x ∈ Rn)

and
(Tf) (x) := lim sup

r→0+
(Trf) (x) (x ∈ Rn) .

Our goal is to prove that Tf = 0 λ-a.e.. Let a > 0,m ∈ N.
We know that Cc (Rn) is dense in L1 (Rn) (this was proven in HW5Q15). Now if f ∈ L1, then∫

Rn

|f |dλ <∞ ,

so in particular,

lim
R→∞

∫
BR(0)

|f |dλ <∞ .

As such, for any ε > 0 there exists some Rε <∞ such that∫
BRε (0)

c

|f |dλ < ε

2
.

Then approximate fχBRε (0)
∈ L1

(
χBRε (0)

)
by a continuous function g with compact support within BRε

(0), up to
precision ε

2 . So we get

∥f − g∥L1(Rn) ≤
∥∥f − fχBRε (0)

∥∥
L1(Rn)

+
∥∥fχBRε (0)

− g
∥∥
L1(Rn)

=
∥∥fχBRε (0)

c

∥∥
L1(Rn)

+
∥∥fχBRε (0)

− g
∥∥
L1(BRε (0))

≤ ε

2
+
ε

2
= ε .

Pick ε = 1
m for some m ∈ N to get

∥f − g∥1 <
1

m
.

Define h := f − g. Now, by continuity of g, Tg = 0 everywhere. Moreover,

(Trh) (x) ≡ 1

λ (Br (0))

∫
Br(x)

|h (y)− h (x)|dλ (y)

≤ 1

λ (Br (0))

∫
Br(x)

|h (y)|dλ (y) + |h (x)|

=
φ|h|,λ (Br (x))

λ (Br (x))
+ |h (x)|

=
|φh,λ| (Br (x))
λ (Br (x))

+ |h (x)|

As a result, taking the lim sup r → 0,
Th ≤ Mφh,λ + h .

Hence
{ x ∈ Rn | (Th) (x) > 2a } ⊆ { x ∈ Rn | (Mφh,λ) (x) > a } ∪ { x ∈ Rn | h (x) > a } .

Moreover ∥h∥1 <
1
m and

λ ({ x ∈ Rn | |h (x)| > a }) ≤ 1

a
∥h∥1

since
aλ ({ x ∈ Rn | |h (x)| > a }) ≤

∫
{ x∈Rn | |h(x)|>a }

|h|dλ ≤
∫

Rn

|h|dλ = ∥h∥1 .
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Moreover Theorem 6.6 now implies

λ ({ x ∈ Rn | (Mφh,λ) (x) > a }) ≤ 3n
∥φh,λ∥
a

= 3n
|φh,λ| (X)

a
= 3n

∥h∥1
a

≤ 3n

am
.

We thus find
λ ({ x ∈ Rn | (Mφh,λ) (x) > a } ∪ { x ∈ Rn | h (x) > a }) ≤ 3n + 1

am
.

Actually since this was true for arbitrary m, we find

{ x ∈ Rn | (Th) (x) > 2a } ⊆
∞⋂
m=1

{ x ∈ Rn | (Mφh,λ) (x) > a } ∪ { x ∈ Rn | h (x) > a } .

We find that { x ∈ Rn | (Th) (x) > 2a } is a measurable subset of measure zero. Since this holds for any a > 0, we
find that Th = 0 λ-almost-everywhere, as desired.

Theorem 6.13. Let µ : B (Rn) → C be a measure and µ ◀ λ. Then

dµ

dλ
= Dµ

λ-almost-everywhere.

Proof. Let x ∈ Rn be a Lebesgue point of dµ
dλ ∈ L1. Then, in particular,

dµ

dλ
(x) = lim

ε→0+

1

λ (Bε (0))

∫
Bε(x)

dµ

dλ
dλ

µ◀λ
= lim

ε→0+

µ (Bε (x))

λ (Bε (0))
= lim
ε→0+

µ (Bε (x))

λ (Bε (x))
≡ (Dµ) (x) .

Theorem 6.14 (The fundamental theorem of calculus). Let f ∈ L1 (R → C, λ). Then if x is a Lebesgue point of f ,(
∂

∫ ·

−∞
fdλ

)
(x) = f (x) .

In particular the above equation holds λ-almost-everywhere.

Proof. Let x ∈ R be a Lebesgue point of f . Then we know by Theorem 6.12 that

1

λ ((x, x+ ε))

∫
(x,x+ε)

|f (y)− f (x)|dλ (y) ≤ 2
1

λ (Bε (x))

∫
Bε(x)

|f (y)− f (x)|dλ (y)

ε→0+→ 0 .

A similar consideration leads also to

lim
ε→0+

1

λ ((x− ε, x))

∫
(x−ε,x)

|f (y)− f (x)|dλ (y) = 0 .

In particular we thus have

lim
ε→0+

1

ε

[∫ x+ε

−∞
fdλ−

∫ x

−∞
fdλ

]
= lim

ε→0+

1

ε

∫ x+ε

x

fdλ = f (x)

and similarly

lim
ε→0+

1

−ε

[∫ x−ε

−∞
fdλ−

∫ x

−∞
fdλ

]
= lim
ε→0+

1

−ε

[∫ x

x−ε
fdλ

]
= f (x) .
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We now only state, but do not prove, the other half of the fundamental theorem of calculus:

Definition 6.15 (Absolutely continuous functions). Let f : [a, b] → C is called absolutely continuous iff for any ε > 0
there exists some δ > 0 such that

n∑
j=1

|f (βj)− f (αi)| < ε

for any n ∈ N and any disjoint collection of segments (α1, β1) , · · · , (αn, βn) ⊆ [a, b] which satisfies

n∑
j=1

βj − αj < δ .

Theorem 6.16. Let f : [a, b] → R be continuous and nondecreasing. Then the following are equivalent:

1. f is absolutely continuous.

2. f maps sets of measure zero to sets of measure zero.

3. f is differentiable λ-almost-everywhere on [a, b], f ′ ∈ L1 ([a, b]) and

f (x) = f (a) +

∫ x

a

f ′dλ (x ∈ [a, b]) .

Theorem 6.17 (2nd half of the fundamental theorem of calculus). Let f : [a, b] → C be absolutely continuous. Then
f is differentiable λ-almost-everywhere on [a, b], f ′ ∈ L1 ([a, b] → C, λ) and

f (x) = f (a) +

∫ x

a

f ′dλ (x ∈ [a, b]) .

6.2 The change of variable formula revisited on Rn

We now want to go back to the change of variables formula (5.2). So we assume that (X,M, µ) is a measure space, (Y,N)
is a measurable space and φ : X → Y be measurable and injective. We know, by (5.3), that for any measurable f : Y → C,∫

A

f ◦ φdµ =

∫
φ(A)

fdµφ .

We may slightly rephrase this: assume φ is bijective so that φ−1 : Y → X is measurable. Then with g := f ◦ φ : X → C,
f = g ◦ φ−1 so that we get ∫

A

gdµ =

∫
φ(A)

g ◦ φ−1dµφ (A ∈ M) .

Relabeling η := φ−1 and B := η−1 (A) we find∫
η(B)

gdµ =

∫
B

g ◦ ηdµη−1 (B ∈ N) .

Let us assume that there is yet another measure ν on Y and that additionally µη−1 ◀ ν. Then by the Lebesgue
decomposition theorem Theorem 5.42,∫

η(B)

gdµ =

∫
B

g ◦ η
dµη−1

dν
dν (B ∈ N) .

Our goal here is to explore the expression
dµη−1

dν when µ = ν = λ is the Lebesgue measure on Y := Rn. We will see that
then

dλη−1

dλ
=
∣∣det (Dη−1

)∣∣ .
where Dη−1 is the Frechet derivative of η−1.
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Theorem 6.18. Let V ∈ Open (Rn) and φ : V → Rn be a continuously differentiable map whose inverse (defined on
its image) is also continuously differentiable. Then the push-forward measure

λφ−1 ≡ λ ◦ φ

is absolutely-continuous w.r.t. the Lebesgue measure λ and its Radon-Nikodym derivative equals

dλφ−1

dλ
= |det (Dφ)| . (6.1)

As such, the change of variables formula becomes∫
φ(A)

fdλ =

∫
A

f ◦ φ |det (Dφ)|dλ (A ∈ B (Rn)) . (6.2)

We begin with some preliminaries necessary for the proof of the theorem. The first one should be intuitive: it states
that if we scale the Lebesgue measure by a matrix, then we get a factor of the determinant outside. Since the Lebesgue
measure measures volume, and the determinant measures the volume of a parallelepiped, this makes sense.

Lemma 6.19. Let M : Rn → Rn be a linear map (an n× n matrix). Then

λ (MA) = |det (M)|λ (A) (A ∈ B (Rn)) .

Proof. If M does not have full rank, then det (M) = 0. In which case, MA lies in a k-dimensional subspace of Rn,
the subspace MRn, whose measure is zero as it is lower dimensional. To see this, we may choose a coordinate base
where e1, · · · , ek is an orthonormal basis of MRn (k < n by hypothesis) and ek+1, · · · , en completes to a basis of Rn.
We then consider

Rn ∼= Rk × Rn−k

where the first factor is MRn and the other one is its orthogonal complement. Then for any A ∈ B (Rn), MA is a
rectangular set in this product structure, and so

λRn (MA) = λRk (MA)λRn−k ({ 0 })
= λRk (MA) · 0
= 0 .

Now if M does have full rank, then it is invertible and its inverse is continuous, so that MA =
(
M−1

)−1
(A) is

also a Borel set. Then translation invariance of λ and linearity of M implies

λ (M (A+ x)) = λ (MA+Mx) = λ (MA) .

Hence the positive Borel measure λ (M ·) is translation-invariant. We define the normalized measure

µ :=
λ (M ·)

λ (M [0, 1]
n
)
,

which must, by the uniqueness Theorem 4.12, equals to the Lebesgue measure. We thus find

λ (MA) = λ (M [0, 1]
n
)λ (A) (A ∈ B (Rn)) .

We are thus left with proving, for all invertible M ,

λ (M [0, 1]
n
) = |det (M)| .
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For diagonal matrices M this is true by the stated scaling property in the proof of Theorem 4.12:

M =


m1

m2

. . .
mn


and then

λ (M [0, 1]
n
) = λ ([0, |m1|]× · · · × [0, |mn|]) = |m1 · · ·mn| = |det (M)| .

In the more general case, any matrix M may be factorized into M = LU where |det (L)| = 1 because it is a “shear”–it
does not change volume–and U is upper triangular. U maps [0, 1]

n to a parallelepiped whose volume is |det (U)|.
Admittedly to follow through this proof completely one has to have a geometric interpretation of λ as measuring
volume using the premeasure on Rn directly rather than with the product measure construction we have presented
above.

The above statement was for a constant matrix. If we have a general map, then this gets changed by the differentiable of a
map. Recall that a map φ : Rn → Rn is said to be differentiable at some x0 ∈ Rn iff there exists a linear map M : Rn → Rn

(dependent on φ and on x0) such that the following limit exists and equals zero:

lim
y→0

∥φ (x0 + y)− φ (x0)−My∥
∥y∥

= 0 .

When that happens, we say that M is the (total, or, Frechet) derivative of φ at x0 and denote that linear map as

(Dφ) (x0) .

In principle,
Rn ∋ x0 7→ (Dφ) (x0) ∈ Matn×n (R)

defines a new map. The determinant of this map is called the Jacobian function associated to φ.

Theorem 6.20. Let φ : V → Rn be continuous where V ∈ Open (Rn). Assume that φ is differentiable at x ∈ V .
Then

lim
r→0+

λ (φ (Br (x)))

λ (Br (x))
= |det ((Dφ) (x))| .

Proof. By possibly shifting the coordinate axes and shifting φ by a constant, assume that x = 0 and φ (x) = 0.
Define M := (Dφ) (0).

Case 1: M is invertible. Define Φ :=M−1 ◦ φ. Then by the Leibniz rule,

(DΦ) (0) =M−1 (Dφ) (0) = 1n .

We want to show that
lim
r→0+

λ (Φ (Br (0)))

λ (Br (0))
= 1 .

Let ε > 0. Then Φ (0) = 0, and (DΦ) (0) = 1n, so there is some δ > 0 such that if x ∈ Bδ (0) \ { 0 } then

Φ (x) ≈ Φ (0)︸ ︷︷ ︸
=0

+(DΦ) (0)︸ ︷︷ ︸
=1n

x+ · · ·

or more preicsely,
∥Φ (x)− x∥ ≤ ε∥x∥. (6.3)

Now, if r ∈ (0, δ) then
B(1−ε)r (0) ⊆ Φ (Br (0)) .

This will be proven right below in Lemma 6.21. Assuming this, we get

Φ (Br (0)) ⊆ B(1+ε)r (0)

89



from (6.3). Thus
B(1−ε)r (0) ⊆ Φ (Br (0)) ⊆ B(1+ε)r (0)

which implies

(1− ε)
n ≤ λ (Φ (Br (0)))

λ (Br (0))
≤ (1 + ε)

n
.

Taking ε→ 0+ we obtain the claim. But now,

λ (φ (B)) = λ (MΦ (B)) = |det (M)|λ (Φ (B))

for every ball B. As a result, we get the result.
Case 2: M is not invertible. Since φ is continuous differentiable, for any η > 0 there exists some δ > 0 such that

if x ∈ Bδ (0) then
∥φ (x)−Mx∥ ≤ η∥x∥ .

Since M is not invertible, its image is a subspace of dimension k < n, and hence of measure zero. That means that
for any ε > 0 there exists some η > 0 such that

λ ({ x ∈ Rn | dist (MB1 (0) , x) < η }) < ε .

Hence if r < δ,
φ (Br (0)) ⊆ { x ∈ Rn | dist (MBr (0) , x) < rη }

and so

λ (φ (Br (0))) ≤ λ ({ x ∈ Rn | dist (MBr (0) , x) < rη })
≤ εrn

for any r ∈ (0, δ). Hence

lim
r→0+

λ (φ (Br (0)))

λ (Br (0))
= lim

r→0+

λ (φ (Br (0)))

rnλ (B1 (0))
≤ lim
r→0+

ε

for any ε > 0 and thus the limit is zero.

Lemma 6.21. Let Sn−1 ⊆ Rn be given by

Sn−1 ≡ { x ∈ Rn | ∥x∥ = 1 } .

Note Sn−1 = ∂B1 (0). If
f : B1 (0) → Rn

is continuous and ε ∈ (0, 1) is such that

∥f (x)− x∥ < ε
(
x ∈ Sn−1

)
then

f (B1 (0)) ⊇ B1−ε (0) .

Proof. Assume there exists some point
a ∈ B1−ε (0) \ f (B1 (0)) .

Then, for any x ∈ Sn−1,
ε > ∥f (x)− x∥ ≥ ∥x∥ − ∥f (x)∥ = 1− ∥f (x)∥

i.e.,
∥f (x)∥ > 1− ε .
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As a result, a /∈ f
(
Sn−1

)
. So a /∈ f

(
B1 (0)

)
. So define a continuous G : B1 (0) → B1 (0) via

x 7→ a− f (x)

∥a− f (x)∥
.

We now show that G fixes no point of B1 (0), in contradiction with Brouwer’s fixed point theorem [Hat01] (Section
2.2). Indeed, if x ∈ Sn−1, then

⟨x, a− f (x)⟩ = ⟨x, a⟩+⟨x, x− f (x)⟩−⟨x, x⟩ = ⟨x, a⟩+⟨x, x− f (x)⟩−1 < ∥x∥∥a∥+∥x∥∥x− f (x)∥−1 < ∥a∥+ε−1 < 0 .

Hence
⟨x,G (x)⟩ < 0

so in particular x ̸= G (x) for all x ∈ Sn−1. If x ∈ B1 (0), then x /∈ Sn−1 but by definition im (G) ⊆ Sn−1, so
x ̸= G (x).

Lemma 6.22. Let E ⊆ Rn be a null set: λ (E) = 0, φ : E → Rn and assume that

lim sup
E∋y→x

∥φ (y)− φ (x)∥
∥y − x∥

<∞ (x ∈ E) . (6.4)

Then λ (φ (E)) = 0.

Proof. Let m, p ∈ N be given and define

Fm,p :=
{
x ∈ E

∣∣∣ ∥φ (y)− φ (x)∥ ≤ m∥y − x∥∀y ∈ B 1
p
(x) ∩ E

}
.

Let ε > 0. We have λ (Fm,p) ≤ λ (E) = 0, so there are balls Bri (xi) such that xi ∈ Fm,p, ri < 1
p and⋃

i

Bri (xi) ⊇ Fm,p ∧
∑
i

λ (Bri (xi)) < ε .

Now if x ∈ Fm,p ∩Bri (xi), then ∥x− xi∥ < ri <
1
p and hence xi ∈ Fm,p. Thus

∥φ (xi)− φ (x)∥ ≤ m∥xi − x∥ < mri

and so
φ (Fm,p ∩Bri (xi)) ⊆ Bmri (φ (xi))

and thus
φ (Fm,p) ⊆

⋃
i

Bmri (φ (xi)) .

We estimate

λ

(⋃
i

Bmri (φ (xi))

)
≤
∑
i

λ (Bmri (φ (xi))) ≤ mn
∑
i

Bri (xi) < mnε .

But the Lebesgue measure is complete and ε was arbitrary, so φ (Fm,p) must be measurable and λ (φ (Fm,p)) = 0.
To complete the proof we note that

E =
⋃
m,p

Fm,p .

We are now ready for the
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Proof of Theorem 6.18. The first item on the list is the proof that

λφ ◀ λ .

This is a consequence of the fact that once φ is differentiable, it obeys (6.4), so in particular it maps sets of measure
to sets of measure zero. In fact φ maps measurable sets to measurable sets.

Moreover, we have just seen above that

dλφ
dλ

(x) = lim
r→0+

λ (φ (Br (x)))

λ (Br (x))
= |det ((Dφ) (x))| .

7 Probability theory–measure theory with a soul [Folland]
[TODO: remove reference for “distribution” by itself, always specify “cumulative” or “density”]

In this chapter we use the tools we’ve developed to introduce the basics of probability theory.
A probability space is a measure space (Ω,M, µ) with Ω a non-empty set, M some σ-algebra on it, and µ : M → [0,∞]

a measure such that µ (Ω) = 13. Clearly, given any finite measure space µ (Ω) < ∞ we may re-define µ to normalize
it so the main question is whether µ (Ω) = ∞ or not. Probability theory has a few different notations and terminology
compared with (and sometimes in contrast to) the rest of measure theory:

• The normalized measure µ is usually denoted by P:

P (Ω) = 1

and we even go further and denote the measure of sets with square rather than round brackets for some reason:

P (A) 7→ P [A] .

We will follow suit.

• The (Lebesgue) integral (2.15) with respect to the (fixed) probability measure P is denoted by E and a measurable
function f : Ω → C, usually denoted by X : Ω → C rather than f , is called a random variable. Then it is customary
to use the notation ∫

Ω

XdP ≡
∫
ω∈Ω

X (ω) dP (ω) 7→ E [X] .

So in probability we almost never write out the integration variable explicitly. This integral of X is referred to as
the expectation of the random variable X.

• Rather than speak of the “bare” probability measures, we are often more interested in the probability distributions
induced by random variables, as it were. That means, if X : Ω → C is a random variable with associated probability
measure P : Msrbl (Ω) → [0, 1], then a probability measure is induced on B (C) via the push forward construction:

PX [A] := P
[
X−1 (A)

]
(A ∈ B (C)) .

In more concrete terms this is the probability that X takes on values in A. It is called the law of X. Using (5.2), if
f : C → C is measurable, then

E [f (X)] ≡
∫
ω∈Ω

f (X (ω)) dP (ω) =

∫
x∈C

f (x) dPX (x) ≡ EX [f ] .

• If X : Ω → R (i.e. it is real-valued) then the function

R ∋ t 7→ PX [(−∞, t]]

is called the cumulative distribution function. Formally its derivative is the distribution of the random variable
X (although sometimes it is not differentiable, so the cumulative distribution function is somewhat more “robust”
object to handle). When PX ◀ λ then we have a Radon-Nikodym derivative dPX

dλ and∫
x∈C

f (x) dPX (x) =

∫
x∈C

f (x)
dPX
dλ

(x) dλ (x) .

3In this chapter we use a different convention where our ambient set is not X but Ω, since X will be used for measurable functions.
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The function
dPX
dλ

is called the distribution (density) function of X. There are many standard distribution functions that we will
encounter.

• Clearly we can create new functions out of old ones via algebraic manipulations. These then yield new random
variables. We define the variance of a random variable X : Ω → C as

Var [X] := E
[
(X − E [X])

2
]
= E

[
X2
]
− E [X]

2
.

Usually this is only defined for real-valued random variables; the variance measures the typical degree of deviation
of the function from its mean, average value, i.e., the standard deviation√

Var [X]

is the “typical” deviation of X away from its average E [X] as we shall see. Note the variance has the scaling

Var [αX] = α2Var [X] (α ∈ R) . (7.1)

• The characteristic function φX : C → C ∪ {∞ } of a random variable X : Ω → C is given by

φX (t) := E [exp (itX)] (t ∈ C) .

The moment generating function MX : C → C ∪ {∞ } of a random variable X : Ω → C is given by

MX (t) := E [exp (tX)] (t ∈ C) .

Note that it’s not a-priori clear that both these functions exist on the entire complex plane. Both of these functions
yield the moments of X by taking derivatives w.r.t. t:

φ
(n)
X (0) = (i)

n E [Xn]

and
M

(n)
X (0) = E [Xn]

which is the reason for the name, at least of the latter.
It should be noted that in the definition of both φX and MX , usually one takes t ∈ R. Our point of view of taking
t ∈ C is not common and is just meant for later flexibility.

• We also have the cumulant-generating function

KX (t) := log (MX (t)) (t ∈ C) .

Its derivatives at zero give linear combinations of moments called cumulants:

K
(n)
X (0) = ∂nt |t=0 log (E [exp (tX)]) .

Clearly, the zeroth cumulant is zero, the first cumulant is the mean, the second is the variance, but the third and so
on are already different. Two random variables have the same sequence of moments iff they have the same sequence
of cumulants.

• In statistical mechanics, if we start with a finite measure µ (Ω) < ∞ which is not necessarily normalized, then
Z := µ (Ω) is called the partition function.

• In statistical mechanics we are often times interested in random variables on product spaces, i.e., situations where
Ω =

∏
i∈{ 1,··· ,N } S for some space S, and then µ is given as a density w.r.t. the product measure. HW6Q5 becomes

a useful resource then.

Example 7.1 (Standard normal random variable). Choose as the probability space

(Ω,Msrbl (Ω) ,P) =: (R,B (R) , fdλ)

with f : R → R given by the Gaussian

f (x) :=
1√
2π

exp

(
−1

2
x2
)

(x ∈ R) .
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Define the random variable X : R → R given by the identity map x 7→ x. We say then that X is a standard normal
random variable, denoted by

X ∼ N (0, 1) ,

One verifies that then, E [X] = 0 and E
[
X2
]
= 1. In this case the function X : R → R is just the identity map, so the

measure P carries all the probabilistic information already.
When we have only one random variable then it will be convenient to choose X : R → R as simply the identity map.

Example 7.2 (Cauchy random variable). We say X is a standard Cauchy random variable, denoted by

X ∼ Cauchy (0, 1)

iff X : R → R x 7→ x is distributed according to

dPX
dλ

(x) =
1

π

1

x2 + 1
.

We note the peculiar fact that E [Xn] = ∞ for all n ∈ N, i.e., the Cauchy distribution has no moments.

Example 7.3 (Uniform random variable). Let −∞ < a < b < ∞ be given. We define a measure P on Msrbl (Ω) :=
B (R) via

dP
dλ

(x) = χ[a,b] (x)
1

b− a
.

Then if X : Ω → R is again the identity map x 7→ x, we get that the law of X is the uniform distribution

X ∼ Uniform (a, b) .

We don’t always have to pick the identity map. For instance, consider the random variable Y : Ω → R as x 7→ 1
2x

implies

PY [A] ≡
∫
x∈R

χA (Y (x))
dP
dλ

(x) dλ (x)

=

∫
x∈R

χA

(
1

2
x

)
χ[a,b] (x)

1

b− a
dλ (x)

We now use the change of variable formula (6.2) (with φ : x 7→ 1
2x) to get

PY [A] =

∫
y∈R

χA (y)χ[a,b] (2y)
1

b− a
2dλ (y)

=

∫
y∈R

χA (y)χ[ a2 ,
b
2 ]
(y)

1
b
2 − a

2

dλ (y)

so that
Y ∼ Uniform

(
a

2
,
b

2

)
.

7.1 Multiple random variables
Often we are interested in situations where there are multiple (or even infinitely many) random variables. They all have
their domain as the same probability space, however, sometimes that probability space takes itself the form of a product
space. For instance, consider the case

Ω = Ω1 × Ω2

is the space of events, with M := M1 ⊗M2. Consider then that we are given the total probability measure P : M → [0, 1]
(we do not know that it is a product measure). Then if

πj : Ω → Ωj

is the projection onto the jth coordinate, it is natural to take Xj := πj as two random variables. Then the induced laws
are

PXj
[A] ≡ P

[
π−1
j (A)

]
.
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Example 7.4. Consider Ω := R2 and what is usually called the joint probability distribution function

dP
dλ

(x1, x2) =
1

2π
exp

(
−1

2

(
x21 + x22

))
(x1, x2 ∈ R) .

Then with Xj := πj for j = 1, 2 indeed, we have

PX1 [A] ≡ P
[
π−1
1 (A)

]
=

∫
x∈R2

χπ−1
1 (A) (x1, x2)

1

2π
exp

(
−1

2

(
x21 + x22

))
dλ (x1, x2)

=

∫
x1∈R

χA (x1)
1√
2π

exp

(
−1

2
x21

)
dλ (x1)

so we recognize that
dPX1

dλ
(x1) =

1√
2π

exp

(
−1

2
x21

)
(x1 ∈ R) .

The law PX1
is called the marginal. We may alternatively also consider the conditional probability measure

PX [X ∈ A|Y ∈ B] :=
P [X ∈ A ∧ Y ∈ B]

P [Y ∈ B]
(A,B msrbl.) . (7.2)

Clearly
A 7→ PX [X ∈ A|Y ∈ B] ∈ [0, 1]

is a probability distribution.

Definition 7.5. For any two real-valued random variables X,Y , we define their covariance as

Cov [X,Y ] := E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X]E [Y ] .

This may be considered a measure of their mutual dependence.

Example 7.6. Of course the most dependence we could have is for a random variable with itself, whence

Cov [X,X] = Var [X] .

As we shall see, if two random variables are independent then their covariance vanishes. The converse is false.

Definition 7.7 (Stochastic process). Given a probability space (Ω,Msrbl (Ω) ,P), a stochastic process is a sequence of
random variables {Xn : Ω → C }n∈N. In principle we could also consider the indexing set of the sequence a continuous
variable.

Remark 7.8. Do not confuse marginal with martingale: the latter is a type of stochastic process, which we will cover
later in TODO: CITE.

7.2 Independence

Definition 7.9 (Independent events). Let A be some index set. The collection of events { Eα }α∈A ⊆ Msrbl (Ω) is
said to be independent iff for any S ⊆ A such that |S| <∞,

P

[⋂
α∈S

Eα

]
=
∏
α∈S

P [Eα] .

Definition 7.10 (Independent random variables). LetA be some set. The collection of random variables {Xα : Ω → C }α∈A
are said to be independent iff

{
X−1
α (Bα)

}
α∈A ⊆ Ω is an independent collection of events, for any collection of Borel

sets {Bα }α ⊆ B (C).
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Claim 7.11. The collection of random variables {Xα : Ω → C }α∈A are independent iff for any S = { α1, · · · , αn } ⊆ A,

P(Xα1 ,··· ,Xαn)
=

n∏
j=1

PXαj
(7.3)

where by P(Xα1
,··· ,Xαn)

we mean the induced distribution of the variablesXα1 , · · · , Xαn where all others are “integrated
out”:

P(Xα1
,··· ,Xαn)

[A] ≡ P [(Xα1 , · · · , Xαn) ∈ A] ≡ P
[
(Xα1 , · · · , Xαn)

−1
(A)
]

(A ∈ B (Cn)) .

On the RHS we mean the product measure construction Definition 5.6.

Proof. Let us assume (7.3). Let {Bα }α ⊆ B (C) be given and pick any S ⊆ A such that |S| < ∞. Then we want
to show that

P

[⋂
α∈S

X−1
α (Bα)

]
=
∏
α∈S

P
[
X−1
α (Bα)

]
.

We recognize the RHS as
P
[
X−1
α (Bα)

]
≡ PXα [Bα] .

On the LHS, we have

P

[⋂
α∈S

X−1
α (Bα)

]
= P

[
(Xα1

, · · · , Xαn
)
−1

(∏
α∈S

Bα

)]
≡ P(Xα1

,··· ,Xαn)

[∏
α∈S

Bα

]
.

Since we are assuming (7.3), we get

P(Xα1
,··· ,Xαn)

[∏
α∈S

Bα

]
=
∏
α∈S

PXα
[Bα]

so the two are indeed equal as needed. For the other direction, if two Borel measures agree on all rectangular Borel
sets, then they agree by regularity.

Corollary 7.12. Let A be some indexing set and {Xα : Ω → C }α∈A be an independent sequence of random variables.
Then for any S = { α1, · · · , αn } ⊆ A,

E

[∏
α∈S

Xα

]
=
∏
α∈S

E [Xα] .

Proof. We have

E

[∏
α∈S

Xα

]
= E(Xα1 ,··· ,Xαn)

[∏
α∈S

Xα

]

=

∫
(x1,··· ,xn)∈Cn

x1 · · ·xndP(Xα1
,··· ,Xαn)

(x1, · · · , xn)

=

∫
(x1,··· ,xn)∈Cn

x1 · · ·xnd

 n∏
j=1

PXαj

 (x1, · · · , xn) (independence)

=

n∏
j=1

∫
xj∈C

xjdPXαj
(xj) (Fubini)

=

n∏
j=1

E
[
Xαj

]
.
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Corollary 7.13. Let A be some indexing set and {Xα : Ω → C }α∈A be an independent sequence of random variables.
Then for any α, β ∈ A,

Cov [Xα, Xβ ] = 0 .

Proof. We have

Cov [Xα, Xβ ] = E [XαXβ ]− E [Xα]E [Xβ ]

indep.
= E [Xα]E [Xβ ]− E [Xα]E [Xβ ]

= 0 .

Example 7.14. The converse is false: there are random variables which are not independent yet their covariance is
zero.

Thanks to Akshat for this counter example. Take X uniform in [−1, 1] and Y := X2. Clearly X and Y are not
independent since Y is a function of X. More formally, consider that

P(X,Y ) [A×B] ≡ P [(X,Y ) ∈ A×B]

= P [X ∈ A ∧ Y ∈ B]

= P
[
X ∈ A ∧X2 ∈ B

]
=

1

2

∫
x∈[−1,1]

χA (x)χB
(
x2
)
dλ (x)

̸=

(
1

2

∫
x∈[−1,1]

χA (x) dλ (x)

)(
1

2

∫
x∈[−1,1]

χB
(
x2
)
dλ (x)

)

for all A,B ∈ B (R) (take e.g. A =
[
−1,− 1

2

]
and B =

[
0, 14

]
), so that P(X,Y ) is not the product measure, so that

X,Y are not independent. On the other hand,

Cov [X,Y ] = E [XY ]− E [X]E [Y ]

= E
[
X3
]
− E [X]E

[
X2
]

= 0

since X is an odd function.

Claim 7.15. Functions of independent random variables are themselves independent random variables.

Proof. For the sake of simplicity we only show this for the case of two random variables, to illustrate the principle.
Let f, g : C → C be measurable and X,Y : Ω → C be two random variables. Then we want to show that f (X) , g (Y )
are also independent. To that end, if B1, B2 ∈ B (C), then we want to show that

P(f(X),g(Y )) [B1 ×B2] ≡ P [(f (X) , g (Y )) ∈ B1 ×B2]

= P
[
(X,Y ) ∈ f−1 (B1)× g−1 (B2)

]
= P

[
X ∈ f−1 (B1)

]
P
[
Y ∈ g−1 (B2)

]
= P [f (X) ∈ B1]P [g (Y ) ∈ B2]

≡ Pf(X) [B1]Pg(Y ) [B2] .
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Remark 7.16. Since a probability space is a finite measure space, in this particular context, we always have

Lp (Ω → C,P) ⊆ Lq (Ω → C,P) (1 ≤ q ≤ p <∞) .

Proof. Let X ∈ Lp (Ω → C,P). Let q ∈ [1, p]. Then∫
Ω

|X|q dP =

∫
Ω

(|X|p)
q
p dP .

Now, the map α 7→ α
q
p is concave. As such, Jensen’s inequality (Theorem 5.25) implies that∫

Ω

(|X|p)
q
p dP ≤

(∫
Ω

|X|p dP

) q
p

< ∞ .

In particular, Ln+m ⊆ Ln, so having higher moments guarantees the existence of lower moments, but not vice versa. This
is in contrast to the µ (X) = ∞ scenario,

Proposition 7.17. The product of L1 independent random variables is itself an L1 random variable, and the expec-
tation of the product is the product of expectations.

This is in stark contrast to the usual case where if f, g ∈ L1 then it is certainly far from obvious whether fg ∈ L1

(consider for instance f = g = [0, 1] ∋ x 7→ 1√
x

which are both L1 but fg is not L1; of course, f, g are not indepen-
dent).

Proof. Let X,Y : Ω → C be two independent L1 random variables. Then we want to show that XY ∈ L1 too.

E [|XY |] = E [|X| |Y |]
= E(X,Y ) [|X| |Y |]
= (EX × EY ) [|X| |Y |]
= EX [|X|]EY [|Y |]

where in the last step we invoked Tonelli’s Theorem 5.14. The step E(X,Y ) = EX × EY is where we invoked
independence. Once this is known, the same maneuver without the absolute values shows that the expectation of
the product is the product of the expectations.

Proposition 7.18. The sum of L2 independent random variables is itself in L2, and the variance of the sum is the
sum of the variances.

Note that the sum of L2 functions is always L2 by the triangle inequality (regardless of independence):

∥f + g∥L2 ≤ ∥f∥L2 + ∥g∥L2 .

Proof. Let X1, · · · , Xn : Ω → C be independent L2 random variables. Let S :=
∑n
j=1Xj . The following calculation
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shows both that S ∈ L2 and our claim:

Var [S] = E
[
S2
]
− E [S]

2

= E


 n∑
j=1

Xj

2
−

 n∑
j=1

E [Xj ]

2

= E

 n∑
j,l=1

XjXl

−
n∑

j,l=1

E [Xj ]E [Xl]

=

n∑
j,l=1

E [XjXl]− E [Xj ]E [Xl]

=

n∑
j=1

E
[
X2
j

]
− E [Xj ]

2︸ ︷︷ ︸
=Var[Xj ]

+

n∑
j,l=1,j ̸=l

E [XjXl]− E [Xj ]E [Xl]︸ ︷︷ ︸
=Cov[Xj ,Xl]

=

n∑
j=1

Var [Xj ] . (independence)

7.3 Important inequalities

Theorem 7.19 (Markov). Let X : Ω → R be a random variable and φ : R → [0,∞) a non-decreasing function so that
φ ◦X ∈ L1. Then

φ (a)P [X ≥ a] ≤ E [φ (X)] (a ∈ R) . (7.4)

Proof. We have

E [φ (X)] =

∫
ω∈Ω

φ (X (ω)) dP (ω)

=

∫
x∈R

φ (x) dPX (x)

=

∫
x<a

φ (x) dPX (x) +

∫
x≥a

φ (x) dPX (x)

≥
∫
x≥a

φ (x) dPX (x) (φ ≥0)

≥
∫
x≥a

φ (a) dPX (x) (φ is nondecreasing)

= φ (a)P [X ≥ a] .

Theorem 7.20 (Chebyshev). Let X : Ω → R be an L1 random variable. Then

P [|X − E [X]| ≥ ε] ≤ Var [X]

ε2
(ε > 0) . (7.5)

Proof. We apply Markov’s inequality to the variable Y := (X − E [X])
2 with the function φ (a) := a and the value
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a := ε2 to get

P
[
Y ≥ ε2

]
≤ E [Y ]

ε2

↕

P
[
(X − E [X])

2 ≥ ε2
]

≤ Var [X]

ε2

↕

P [|X − E [X]| ≥ ε] ≤ Var [X]

ε2
.

Lemma 7.21 (Borel-Cantelli). Let { En }n∈N ⊆ Msrbl (Ω) be such that∑
n∈N

P [En] <∞ .

Then the probability that infinitely many of the En occur is zero, i.e.,

P

⋂
n∈N

⋃
k≥n

Ek

 = 0 .

We note that ω ∈
⋂
n∈N

⋃
k≥nEk iff ω ∈ Ek for infinitely many k’s:

ω ∈
⋂
n∈N

⋃
k≥n

Ek

↕
ω ∈

⋃
k≥n

Ek ∀ n ∈ N

↕
∀n ∈ N∃k ≥ n : ω ∈ Ek .

That set is denoted
lim sup

n
En :=

⋂
n∈N

⋃
k≥n

Ek .

One may also prove that

lim sup
n

En =

{
ω ∈ Ω

∣∣∣∣ lim sup
n

χEn (ω) = 1

}

Proof. Consider the sequence FN :=
⋃
n≥N En. It is non-increasing:

FN ⊇ FN+1

and
FN ⊇

⋂
n∈N

⋃
k≥n

Ek .

Hence

P

⋂
n∈N

⋃
k≥n

Ek

 = lim
N→∞

P [FN ] ≤ lim
N→∞

∞∑
n=N

P [En] = 0 .
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Lemma 7.22 (Second Borel-Cantelli). Let { En }n∈N ⊆ Msrbl (Ω) be independent such that∑
n∈N

P [En] = ∞ .

Then

P

⋂
n∈N

⋃
k≥n

Ek

 = 1 .

Proof. We have

1− P

⋂
n∈N

⋃
k≥n

Ek

 = P

⋂
n∈N

⋃
k≥n

Ek

c
= P

⋃
n∈N

⋂
k≥n

Eck


= lim
n→∞

P

⋂
k≥n

Eck

 (Approximation property)

Now,
{⋂N

k=nE
c
k

}
N

is a decreasing sequence of events whose limit is
⋂∞
k=nE

c
k. Hence by the approximation property

of measures (2.5) in reverse we find

1− P

⋂
n∈N

⋃
k≥n

Ek

 = lim
n→∞

P

[ ∞⋂
k=n

Eck

]

= lim
n→∞

lim
N→∞

P

[
N⋂
k=n

Eck

]

= lim
n→∞

lim
N→∞

N∏
k=n

P [Eck] (Independence)

= lim
n→∞

lim
N→∞

N∏
k=n

(1− P [Ek]) .

But since we assume
∑
n≥1 P [En] = ∞, this implies limn→∞

∏
k≥n (1− P [Ek]) = 0 and we are done. Indeed,

exp

log

∏
k≥n

(1− P [Ek])

 = exp

∑
k≥n

log ((1− P [Ek]))

 ≤ exp

−
∑
k≥n

P [Ek]

 = 0 .

Lemma 7.23 (Kolmogorov’s inequality). On a probability space (Ω,Msrbl (Ω) ,P) let {Xn : Ω → C }n∈N be a sequence
of independent random variables such that E [Xn] = 0 for all n ∈ N. Set Sk := X1 + · · ·+Xk. Then

P

[
max

k∈{ 1,··· ,n }
|Sk| ≥ ε

]
≤ 1

ε2
Var [Sn] (ε > 0) .

Proof. We note {
max

k∈{ 1,··· ,n }
|Sk| ≥ ε

}
= ⊔nk=1Ak

101



with Ak := { |Sk| ≥ ε ∧ |Sj | < ε∀j < k }. Hence

P

[
max

k∈{ 1,··· ,n }
|Sk| ≥ ε

]
=

n∑
k=1

P [Ak] ≤ ε−2
n∑
k=1

E
[
χAk

S2
k

]
because on Ak, S2

k ≥ ε2. Now,

E
[
S2
n

]
≥

n∑
k=1

E
[
χAk

S2
n

]
=

n∑
k=1

E
[
χAk

(Sk + (Sn − Sk))
2
]

=

n∑
k=1

E
[
χAk

(
S2
k + 2Sk (Sn − Sk) + (Sn − Sk)

2
)]

≥
n∑
k=1

E
[
χAk

S2
k

]
+ 2

n∑
k=1

E [χAk
Sk (Sn − Sk)] .

Actually, E [χAk
Sk (Sn − Sk)] = 0. Indeed, (Sn − Sk) is independent from χAk

Sk. The first expression depends on
Xk+1, · · · , Xn whereas the latter on X1, · · · , Xk. But E [Sn − Sk] = 0. Hence

P

[
max

k∈{ 1,··· ,n }
|Sk| ≥ ε

]
≤ ε−2E

[
S2
n

]
= ε−2Var [Sn] .

7.4 Convergence of sums of random variables: LLN, CLT, LIL and all of that
On a probability space (Ω,Msrbl (Ω) ,P) we are given a sequence of random variables {Xn : Ω → C }n∈N and we assume
they are independent, as in (7.3)4. This situation could experimentally arise when we sample many measurements of some
experiment, each time restarting the apparatus from scratch so as to obtain independence. We are then interested in the
distribution of the average of the first N measurements:

AN :=
1

N

N∑
n=1

Xn (N ∈ N) .

Calculating PAN
in and of itself is not that interesting (and also difficult). We are more interested in the behavior of PAN

as N → ∞. It turns out that as N → ∞, AN behaves quite deterministically. Just by linearity of the integral we have

E [AN ] =
1

N

N∑
n=1

E [Xn]

and by (7.1) and independence (Proposition 7.18),

Var [AN ] =
1

N2

N∑
n=1

Var [Xn] .

A natural thing is that all our random variables would be identically distributed, or at least, have the same variance σ2.
In this case,

Var [AN ] =
1

N2

N∑
n=1

σ2 =
1

N
σ2 → 0 .

If the variance of AN becomes arbitrarily small, it is to be expected that it becomes arbitrarily close to a constant (i.e.,
deterministic) random variable:

AN
N→∞
≈ E [AN ] =

1

N

N∑
n=1

E [Xn] .

4For some of our statements independence may actually be dropped
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For example, if all the expectations values are the same, E [Xn] =: µ, we get

AN ≈ µ .

In this situation we expect

AN ≈ µ+
σ√
N

× (random fluctuations of order 1 in N) + · · ·? .

The above rationale prompts us to define the following random variable

ZN :=
AN − µ

σ/
√
N

which captures, presumably, scaled (order 1) fluctuations of AN about its mean. The amazing thing is that the distribution
of ZN as N → ∞ is universal and completely independent of PXj

. In this sense the standard distribution is “universal”:
regardless of the distribution of the sequence {Xn }n we choose, just the structure of independence and some mild
assumptions, we will establish:

ZN
N→∞∼ N (0, 1) .

As we shall see, in principle one may continue the asymptotic expansion of AN to further powers of 1
N :

AN =: µ+
σ√
N
ZN +RN .

The terms in RN however do depend on the distribution of PXj and are no longer universal, as we shall see (TODO
CITE).

7.4.1 The law of large numbers

The above intuitive discussion was rather vague about how various random variables converge. We now want to make
this precise. The first form of convergence we want to discuss is

Definition 7.24 (Convergence in probability). Let { Yn }n∈N be a sequence of random variables and let Y be some
other random variable. We say that Yn → Y in probability,

Yn
P→ Y

iff
P [|Yn − Y | ≥ ε]

n→∞→ 0 (ε > 0) .

Remark 7.25. Note that this notion is identical to the notion of convergence in measure which appeared in the
homework, with the specification that the measure is a probability measure.

With this at hand, we want to make precise the statement AN → µ:

Theorem 7.26 (Khinchin’s theorem, the weak law of large numbers (LLN)). On a probability space (Ω,Msrbl (Ω) ,P)
let {Xn : Ω → C }n∈N be a sequence of L2 independent random variables such that

lim
N→∞

1

N2

N∑
n=1

Var [Xn] = 0 .

In particular we are not assuming {Xn }n are identically distributed. Then

AN
P→ E [AN ] .

in the sense that
lim
N→∞

P [|AN − E [AN ]| < ε] = 1 (ε > 0) .
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Proof. We invoke the Chebyshev inequality Theorem 7.20 on the random variable BN := AN − E [AN ] which has,
by construction E [BN ] = 0 and Var [BN ] = 1

N2

∑N
n=1 Var [Xn]. We obtain

P [|BN | ≥ ε] ≤ 1

ε2N2

N∑
n=1

Var [Xn] .

This theorem may be strengthened by dropping the L2 assumption and truncating random variables. This allows one to
handle, e.g., Cauchy distributions. One possible phrasing of a generalization is as:

Theorem 7.27 (Better version of WLLN). On a probability space (Ω,Msrbl (Ω) ,P) let {Xn : Ω → C }n∈N be a
sequence of independent identically distributed random variables such that

lim
x→∞

xP [|Xn| > x] = 0 .

Then
AN − E

[
X1χ[−N,N ] (X1)

] P→ 0 (N → ∞) .

The proof may be found in standard probability texts, e.g., [Dur19] (Theorem 2.2.7 in the Edition 4.1, April 21, 2013;
Theorem 2.2.12 in Edition 5 online).

Next, we want to strengthen the mode of convergence of the LLN above. We shall build towards

Definition 7.28 (Convergence almost-surely). Let { Yn }n∈N be a sequence of random variables and let Y be some
other random variable. We say that Yn → Y almost-surely,

Yn
a.s.→ Y

iff
P
[
lim
n→∞

Yn = Y
]
= 1 .

Claim 7.29. If { Yn }n∈N converges almost-surely to Y then it converges in probability to Y .

Proof. Let Yn → Y almost-surely. We want to show that Yn → Y in probability, i.e., we want to show that

lim
n→∞

P [|Yn − Y | < ε] = 1 (ε > 0) .

To re-iterate, we are assuming that
P
[
lim
n→∞

|Yn − Y | = 0
]
= 1 .

Let ε > 0. Then An :=
⋃
m≥n { |Ym − Y | ≥ ε } defines a decreasing sequence of sets towards

⋂
n∈N An. Hence

lim
n

P [An] = P

[⋂
n∈N

An

]
.

But, P [An] = P
[⋃

m≥n { |Ym − Y | ≥ ε }
]
≥ P [|Yn − Y | ≥ ε] by monotonicity. We find

lim
n→∞

P [|Yn − Y | ≥ ε] ≤ P

[⋂
n∈N

An

]
.

But P
[⋂

n∈N An
]
= 0. Indeed, this follows from⋂

n∈N

An ⊆
{

lim
n→∞

|Yn − Y | = 0
}c

.
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To see this, let ω ∈ { limn→∞ |Yn − Y | = 0 }. Then for that ω, |Yn − Y | < ε for all n ≥ Nε (ω). For such n, ω /∈ An.
But since P [limn→∞ |Yn − Y | = 0] = 1, the probability of the complement is zero, so we get our result.

Theorem 7.30 (Kolmogorov’s strong LLN). On a probability space (Ω,Msrbl (Ω) ,P) let {Xn : Ω → C }n∈N be a
sequence of L2 independent random variables such that

lim
N→∞

N∑
n=1

1

n2
Var [Xn] <∞ .

Then P-almost-surely,

lim
N→∞

(
AN − 1

N

N∑
n=1

E [Xn]

)
= 0 ,

i.e., limN→∞

(
AN − 1

N

∑N
n=1 E [Xn]

)
= 0 almost-surely, that is,

P

[
lim
N→∞

(
AN − 1

N

N∑
n=1

E [Xn]

)
= 0

]
= 1 .

Proof. Define BN := AN − 1
N

∑N
n=1 E [Xn]. Then E [BN ] = 0. Let ε > 0. For fixed k ∈ N, |Bn| ≥ ε∃n ∈

[
2k−1, 2k

]
implies maxn=1,··· ,2k n |Bn| ≥ ε2k−1, so

P
[
|Bn| ≥ ε∃n ∈

[
2k−1, 2k

]]
≤ P

[
max

n=1,··· ,2k
n |Bn| ≥ ε2k−1

]
(Monotonicity)

≤ 1

(ε2k−1)
2

2k∑
n=1

Var [Xn] (Kolomogrov)

Summing this inequality from k = 1 to ∞ we find

∞∑
k=1

P
[
|Bn| ≥ ε∃n ∈

[
2k−1, 2k

]]
≤

∞∑
k=1

1

(ε2k−1)
2

2k∑
n=1

Var [Xn]

=
4

ε2

∞∑
k=1

2k∑
n=1

2−2kVar [Xn]

=
4

ε2

∞∑
n=1

∞∑
k=(log2(n))

2−2kVar [Xn]

≤ 8

ε2

∞∑
n=1

1

n2
Var [Xn] <∞ .

Hence
P

[
lim sup

k

{
|Bn| ≥ ε∃n ∈

[
2k−1, 2k

] }]
= 0

by the Borel-Cantelli Lemma 7.21. But

lim sup
k

{
|Bn| ≥ ε∃n ∈

[
2k−1, 2k

] }
≡ { |BN | ≥ ε for infinitely many N } .

Hence
P
[
lim inf
N

{ |BN | < ε }
]
= 1 .

If we now take a (countable) limit of ε→ 0, we conclude that limN |BN | = 0 almost surely.
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7.4.2 The central limit theorem

We now return to the asymptotic expansion

AN ≈ µ+
σ√
N

× (random fluctuations of order 1 in N) + · · ·? . .

To study it we have defined

ZN :=
AN − µ

σ/
√
N

.

We shall see that
ZN

N→∞∼ N (0, 1) .

The mode of convergence of ZN → N (0, 1) will be in distribution.

Definition 7.31 (Convergence in distribution). Let { Yn }n∈N be a sequence of random variables and let Y be some
other random variable. We say that Yn → Y in distribution,

Yn
d→ Y

iff for all bounded continuous functions f : C → C,

lim
n→∞

E [f (Yn)] = E [f (Y )] .

Claim 7.32. { Yn }n → Y in distribution iff

lim
n→∞

P [Yn ≥ t] = P [Y ≥ t]

pointwise in t, for all points t at which t 7→ P [Y ≥ t] is continuous.

Proof. See HW9Q3.

Theorem 7.33 (Lévy’s continuity theorem). Let { Yn }n be a sequence of real-valued random variables and Y be a
real-valued random variable. { Yn }n → Y in distribution iff E [exp (itYn)] → E [exp (itY )] pointwise in t as t ∈ C and
t 7→ E [exp (itY )] is continuous at t = 0.

Proof. Let f : C → C be the image of the Fourier transform of some L1 function g : C → C. Then

f (y) =

∫
ψ∈R

exp (iyψ) g (ψ) dλ (ψ) .

Then

E [f (Yn)] = E

[∫
ψ∈R

exp (iYnψ) g (ψ) dλ (ψ)

]
=

∫
ψ∈R

E [exp (iYnψ)] g (ψ) dλ (ψ) .

Taking now the limit n→ ∞ on both sides and using the dominated convergence theorem we find

lim
n→∞

E [f (Yn)] = E [f (Y )] .

We now approximate every continuous bounded f by such functions as above. For the details, see HW9Q4.

Claim 7.34. Convergence in probability implies convergence in distribution.
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Proof. TODO

Hence, we have the following hierarchy of convergence modes:�� ��Almost sure =⇒ Lp =⇒ In probability =⇒ In distribution.
5

We shall prove

Theorem 7.35 (CLT). On a probability space (Ω,Msrbl (Ω) ,P) let {Xn : Ω → C }n∈N be a sequence of independent
L2 random variables such that there exists some δ > 0 with which

lim
N→∞

∑N
n=1 E

[
|Xn − E [Xn]|2+δ

]
(√∑N

n=1 Var [Xn]

)2+δ
= 0 .

Then ZN → Z (where Z ∼ N (0, 1)) in distribution.

Proof. We shall calculate the characteristic function of ZN . For convenience we denote Xn := Xn − E [Xn] and
σ2
n := Var [Xn],

σ :=

√√√√ 1

N

N∑
n=1

Var [Xn]

and finally, Yn := Xn−E[Xn]
σ . Note that { Yn }n is an independent sequence with E [Yn] = 0 and E

[
Y 2
n

]
= 1. Then

φZN
(t) ≡ E [exp (itZN )]

= E

[
exp

(
it

N∑
n=1

Yn√
N

)]

= E

[
N∏
n=1

exp

(
it
Yn√
N

)]

=

N∏
n=1

E

[
exp

(
it
Yn√
N

)]
(independence)

= exp

(
N∑
n=1

log

(
E

[ ∞∑
ℓ=0

1

ℓ!
(it)

ℓ
Y ℓn

]))

= exp

(
N∑
n=1

log

(
1− t2

2N
+

i

6N
3
2

t3E
[
Y 3
n

]
+O

(
N−2

)))

= exp

(
N∑
n=1

(
− t2

2N
+

i

6N
3
2

t3E
[
Y 3
n

]
+O

(
N−2

)))

= exp

(
− t

2

2

)
exp

((
i

6N
1
2

t3

(
1

N

N∑
n=1

E
[
Y 3
n

])
+O

(
N−1

)))

= exp

(
− t

2

2

)1 +

∞∑
j=1

Pj (it)

N
j
2


where Pj is some polynomial of degree 3j whose coefficients depend on the moments of the Yn’s. We find this

5In principle there is also the total variation convergence: ∥µ− ν∥TV := supA |µ (A)− ν (A)| and we then ask that ∥PXn − PX∥TV → 0.
This mode of convergence implies convergence in distribution but no other implication involves total variation distance. We do not need ∥·∥TV
yet.
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converges pointwise in t to

φZN
(t) → exp

(
−1

2
t2
)
.

The convergence of the characteristic function implies convergence in distribution by Lévy’s continuity Theorem 7.33.
TODO: make this compatible with the assumption that variables are not identically distributed.

Corollary 7.36 (“Small” deviations tail bound from CLT). Let {Xn : Ω → R }n∈N be a sequence of IID random
variables with mean µ and variance σ2. Let AN := 1

N

∑N
n=1Xn as before. Then, for every t > 0 there exists some

N0 (t) such that if N ≥ N0 (t)

P

[∣∣∣∣AN − µ

σ

∣∣∣∣ > t√
N

]
≤ 1

t
exp

(
−1

2
t2
)
. (7.6)

Proof. We have
AN − µ

σ
=

1√
N
ZN

and ZN converges in distribution to a standard normal RV. Hence,

P

[∣∣∣∣AN − µ

σ

∣∣∣∣ > t√
N

]
= P

[
1√
N

|ZN | > t√
N

]
= E

[
χ[−t,t]c (ZN )

]
.

The CLT now implies that
lim
N→∞

E
[
χ[−t,t]c (ZN )

]
= E

[
χ[−t,t]c (Z)

]
where Z ∼ N (0, 1). For Z, we have

E
[
χ[−t,t]c (Z)

]
=

1√
2π

∫
z∈[−t,t]c

exp

(
−1

2
z2
)
dλ (z)

=
2√
2π

∫ ∞

z=t

exp

(
−1

2
z2
)
dλ (z)

≤ 2√
2π

∫ ∞

z=t

z

t
exp

(
−1

2
z2
)
dλ (z) (1≤ z

t )

=
2

t
√
2π

∫ ∞

z=t

−
[
∂z exp

(
−1

2
z2
)]

dλ (z)

=
2

t
√
2π

exp

(
−1

2
t2
)
. (FTC)

Hence,

lim
N→∞

P

[∣∣∣∣AN − µ

σ

∣∣∣∣ > t√
N

]
≤ 2

t
√
2π

exp

(
−1

2
t2
)

(t > 0) .

Compare this with Hoeffding’s inequality:

Theorem 7.37 (Heoffding). Let {Xn : Ω → [a, b] }n be IID random variables and AN := 1
N

∑N
n=1Xn. Then

P

[∣∣∣∣AN − µ

b− a

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2Nt2

)
(t > 0) .

7.4.3 Higher order terms in the asymptotic expansion: an Edgeworth expansion

As we see in the above proof of the CLT, we could in principle continue the expansion of φZN
(t) (pointwise in t) to obtain

any order in N− 1
2 . Such an expansion is called an Edgeworth expansion. It expands the characteristic function φZN

in
terms of the characteristic function of the standard normal t 7→ exp

(
− 1

2 t
2
)
.
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Once we have the characteristic function, we can invert it back to get an expansion for the distribution of ZN :

dPZN

dλ
(z) =

1

2π

∫
t∈R

exp (−itz)φZN
(t) dλ (t)

=
1

2π

∫
t∈R

exp (−itz) exp

(
−1

2
t2
)[

1− i
1

6

t3

N− 1
2

E
[
Y 3
n

]]
dλ (t)

=
1√
2π

exp

(
−1

2
z2
)[

1− 1

6

1

N− 1
2

E
[
Y 3
n

]
z
(
z2 − 3

)
+O

(
N−1

)]
.

Hence the distribution of ZN does depend on PX , just, asymptotically this dependence converges to zero and we just get
a standard normal variable for the zero order term in the asymptotic N− 1

2 expansion.

7.4.4 Law of iterated logarithm (LIL) [extra]

The tail bound derived from the CLT says that given t > 0, there exists some N0 (t) ∈ N such that if N ≥ N0 (t), then

P [|ZN | > t] ≤ P [|Z| > t] .

This situation does not preclude that almost-surely, as N → ∞, ZN becomes in fact unbounded.

Claim 7.38. Let {Xn : Ω → R }n be a sequence of IID random variables whose mean is µ and variance is σ2. Then,
with the convention

AN :=
1

N

N∑
n=1

Xn

and
AN =: µ+

σ√
N
ZN

we have
P

[
lim sup
N→∞

ZN = ∞
]
= 1 .

Proof. Let Yn := Xn−µ
σ . SN := Y1 + · · · + YN . Let M > 0. Let m1 := 2 and mk+1 := m3

k for all k ∈ N. Then
mk√
mk+1

= m
− 1

2

k → 0. Then
Smk+1

= Smk
+ Ymk+1 + · · ·+ Ymk+1︸ ︷︷ ︸

=:Bk

.

By construction, E [Bk] = 0 and Var [Bk] = mk+1 −mk and {Bk }k are independent, so we may apply the CLT on
it to get

P
[
Bk > 2M

√
mk+1

]
≈ P [Z > 2M ] .

In writing this, we use
√
mk+1√

Var[Bk]
→ 1. Hence,

∑
k P
[
Bk > 2M

√
mk+1

]
= ∞. Thus, by Lemma 7.22,

P
[
Bk > 2M

√
mk+1 for infinitely many k’s

]
= 1 .

Now, by the strong LLN,
Smk√
mk+1

=
Smk

mk

mk√
mk+1

→ 0

almost-surely. So almost-surely, for sufficiently large k,
∣∣∣ Smk√

mk+1

∣∣∣ < M .

Whenever both Bk > 2M
√
mk+1 and

∣∣∣ Smk√
mk+1

∣∣∣ < M , we get

Smk+1
= Smk

+Bk ≥ Bk − |Smk
| ≥ 2M

√
mk+1 −M

√
mk+1 =M

√
mk+1 .
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Hence,

Zmk+1
≡

Smk+1√
mk+1

> M .

This event can be obtained as the countable intersection of the two almost-sure events, so we are done.

So if ZN almost-surely grows to ±∞, can we characterize how quickly?

Theorem 7.39. Let {Xn : Ω → R }n be a sequence of IID random variables whose mean is µ and variance is σ2.
Then, with the convention

AN :=
1

N

N∑
n=1

Xn

and
AN =: µ+

σ√
N
ZN

we have

P

[
lim sup
N→∞

ZN√
2 log (log (N))

= 1

]
= 1 ∧ P

[
lim inf
N→∞

ZN√
2 log (log (N))

= −1

]
= 1 .

I.e., almost-surely, the maximum of |ZN | grows like
√

2 log (log (N)) as N → ∞.

Note the contrast between the CLT and the LIL. CLT says that for a single arbitrarily large N , PZN
≈ PZ with

Z ∼ N (0, 1). On the other hand, the LIL says that when taken as a whole, the sequence { |ZN | }N grows, almost-surely,
like

√
2 log (log (N)), which is very slow.

Proof of Theorem 7.39. TODO

7.5 Large deviations [Varadhan]
In this section we follow Varadhan’s lecture notes [Var84]; see also [DZ09].

To motivate the “large deviations” question, recall the approximation theorem due to Laplace:

Theorem 7.40 (Laplace asymptotics). Fix some n ∈ N. Let f : Rn → R, g : Rn → C be given. Assume that f has
continuous Hessian

Hf : Rn → Matn×n (R)

at some x0 ∈ Rn and g is continuous and non-vanishing at x0. Assume further that

(∇f) (x0) = 0 ∧ (Hf) (x0) > 0 .

Finally, assume that there exists some η⋆ > 0 such that∫
x∈Rn

e−η⋆f(x)g (x) dλ (x) <∞ .

Then

lim
η→∞

∫
x∈Rn e−ηf(x)g (x) dλ (x)

η−
n
2 e−ηf(x0)

=
g (x0)√

det
(

1
2π (Hf) (x0)

) .
In particular,

lim
η→∞

−1

η
log

(∫
x∈Rn

e−ηf(x)g (x) dλ (x)

)
= f (x0) .

The proof of this classical result may be found, e.g., in [Sha23a].
We want to ask the following basic question: if we have a sequence of probability measures Pη on a fixed measurable

space (Ω,Msrbl (Ω)) and X is some fixed random variable X : Ω → C, in analogy with can we compute

lim
η→∞

−1

η
log (Eη [g (X)]) = ?
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What about
lim
η→∞

−1

η
log (Eη [gη (X)]) = ?

To see why this might make sense, let us consider the case of IID random variables from the previous section, {Xn }n∈N
whose mean is µ and variance σ2; with

AN ≡ 1

N

N∑
n=1

Xn

we found that
ZN :=

AN − µ

σ/
√
N

asymptotically behaves like a standard normal. This means that the tail bound behaves like

P

[∣∣∣∣AN − µ

σ

∣∣∣∣ ≥ t

]
= P

[∣∣∣∣ 1√
N
ZN

∣∣∣∣ ≥ t

]
= P

[
|ZN | ≥

√
Nt
]

⋆
=

∫
|z|≥

√
Nt

1√
2π

exp

(
−1

2
z2
)
dz

= 2

∫
z∈[

√
Nt,∞)

1√
2π

exp

(
−1

2
z2
)
dz

= 2

∫
z∈[0,∞)

1√
2π

exp

(
−1

2

(
z +

√
Nt
)2)

dz

= 2

∫
z∈[0,∞)

1√
2π

exp

(
−1

2
N

(
1√
N
z + t

)2
)
dz

= 2

√
N√
2π

∫
z∈[0,∞)

exp

(
−1

2
N (z + t)

2

)
dz .

Remark 7.41. Note that the step ⋆ above is not justified but only heuristic because we may only apply the CLT with
fixed t, which does not depend on N .

Employing the Laplace asymptotics cited above yields

lim
N→∞

1

N
log

(
P

[∣∣∣∣AN − µ

σ

∣∣∣∣ ≥ t

])
= −1

2
t2 (7.7)

↓

P

[∣∣∣∣AN − µ

σ

∣∣∣∣ ≥ t

]
≈ e−

1
2Nt

2

.

We thus expect that the sequence of probability measures
{

P 1√
N
ZN

}
N∈N

will behave, asymptotically, in an exponentially
decaying way.

After these intuitive motivation, let us now make this more precise. In what follows (Ω,Msrbl (Ω)) is a fixed measurable
space. For simplicity we assume that the ambient space Ω is a complete separable metric space and Msrbl (Ω) = B (Ω).
We switch from the asymptotic parameter η → ∞ to ε → 0+, with the rule ε := 1

η . We thus consider sequences of
probability measures Pε : B (Ω) → [0, 1] parametrized by a continuous parameter ε > 0. We want to formalize the relation

Pε [A] ∼ sup
a∈A

e−
1
ε I(a)

(
ε→ 0+

)
for some function I : Ω → [0,∞]. To that end, let us make the

Definition 7.42 (Rate function). A rate function I : Ω → [0,∞] is some lower semicontinuous map Ω → [0,∞] (i.e.,
for any t ∈ (0,∞), I−1 ((t,∞]) ∈ Open (Ω) or equivalently, I−1 ([0, t]) ∈ Closed (Ω) for any t ∈ (0,∞)) such that for
any ℓ ∈ (0,∞),

I−1 ([0, ℓ]) ∈ Compact (Ω) .
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Remark 7.43. Varadhan uses this notion whereas other authors only require a rate function to be lower semicontinuous
whereas the additional requirement on compactness is called a “good rate function” (see e.g. Dembo’s textbook [DZ09]).
The difference between the two offers some technical advantages down the road. For now we stick with Varadhan’s
simpler phrasing.

Definition 7.44 (Large deviations principle). Let { Pε }ε>0 be a sequence of probability measures. We say that
{ Pε }ε>0 obeys a large deviations principle with rate function I : Ω → [0,∞] iff

1. For any F ∈ Closed (Ω),
lim sup
ε→0+

ε log (Pε [F ]) ≤ − inf
ω∈F

I (ω) .

2. For any U ∈ Open (Ω),
lim inf
ε→0+

ε log (Pε [U ]) ≥ − inf
ω∈U

I (ω) .

Claim 7.45. Let { Pε }ε>0 be a sequence of probability measures that obeys a large deviations principle with rate
function I as above. If A ∈ B (Ω) is such that

inf
ω∈A◦

I (ω) = inf
ω∈A

I (ω) = inf
ω∈Ā

I (ω) (7.8)

then
lim
ε→0+

ε log (Pε [A]) = − inf
ω∈A

I (ω) .

Proof. By definition we have

lim sup
ε→0+

ε log
(
Pε
[
A
])

≤ − inf
ω∈A

I (ω) = − inf
ω∈A◦

I (ω) ≤ lim inf
ε→0+

ε log (Pε [A
◦]) .

Moreover, since A◦ ⊆ A ⊆ A, we always have Pε [A◦] ≤ Pε [A] ≤ Pε
[
A
]
. Hence

lim sup
ε→0+

ε log (Pε [A]) ≤ lim inf
ε→0+

ε log (Pε [A])

so the limit exists and equals − infω∈A I (ω) as desired.

In particular, if Ω = Rn and I : Ω → [0,∞] is monotone increasing away from the origin, we have

Pε [Bt (0)
c
] ∼ exp

(
−1

ε
inf

ω∈Bt(0)
c
I (ω)

)
= exp

(
−1

ε
I (t)

)
.

Example 7.46. Let Z be a standard normal RV, i.e., Z ∼ N (0, 1). Then, we claim, the sequence of measures{
P√

εZ

}
ε>0

obeys an LDP with the rate function I (z) = 1
2z

2. To see this, first we note that clearly I : R → [0,∞]
is continuous so it is lower semicontinuous, and moreover,

I−1 ([0, t]) =
[
−
√
2t,

√
2t
]
∈ Compact (R) .
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So I is indeed a rate function. Moreover, let C ∈ Closed (R). Then

P√
εZ [C] ≡ P

[√
εZ ∈ C

]
= P

[
Z ∈ 1√

ε
C

]
=

∫
z∈R

χ 1√
ε
C (z)

1√
2π

exp

(
−1

2
z2
)
dλ (z)

=
1√
2πε

∫
z∈R

χC (z) exp

(
− 1

2ε
z2
)
dλ (z)

≤ 1√
2πε

∫
z∈R

χC (z) exp

(
− 1

2ε
inf
z∈C

z2
)
dλ (z)

=
exp

(
− 1

2ε infz∈C z
2
)

√
2πε

λ (C) .

Hence
lim sup
ε→0+

ε log (Pε [C]) ≤ −1

2
inf
z∈C

z2 = − inf
z∈C

I (z) .

Moreover, if U ∈ Open (R) and δ > 0, let zδ ∈ U be such that

I (zδ)− δ < inf
z∈U

I (z) .

We may choose some r > 0 such that Br (zδ) ⊆ U and I (Br (zδ)) ⊆ B2δ (infz∈U I (z)). Then,

P√
εZ [U ] =

1√
2πε

∫
z∈U

exp

(
− 1

2ε
z2
)
dλ (z)

≥ 1√
2πε

∫
z∈Br(zδ)

exp

(
−1

ε
inf
z∈U

I (z)− 1

ε
2δ

)
dλ (z)

=
2r√
2πε

exp

(
−1

ε
inf
z∈U

I (z)− 1

ε
2δ

)
.

Hence
lim inf
ε→0+

ε log (Pε [U ]) = − inf
z∈U

I (z)− 2δ .

Since δ > 0 was arbitrary we get the result.

Lemma 7.47 (Varadhan’s lemma). Let Pε satisfy the LDP with a rate function I. Then for any bounded continuous
random variable X : Ω → R

lim
ε→0+

ε log

(
Eε

[
exp

(
1

ε
X

)])
= sup
ω∈Ω

(X (ω)− I (ω)) .

Proof. Let M > 0. Note that I : Ω → [0,∞] is itself a random variable. Hence

Eε

[
exp

(
1

ε
X

)]
= Eε

[
exp

(
1

ε
X

)
χI≤M

]
+ Eε

[
exp

(
1

ε
X

)
χI>M

]
.

Since X is bounded, we get

Eε

[
exp

(
1

ε
X

)
χI>M

]
≤ exp

(
1

ε
∥X∥∞

)
Pε [I > M ] .

By the fact that Pε obeys an LDP, we have

Pε [I > M ] ≲ e−
1
εM .
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Hence we get

Eε

[
exp

(
1

ε
X

)
χI>M

]
≲ exp

(
−1

ε
(M − ∥X∥∞)

)
.

Eventually we shall take M → ∞ but for now all we need is that

M ≫ ∥X∥∞ + sup
ω∈Ω

(X (ω)− I (ω))

so that

lim
ε→0+

exp
(
− 1
ε (M − ∥X∥∞)

)
exp

(
− 1
ε (supω∈Ω (X (ω)− I (ω)))

) → 0 . (7.9)

Let us now study the other term. We prove first an upper bound. Let δ > 0. By assumption, KM := { I ≤M }
is compact, so X is uniformly continuous on it. As such, there exists some η > 0 such that if ω1, ω2 ∈ KM are such
that

|ω1 − ω2| < η

then
|X (ω1)−X (ω2)| < δ .

Since KM is compact, the open cover
{
B 1

2η
(ω)

}
ω∈KM

admits a finite sub-cover
{
B 1

2η
(ωj)

}
j=1,··· ,n

. The collection

{
Cj := B 1

2η
(ωj)

}
j=1,··· ,n

still covers KM (it is just bigger), each Cj is closed, and has diameter less than η, so obeys uniform continuity of X.
Then ∫

ω∈KM

exp

(
1

ε
X (ω)

)
dPε (ω) ≤

n∑
j=1

∫
ω∈Cj

exp

(
1

ε
X (ω)

)
dPε (ω)

≤
n∑
j=1

∫
ω∈Cj

exp

(
1

ε
(Xj + δ)

)
dPε (ω)

where Xj := infω∈Cj X (ω). Hence

lim sup
ε→0+

ε log

(∫
ω∈Ω

exp

(
1

ε
X (ω)

)
dPε (ω)

)
= lim sup

ε→0+
ε log

(∫
ω∈KM

exp

(
1

ε
X (ω)

)
dPε (ω)

)
(Using (7.9))

≤ sup
j∈{ 1,··· ,n }

(
Xj + δ − inf

ω∈Cj

I (ω)

)
≤ sup
j∈{ 1,··· ,n }

sup
ω∈Cj

(X (ω)− I (ω)) + δ

= sup
ω∈KM

(X (ω)− I (ω)) + δ .

≤ sup
ω∈Ω

(X (ω)− I (ω)) + δ .

Since δ > 0 was arbitrary, we are done.
For the lower bound, given some δ > 0, by the approximation property of the supremum, there is a point ω̃ ∈ KM

such that
X (ω̃)− I (ω̃) ≥ sup

ω∈KM

(X (ω)− I (ω))− δ

2
.
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By continuity of X, we may find a neighborhood U ⊆ KM of ω̃ such that X (ω) ≥ X (ω̃)− 1
2δ for all ω ∈ U . Then

lim inf
ε→0+

ε log

(∫
ω∈Ω

exp

(
1

ε
X (ω)

)
dPε (ω)

)
≥ lim inf

ε→0+
ε log

(∫
ω∈KM

exp

(
1

ε
X (ω)

)
dPε (ω)

)
≥ lim inf

ε→0+
ε log

(∫
ω∈U

exp

(
1

ε
X (ω)

)
dPε (ω)

)
≥ X (ω̃)− δ

2
− inf
ω∈U

I (ω)

≥ X (ω̃)− I (ω̃)− δ

2
≥ sup

ω∈KM

(X (ω)− I (ω))− δ .

Again, since δ > 0 and M are arbitrary, we are done.

We illustrate the utility of these notions by applying them to the sum of IID random variables which we saw before in the
CLT section, Corollary 7.36.

Example 7.48 (CLT Improvement via large deviations, Cramer’s theorem). Let {Xn }n be IID random variables
with mean µ and standard deviation σ > 0. Define

AN :=
1

N

N∑
n=1

Xn =: µ+
σ√
N
ZN .

We want to revisit Section 7.5.
We thus want to establish that the sequence of probability measures PAN

obeys an LDP with rate function
(Cramer’s function)

I (x) := sup
θ∈R

(
θx− log

(
E
[
eθX1

]))
(x ∈ R) ;

(recall that θ 7→ log
(
E
[
eθX1

])
=: κ (θ) is the cumulant generating function). The mapping

{θ 7→ κ (θ)} 7→
{
x 7→ sup

θ∈R
(θx− κ (θ))

}
is called a Legendre transform. The Legendre transform is always lower semicontinuous (prove this). For instance, for
standard normal,

κ (θ) = log
(
e

1
2 θ

2
)
=

1

2
θ2

and then
I (x) = sup

θ∈R

(
θx− 1

2
θ2
)

=
1

2
x2 .

Moreover, we have

I (x) ≥ sup
|θ|≤a

(θx− κ (θ))

≥ a |x| − sup
|θ|≤a

κ (θ) .

Presumably PX1
is sufficiently nice so that Ma := sup|θ|≤a κ (θ) is finite for some a > 0. If that is the case, then

I (x) ≥ t

for all |x| ≥ t+Ma

a so that { I ≤ t } is necessarily bounded. Since it is a closet subset of R it is compact, and that
makes I a rate function.

We now prove that PAN
obeys an LDP with Cramer’s rate function. For convenience, let us instead work with

the normalized
BN :=

AN − µ

σ
=

1√
N
ZN .
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Let now F ∈ Closed (R) and θ ∈ R. Then

P [BN ∈ F ] = P [BN = c ∃c ∈ F ]

≤ P [BN ≥ c ∃c ∈ F ]

= P
[
eNθBN ≥ eNθc for some c ∈ F

]
≤ e−NθcE

[
eNθBN

]
(Markov)

= e−NθceNκ(θ) = e−N(θc−κ(θ)) .

since this holds for every θ and every c ∈ F , we get

1

N
log (P [BN ∈ F ]) ≤ − sup

θ
inf
c∈F

(θc− κ (θ)) = − inf
c∈F

sup
θ

(θc− κ (θ)) = − inf
c∈F

I (c) .

TODO: complete the lower bound on open sets.
Now that we have the LDP for {AN }, we get an improvement of (7.6): Let us assume that for any t, [µ− tσ, µ+ tσ]

c

is such that (7.8) is obeyed. Then

lim
N→∞

1

N
log

(
P

[∣∣∣∣AN − µ

σ

∣∣∣∣ > t

])
= lim

N→∞

1

N
log (P [AN ∈ [µ− tσ, µ+ tσ]

c
])

= − inf
θ∈[µ−tσ,µ+tσ]c

I (θ) .

We note in passing that the LDP has also been established for Brownian motion, see [Sch66].

7.6 The Kolmogorov extension theorem [Biskup]
This is also known as the Kolmogorov existence theorem, the Kolmogorov consistency theorem or the Daniell-Kolmogorov
theorem. We follow mostly Folland and [Bis].

Let (Ω,Msrbl (Ω) ,P) be some probability space and A be any non-empty index set. Usually we suppose that for any
α ∈ A, we are given a random variable Xα : Ω → R. Now we are interested in the following “inverse” problem: given all
laws of all random variables, can we build a mutual probability space (Ω,Msrbl (Ω) ,P) where all Xα are random variables
on this mutual “sample space”?

Let us make this more precise: given the distributions PXα
for any α ∈ A (these are probability measures on R), can

we reconstruct (Ω,Msrbl (Ω) ,P), whose marginals are { PXα
}α∈A? This question is still too simplistic because sometimes

we may want to encode the dependence structure between the various random variables. So we should rather ask, the
following: For any n <∞ and any injective map

α : { 1, · · · , n } → A

we are given P(Xα1 ,··· ,Xαn)
as a probability measure on Rn. Can we then reconstruct (Ω,Msrbl (Ω) ,P) so that for any

such α, P(Xα1
,··· ,Xαn)

is indeed the marginal of P?
There is an obvious solution to this problem in the following special case: say that all variables are independent and

|A| <∞. Then we can take

Ω := R|A|, Msrbl (Ω) := B
(

R|A|
)
, P :=

∏
α∈A

PXα .

In principle this product structure is how we want to think of the underlying probability space for any sequence of random
variables, i.e., the random variables are the coordinate projections of Ω into each individual component:

Ω =
∏
α∈A

R , Xα := πα .

However, when A is infinite we must be careful with this construction since in principle we do not know how to make
sense of

∏
α∈A PXα

for infinite A.
Moreover, we want to emphasize that any reasonable probability space should obey the following so called Kolmogorov

“consistency” conditions for its marginals:

P(X1,X2) [B1 ×B2] = P(X2,X1) [B2 ×B1] (B1, B2 ∈ B (R))
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and in fact this should hold not just for two random variables but for any finite subcollection and any permutation within
that finite subcollection.

Moreover, if k < n,

P(X1,··· ,Xn)

[
B1 × · · · ×Bk × Rn−k

]
= P(X1,··· ,Xk) [B1 × · · ·Bk] (B1, · · · , Bk ∈ B (R)) .

This leads us to

Theorem 7.49 (Kolmogorov’s extension). Let A be an arbitrary nonempty set, and define

In (A) := { α : { 1, · · · , n } → A | α is injective } , I (A) :=

∞⊔
n=1

In (A)

and

Mn := { µ : B (Rn) → [0, 1] | µ is a probability measure } , M :=

∞⊔
n=1

Mn .

Assume that we are given a map
m : I (A) → M

such that for any α ∈ In (A),

1. m (α) ∈ Mn, i.e., m (α) is a probability measure on Rn.

2. For any π ∈ Sn the group of permutations,

m (α) (B1 × · · · ×Bn) = m (α ◦ π)
(
Bπ(1) × · · · ×Bπ(n)

)
(B1, · · · , Bn ∈ B (R)) .

3. For any k < n, let α|{ 1,··· ,k } ∈ Ik (A) be the restriction to the first k indices. Then

m (α)
(
B1 × · · · ×Bk × Rn−k

)
= m

(
α|{ 1,··· ,k }

)
(B1 × · · · ×Bk) (B1, · · · , Bk ∈ B (R)) .

Then there exists a unique probability space (Ω,Msrbl (Ω) ,P) which has a product structure Ω := (R ∪ {∞ })A so
that if πj : Ω → R is the projection to the jth coordinate, then for all α ∈ In (A) and { α1, · · · , αn } = im (α), then
m (α) = P(πα1

,··· ,παn)
. Moreover, the measure P is Radon in the sense of Definition 2.79.

Proof. The theorem may be proven either using the Kakutani-Markov-Riesz representation Theorem 2.84 or Caratheodory’s
extension Theorem 2.76. We shall use the latter approach as it is more elementary (see Folland for the former). Let
us define

Ω := RA ≡ { f : A→ R } .

This set is represented with a product structure so it is furnished with a natural σ-algebra, the product σ-algebra
Definition 5.1:

⊗α∈AB (R) ≡ σ
({
π−1
α (Eα)

∣∣ Eα ∈ B (R) ∧ α ∈ A
})

= σ

({ ∏
α∈A

Eα

∣∣∣∣∣ Eα ∈ B (R)∀α ∈ A ∧ Eα ̸= R for at most finitely-many α’s

})
.

It will also be useful to set, for S ⊆ A finite,

FS := σ

({ ∏
α∈A

Eα

∣∣∣∣∣ Eα ∈ B (R)∀α ∈ A ∧ Eα ̸= R onlyfor α ∈ S

})
.

Let
A :=

⋃
S⊆A finite

FS .
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We claim that A is an algebra on Ω. Moreover, let us define a map

ρ : A → [0, 1] .

To do so, for S ⊆ A finite, let πS : Ω → RS by the projection onto the S coordinates. given E ∈ A, there is some
S ⊆ A finite with n := |S|, so that E ∈ FS . Since E ∈ FS , really E only has n non-trivial factors and the rest are
factors of R, so it is “encoded” by πS (E) just as well. Let α ∈ In (A) be so that im (α) = S. Then we set

ρ (E) := m (α) (πS (E)) .

This map is well-defined (independent of the choices of S ⊆ A and α ∈ In (A)) by the consistency conditions we
stipulate on m. We claim that ρ is a premeasure on A. Then by Theorem 2.76, there is a unique measure, extending
ρ on A onto P := µφρ

on σ (A) = ⊗α∈AB (R). The marginals agree by construction.
To obtain regularity we need to associated the measure P with a measure on an extension onto (R ∪ {∞ })A where

R ∪ {∞ } is the one-point compactification, so that by Tychonoff, (R ∪ {∞ })A is a compact Hausdorff space. The
difference between the original P and the extension to (R ∪ {∞ })A is not meaningful is we set (R ∪ {∞ })n \ Rn to
have measure zero for all n. Then the regularity theorems we have imply that the extension is a Radon measure.

Corollary 7.50 (Simple random walk stochastic process). We now know that the simple random walk exist. Let µ0

be any a-priori measure on B (R). Then we construct a measure P on Ω := RN as the joint probability distribution of
the sequence of projection maps Xn : RN → R which are independent and identically distributed according to µ0, i.e.,

P(Xj1 ,··· ,Xjn)
=

n∏
k=1

µ0 (j1, · · · , jn ∈ N) .

Then the simple random walk is SN :=
∑N
n=1Xn. The simplest model is µ0 = 1

2 (δ−1 + δ1) (i.e. symmetric Bernoulli
RVs). One may think of N as the time variable of a particle proceeding according to a (discrete) diffusion equation.
One may verify the consistency conditions of this definition holds.

Corollary 7.51 (White noise stochastic process). Let D := C∞
c (R) be the set of compactly supported smooth “test

functions” R → R. We shall take our index set A = D. Then we take Ω := RD and for any finite sub-collection
φ1, · · · , φn ∈ D, define the marginal P(W (φ1),··· ,W (φn)) to be given by the density

dP(W (φ1),··· ,W (φn))

dλ
(x) =

1

(2π)
n
2
√
det (K)

exp

(
−1

2

〈
x,K−1x

〉
Rn

)
(x ∈ Rn) ; Kij := ⟨φi, φj⟩L2(Rn) .

One may verify the consistency conditions for this definition hold. Then “white noise” is the resulting stochastic
process {W (φ) : Ω → R }φ∈D which is the coordinate projections (here our coordinates are φ ∈ D), i.e.,

(W (φ)) (ω) ≡ ω (φ) (ω : D → R ∈ Ω) .

Even though we would like to really take D as the set of delta functions, i.e., {W (t) }t∈R are independent Gaussians
with

dP(W (t1),··· ,W (tn))

dλ
(x) =

1

(2π)
n
2
exp

(
−1

2
⟨x,1nx⟩Rn

)
(x ∈ Rn)

the resulting process R ∋ t 7→W (t) ∈ R (a random function) is not “regular” in any kind of sense. In fact it turns out
we cannot even prove it is measurable, let alone continuous anywhere. For this reason we work with the dual object
D ∋ φ 7→W (φ) ∈ R.
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Corollary 7.52 (Brownian motion). Let A := [0,∞) be the indexing set, Ω := RA, and define a stochastic process
{Bt : Ω → R }t∈A via the finite marginals, for 0 ≤ t1 < · · · < tn, P(Bt1

,··· ,Btn)
given by the density

dP(Bt1 ,··· ,Btn)

dλ
(x) =

1

(2π)
n
2
√
det (K)

exp

(
−1

2

〈
x,K−1x

〉
Rn

)
(x ∈ Rn) ; Kij := min ({ ti, tj }) .

Note in particular this implies
PX0

= δ0 ,

i.e., X0 = 0 almost-surely. One may verify the consistency conditions for this definition hold. In fact, one may prove
(eventually) that almost-surely, the (random) map t 7→ Xt is continuous (Kolmogorov–Chentsov continuity theorem),
but nowhere differentiable. Another way to characterize white noise from above is

Wt ≈ ∂tXt

which explains why Wt is “not a function”.

Corollary 7.53 (Brownian bridge). Let T > 0 and A := [0, T ]. We want to build Brownian motion which is
conditioned such that BT = 0 also. One way to achieve that

Bbridge
t := Bt −

t

T
BT

where {Bt }t∈[0,T ] is standard Brownian motion (as above) which is merely conditioned to have B0 = 0. Another way
to achieve this is via the joint density

dP(Bbridge
t1

,··· ,Bbridge
tn )

dλ
(x) =

1

(2π)
n
2
√

det (K)
exp

(
−1

2

〈
x,K−1x

〉
Rn

)
(x ∈ Rn) ; Kij := min ({ ti, tj })−

titj
T

.

Corollary 7.54 (Pinned Brownian motion). What is we wanted a skewed Brownian bridge which starts at some x
and ends at some y? Then we could take

Bpinned
t := x+ (y − x)

t

T
+Bt −

t

T
BT

where {Bt }t∈[0,T ] is the usual Brownian motion which only has B0 = 0 almost-surely. Alternatively, we could specify
the joint density

dP(Bpinned
t1

,··· ,Bpinned
tn )

dλ
(x) =

1

(2π)
n
2
√
det (K)

exp

(
−1

2

〈
(x− µ) ,K−1 (x− µ)

〉
Rn

)
(x ∈ Rn)

where Kij := min ({ ti, tj })− titj
T and µi := x+ ti

T (y − x).

7.7 The Wiener measure [Simon functional integration] [extra]
Here we follow, for the most part, [Sim04].

We have already seen the “existence” of the Wiener measure as the measure in Corollary 7.52. We would like to
establish some properties of it.

7.7.1 Scaling law
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Theorem 7.55. Let {Bt }t≥0 be the usual Brownian motion (which only has the B0 = 0 conditioning). Then for
any c > 0,

Bt
d
=

√
cB t

c
.

The equivalence in distribution is meant in the sense that for any 0 ≤ t1 < · · · < tn,

P(Bt1
,··· ,Btn)

= P(√
cB t1

c

,··· ,
√
cB tn

c

) .

Proof. Calculate the density function for any finite sample vector of Brownian vector and conclude by uniqueness of
Kolmogorov extension. Let S ∈ B (Rn). Then

P(√
cB t1

c

,··· ,
√
cB tn

c

) [S] ≡ P
[(√

cB t1
c
, · · · ,

√
cB tn

c

)
∈ S

]
= P

[(
B t1

c
, · · · , B tn

c

)
∈ 1√

c
S

]
= P(

B t1
c

,··· ,B tn
c

) [ 1√
c
S

]
.

Now,

dP(
B t1

c

,··· ,B tn
c

)
dλ

(x) ≡ 1

(2π)
n
2

√
det
(
1
cK
) exp(−1

2

〈
x, cK−1x

〉
Rn

)
(x ∈ Rn) ; Kij := min ({ ti, tj }) .

Hence

P(
B t1

c

,··· ,B tn
c

) [ 1√
c
S

]
=

∫
x∈ 1√

c
S

dP(
B t1

c

,··· ,B tn
c

)
dλ

(x) dλ (x)

=

∫
x∈ 1√

c
S

1

(2π)
n
2

√
det
(
1
cK
) exp(−1

2

〈
x, cK−1x

〉
Rn

)
dλ (x)

y:=
√
cx

=

∫
y∈S

1

(2π)
n
2 c−

n
2

√
det (K)

exp

(
−1

2

〈
y,K−1y

〉
Rn

)
c−

n
2 dλ (y)

= P(Bt1
,··· ,Btn)

[S] .

7.7.2 The Markov property

Definition 7.56 (Filtration). Let (Ω,A,P) be a probability space. For every t ≥ 0, let Ft be a sub-σ-algebra of A.
Then (Ft)t≥0 is a filtration, iff

Fs ⊆ Ft (s ≤ t) .

Then (Ω,A,P,F) is called a filtered probability space.

Definition 7.57 (Markov property). Let (Ω,A,P,F) be a filtered probability space and (Xt)t≥0 be a stochastic
process. Then (Xt)t is said to have the Markov property iff

E [f (Xt) |Fs] = E [f (Xt) |σ (Xs)] (s < t, f : Ω → R bounded and msrbl) .

I.e., if the conditional expectation w.r.t. the entire past is the same as the conditional expectation w.r.t. the last
point in the past.
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Definition 7.58 (Stopping time). Let (Ω,A,P,F) be a filtered probability space and τ : Ω → R be a random variable.
Then τ is called a stopping time w.r.t. F iff

{ τ ≤ t } ∈ Ft .

In words, that means that the set { τ ≤ t } is “determined” only by everything that happened until time t.

Definition 7.59 (Strong Markov property). Let (Ω,A,P,F) be a filtered probability space and (Xt)t≥0 be a stochastic
process. Then (Xt)t is said to have the strong Markov property iff for any stopping time τ , conditioned on { τ <∞},
Xτ+t is independent of Fτ given Xτ .

Remark 7.60. Let Ω = R[0,∞) be the sample space for Brownian motion taken with the product σ-algebra from the
Borel σ-algebra on each copy of R. For Brownian motion (Bt)t≥0, a natural filtration is given by

Ft := σ ({Bs | s ∈ [0, t] }) .

Claim 7.61. Brownian motion (Bt)t≥0 obeys the Markov property.

Proof. By definition, we have that Bt −Bs is independent of Fs and Bt −Bs ∼ N (0, t− s). For t > s, write

Bt := Bs +X

with X := Bt −Bs. We note X is independent of Fs. Then

E [f (Bt) |Fs] = E [f (Bs +X) |Fs]
= E [f (Bs +X) |σ (Bs)]

=

∫
y∈R

f (Bs + y)
e−

y2

2(t−s)√
2π (t− s)

dy

=: φ (Bs) .

Hence E [f (Bt) |Fs] is σ (Bs)-measurable so that

E [f (Bt) |Fs] = E [f (Bt) |σ (Bs)] .

Claim 7.62. Brownian motion (Bt)t≥0 obeys the strong Markov property.

Proof. Let τ be a stopping time. Our goal is to show that within the event { τ <∞}, (Bτ+t −Bτ )t≥0 is standard
Brownian motion which is independent of Fτ . To that end, let

τn := 2−n ⌈2nτ⌉ ≥ τ (n ∈ N) .

Then τn → τ from above, and each τn is itself a stopping time. TODO: complete this.

7.7.3 Donsker’s theorem

Another way to think about Brownian motion is as follows. Let {Xn }n∈N be an IID sequence of Bernoulli ±1 random
variables, each with Bernoulli parameter 1

2 . Then
∑N
n=1Xn is a random walk up to time N ∈ N. As we have seen, using

the central limit Theorem 7.35,
1√
N

N∑
n=1

Xn → Z
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in distribution, where Z ∼ N (0, 1). What about the process {Bt }t∈[0,1] defined via

Bt :=
√
t lim
N→∞

1√
tN

⌊tN⌋∑
n=1

Xn

By the central limit Theorem 7.35, we only have B1 → N (0, 1) in distribution. But what about other t ∈ [0, 1]? It turns
out Bt converges, in distribution, to the same Brownian motion we have already seen (we shall not prove this fact here
but this statement is known as Donsker’s theorem).

7.7.4 Continuity of Brownian motion

As constructed so far, Brownian motion Bt is an arbitrary function, it need not even be measurable. Here we want to
establish that it is almost-surely continuous. By definition, given 0 ≤ t < s, the joint distribution of Bt and Bs is ac and
is given by the density

dP(Bt,Bs)

dλ
(x) =

1

(2π)
n
2
√
det (K)

exp

(
−1

2

〈
x,K−1x

〉
R2

)

where K :=

[
t t
t s

]
so K−1 = 1

s−t

[
s
t −1
−1 1

]
. We can thus calculate

E
[
(Bt −Bs)

2m
]

=

∫
x∈R2

(x1 − x2)
2m 1

2π

1√
t (s− t)

exp

(
−1

2

〈[
x1
x2

]
,K−1

[
x1
x2

]〉
R2

)
dλ (x)

=

∫
x∈R2

(x1 − x2)
2m 1

2π

1√
t (s− t)

exp

(
−1

2

(
sx21 − 2tx1x2 + tx22

t (s− t)

))
dλ (x)

=

∫
x∈R2

(x1 − x2)
2m 1

2π

1√
t (s− t)

exp

(
−1

2

(
(s− t)x21 + t (x1 − x2)

2

t (s− t)

))
dλ (x)

=

∫
x∈R2

(x1 − x2)
2m 1

2π

1√
t (s− t)

exp

(
−1

2

(
x21
t

+
(x1 − x2)

2

s− t

))
dλ (x)

=
1

2π

1√
t (s− t)

∫
y∈R2

y2m2 exp

(
−1

2

(
y21
t

+
y22
s− t

))
dλ (y)

=
1√
2π

1√
s− t

∫
y2∈R

y2m2 exp

(
−1

2

y22
s− t

)
dλ (y)

= 2m
(
1 + (−1)

2m
)
(s− t)

m
Γ

(
1

2
+m

)
.

In particular, for m = 2 we get

E
[
(Bt −Bs)

4
]
=

1

2
(s− t)

2
(0 ≤ t < s) .

Theorem 7.63 (Kolmogorov continuity). Let (S, d) be a complete separable metric space and X : [0,∞)×Ω → S be
a stochastic process. Assume that for all T > 0, there are some α, β,K positive constants such that

E [d (Xt, Xs)
α
] ≤ K |t− s|β+1

(0 ≤ s, t ≤ T ) .

Then there exists a modification X̃ of X which is a continuous process, i..e, X̃ : [0,∞)× Ω → S such that:

1. For any t ≥ 0, P
[
Xt = X̃t

]
= 1.

2. P
[
t 7→ X̃t is continuous

]
= 1.

3. In fact, P
[
t 7→ X̃t is locally γ-Hölder continuous for every 0 < γ < β

α

]
= 1.
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Proof. Pick some γ ∈
(
0, βα

)
. Then 1 + β − αγ =: δ > 1. For any m ∈ N, partition [0, T ] into 2m equal subintervals

of length ∆m := T2−m. The grid points are tm,k := k∆m with k = 0, · · · , 2m. A “bad” event is when we violate the
Hoelder continuity we are seeking, i.e.,

Am :=
{
∃k = 1, · · · , 2m :

∣∣Xtm,k
−Xtm,k−1

∣∣ > 2−mγ
}
.

We bound the probability of Am via Markov’s inequality:

P [Am] ≤
2m∑
k=1

P
[∣∣Xtm,k

−Xtm,k−1

∣∣ > 2−mγ
]

≤
2m∑
k=1

E [|Xtm,k −Xtm,k−1|α]
2−mαγ

≤ 2m
K∆1+β

m

2−mαγ
= KT 1+β2−mδ .

Since δ > 1, this is finite. Applying now Lemma 7.22, we get that almost-surely, only finitely many of the Am’s may
occur. Hence, there is a (random) M (ω) such that for all m ≥M (ω), and all k,

|Xtm,k −Xtm,k−1| ≤ 2−mγ .

Now, if s < t on the m-grid, i.e., t− s = J∆m for some J ∈ N, then

|Xt −Xs| ≤
J∑
i=1

|Xtm,i −Xtm,i−1| ≤ J2−mγ =
t− s

∆m
2−mγ = T−γ (t− s)

γ
.

But the dyadic grid for all m is dense in [0, T ], and the grid-paths are uniformly Hölder continuous for all m ≥M (ω),
Xt (ω) admits a unique continuous extension to all of t:

X̃t := lim
m→∞

Xtm

where tm is a sequence which converges to t.

7.7.5 The Feynman-Kac formula

TODO: complete this.
Let V : R → R be some sufficiently nice function. We want to prove the identity

(exp (−t (−∆+ V (X)))ψ0) (x) = E

[
ψ0 (x+Bt) exp

(
−
∫ t

0

V (x+Bs) ds

)] (
ψ0 ∈ L2 (R) , t > 0

)
.

To do so, we can use the Trotter product formula to build the path integral out of small increments. Another possibility
is to use the fat that the heat kernel is the unique solution to the heat equation, so if

uψ0
(t, x) := E

[
ψ0 (x+Bt) exp

(
−
∫ t

0

V (x+Bs) ds

)]
(t ≥ 0, x ∈ R) .

then we should show
∂tuψ0

= −Huψ0

for H = −∆+ V (X). Clearly uψ0
obeys the initial condition, since

uψ0 (0, ·) = E [ψ0 (·+B0)] = ψ0 .

Hence let us calculate ∂tuψ0 . We note that because Brownian motion has independent increments and is conditioned to
start at the origin at time zero, we actually have

Bt+ε
d
= Bt + B̃ε (t ≥ 0, ε > 0)
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where
(
B̃t

)
t

is another independent copy of Brownian motion. Moreover,∫ t+ε

0

V (x+Bs) ds =

∫ t

0

V (x+Bs) ds+

∫ t+ε

t

V (x+Bs) ds

=

∫ t

0

V (x+Bs) ds+

∫ ε

0

V (x+Bt+s) ds

=

∫ t

0

V (x+Bs) ds+

∫ ε

0

V
(
x+Bt + B̃s

)
ds

As a result, we may separate the expectation to expectation w.r.t. B and w.r.t. B̃. Using Fubini we then have

EB

[
ψ0 (x+Bt+ε) exp

(
−
∫ t+ε

0

V (x+Bs) ds

)]
= EB̃

[
EB

[
ψ0

(
x+Bε + B̃t

)
exp

(
−
∫ ε

0

V (x+Bs) ds+

∫ t

0

V
(
x+Bε + B̃s

)
ds

)]]
= EB

[
uψ0

(ε, x+Bt) exp

(
−
∫ ε

0

V (x+Bs) ds

)]
.

Now, for infinitesimal times,

uψ0
(ε, x) ≡ E

[
ψ0 (x+Bε) exp

(
−
∫ ε

0

V (x+Bs) ds

)]
and

exp

(
−
∫ ε

0

V (x+Bs) ds

)
= 1−

∫ ε

0

V (x+Bs) ds+O
(
ε2
)
.

Moreover,
E [ψ0 (x+Bε)] = E [ψ0 (x+Bε)]

7.7.6 The Karhunen–Loève expansion

Derive a spectral expansion of the random stochastic process of the form

Xt =

∞∑
k=1

Zkφk (t)

where { Zk }k are pairwise uncorrelated random variables and φk are continuous real-valued functions on [a, b] that are
pairwise orthogonal in L2 ([a, b]) and are the eigenfunctions of the covariance matrix of the process Xt.

7.8 Conditional expectation and probability [extra]
Let (Ω,F,P) be a probability space and X : Ω → R be a random variable (i.e., it is F-measurable). Let G ⊆ F be a
sub-σ-algebra. In general there is no guarantee that X is G-measurable!

Example 7.64. Let Ω := R, F := B (R) and P be the standard normal Gaussian distribution. Then X : Ω → R is
given by X (ω) = ω and hence X ∼ N (0, 1). Clearly, |X| is also a random variable (it is also a measurable function)
and now we let

G := σ (|X|) .

One may see that G consists of all Borel subsets of R which are symmetric w.r.t. x 7→ −x. We claim that X
is not G-measurable. Indeed, take (0,∞) ∈ B (R). Then X−1 ((0,∞)) should be in G, but since X (ω) = ω,
X−1 ((0,∞)) = (0,∞) /∈ G! So X is not G-measurable.

The conditional expectation “solves” this problem by introduction a new random variable,

E [X|G] : Ω → R (this is merely a matter of conventional notation)

which is constructed to be G-measurable so that for all G ∈ G,

E [E [X|G]χG] = E [XχG] (G ∈ G) .

↕∫
G

E [X|G] dP =

∫
G

XdP (G ∈ G) .
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To see that such E [X|G] exits, let ι : G → F be the natural injection. Then

F ∋ F 7→ E [XχF ] =: µX (F )

defines a finite measure on (Ω,F) which is absolutely continuous w.r.t. P (do not confuse it with the marginal PX , which
equals P ◦X−1 and is a measure on B (R)). Moreover, µX ◦ ι is absolutely continuous w.r.t. P ◦ ι. We then define

E [X|G] :=
dµX ◦ ι
dP ◦ ι

.

This is automatically a random variable E [X|G] : Ω → R which is G-measurable and L1 (P ◦ ι). Moreover, we have for all
G ∈ G,

E [E [X|G]χG] =

∫
G

E [X|G] dP ≡
∫
G

E [X|G] dP ◦ ι =
∫
G

dµX ◦ ι
dP ◦ ι

dP ◦ ι =
∫
G

dµX ◦ ι =
∫
G

dµX ≡ E [XχG] .

Definition 7.65 (Conditional expectation w.r.t. a sub-σ-algebra). The G-measurable random variable E [X|G] :
Ω → R is called “the conditional expectation of X given the σ-sub-algebra G”.

Claim 7.66 (Uniqueness). Note that once we find any RV which is the conditional expectation it is (almost-surely)
unique.

Proof. Let Z be any other G-measurable random variable such that E [ZχG] = E [XχG] for all G ∈ G. Our goal is
to show that Z = E [X|G] almost-surely. Assume that

P [Z ̸= E [X|G]] > 0 .

Then either

P [Z > E [X|G]] + P [Z < E [X|G]] > 0 .

Consider D := Z > E [X|G]. It is G-measurable since both variables are. Hence, by hypothesis,

E [ZχD] = E [E [X|G]χD]

↓
E [ZχD]− E [E [X|G]χD] = 0

↓
E [(Z − E [X|G])χD] = 0

↓
P [D] = 0

the last step being true since on D, (Z − E [X|G]) > 0 by definition. Similarly we can show that the other set has
zero probability.

As a result, any way we have to calculate the conditional expectation works.

Remark 7.67 (Functional analytic perspective). Since G ⊆ F, one may think of

L2 (Ω,G,P)

as a Hilbert subspace of L2 (Ω,F,P) naturally by considering maps which are G-measurable as a subset of those which
are F-measurable. Now, if X ∈ L2 (Ω,F,P) then E [X|G] is the projection of X onto the closed subspace L2 (Ω,G,P).

We also find it useful to have the

Definition 7.68 (Conditional expectation w.r.t. another random variable). Given a random variable Y : Ω → R, a
sub-σ-algebra of F is the smallest one generated by Y , σ (Y ). Then

E [X|Y ] := E [X|σ (Y )] .
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Once we have the conditional expectation, the conditional probability is merely a special case:

P [A|G] ≡ E [χA|G] (A ∈ F) .

Hence the conditional probability is still a random variable.

Example 7.69. Going back to Example 7.64, one may verify

E [X|G] =
1

2
(X +X (−·)) = 0 .

So this example is not very interesting. If instead we take

G := σ (sgn (X)) = {∅,R, [0,∞) , (−∞, 0) }

then X is again not G-measurable, since, X−1 ({ 1 }) = { 1 } /∈ G. Now however we may verify that

E [X|G] =

√
2

π
sgn (X) .

Remark 7.70. One should not confuse P [A|G] with the more naive conditional probability (7.2) given above,

P [A|G] ≡ P [A ∩G]
P [G]

(A,G ∈ F : P [G] > 0) .

There is. however, a connection between the two: If G ∈ G

P [A|G]P [G] =

∫
G

χAdP =

∫
G

P [A|G] dP .

Example 7.71. One should think of E [X|G] as averaging over only the information NOT contained in G. Thus, the
notation is actually confusing, as

E [X|F] = X

whereas if G = {∅,Ω },
E [X|G] = E [X] .

Example 7.72 (Marginals forget, conditionals refine). Contrast the notion of conditional expectation with marginals.
Say we have two random variables X,Y : Ω → R. Then PX integrates “out” the information of Y , whereas E [X|Y ]
integrates out all information of X which does not depend on Y . To see this more clearly, let us consider the following
concrete example: Let Ω = R2 and (X,Y ) be a two dimensional Gaussian whose density is given so that E [X] = µX ,
E [Y ] = µY , Var [X] = σ2

X , Var [Y ] = σ2
Y and Cov [X,Y ] =: σXσY > 0 for some ρ > 0. Then we may calculate

the marginal PX which has one dimensional Gaussian density with E [X] = µX and Var [X] = σ2
X . However, the

conditional expectation is given by

E [X|Y ] = µX + ρ
σX
σY

(Y − µY ) .

We have
E [E [X|Y ]] = E [X] .

Claim 7.73 (Linearity). E [αX + βY |G] = αE [X|G] + βE [Y |G].

Claim 7.74 (Iterated property). Let H ⊆ G ⊆ F. Then

E [E [X|G] |H] = E [X|H] .

Claim 7.75 (Pull out). If Y is G-measurable and X is not, then

E [XY |G] = E [X|G]Y .
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Claim 7.76 (Law of total variance).

Var [X] = E [Var [X|G]] + Var [E [X|G]] .

Claim 7.77. If X is independent of G (i.e., if X is independent of χG for any G ∈ G) then E [X|G] = E [X].

Claim 7.78. If X happens to be G-measurable, then E [X|G] = X.

Most of the theorems for the Lebesgue integral hold for the conditional expectation, as one may verify: positivity,
monotonicity, Jensen, etc.
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A The extended real line
We shall frequently use the symbol [−∞,∞] or R to denote the extended real line. As a set it is given by

R := R ∪ { ±∞ }

and topologically we add the neighborhoods of ±∞ as those sets which contain the basic open sets

(a,∞]

and
[−∞, a)

respectively.

B Elementary families

Definition B.1 (elementary family). Let X be a non-empty set. An elementary family E is a subset E ⊆ P (X) such
that

• ∅ ∈ E.

• (closed under intersection) If E,F ∈ E then E ∩ F ∈ E.

• If E ∈ E then X \ E is a finite disjoint union of members of E.

Claim B.2. If E is an elementary family then the collection A of finite disjoint unions of members of E is an algebra,
i.e., it contains X, it is closed under complements, and it is closed under finite unions.

Proof. Since ∅ ∈ E, then X is a finite disjoint union of members of E, and so it is in A as desired.
Next, assume that A ∈ A. We want to show that X \ A ∈ A. We know that A =

⋃n
j=1Aj where Aj ∈ E and

Aj ∩Ak = ∅ if j ̸= k. Hence

Ac =

 n⋃
j=1

Aj

c

=

n⋂
j=1

Acj .

But since Aj ∈ E, its complement is by assumption equal to
⋃nj

l=1Bj,l with Bj,l ∩ Bj,l′ = ∅ for l ̸= l′ and Bj,l ∈ E.
Hence

Ac =

n⋂
j=1

(
nj⋃
l=1

Bj,l

)
=

⋃
l

B1,l1 ∩ · · · ∩Bn,ln

so Ac is also the finite union of disjoint members of E.
Next, we want to establish that A is closed under finite unions. To that end, let A,B ∈ A. Then

A ∪B = (A \B) ∪B = (A ∩Bc) ∪B

now if

A =

n⋃
j=1

Aj

where Aj ∩Aj′ = ∅ for j ̸= j′ and Aj ∈ E and similarly,

B =

m⋃
j=1

Bj .
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Then clearly (A ∩Bc) ∪B is a finite disjoint union of elements from E.

C Banach spaces

Definition C.1 (Norm). A vector space V is called a normed vector space iff there is a map

∥·∥ : V → [0,∞)

which obeys the following axioms:

1. Absolute homogeneity:
∥αψ∥ = |α| ∥ψ∥ (α ∈ C, ψ ∈ V ) .

2. Triangle inequality:
∥ψ + φ∥ ≤ ∥ψ∥+ ∥φ∥ (ψ,φ ∈ V ) .

3. Injectivity at zero: If ∥ψ∥ = 0 for some ψ ∈ V then ψ = 0.

Example C.2. Of course the first example of a normed vector space is simply Cn, with the Euclidean norm:

Cn ∋ z 7→ ∥z∥ ≡

√√√√ n∑
j=1

|zj |2 .

To show this is a norm we only need to establish the triangle inequality (the other two properties being easy). To
that end, From the Cauchy-Schwarz inequality:

|⟨z, w⟩Cn | ≤ ∥z∥∥w∥

we get

∥z + w∥2 ≡ ⟨z + w, z + w⟩
= ∥z∥2 + ∥w∥2 + 2Re {⟨z, w⟩}
≤ ∥z∥2 + ∥w∥2 + 2 |⟨z, w⟩|

C.S.
≤ ∥z∥2 + ∥w∥2 + 2∥z∥∥w∥
= (∥z∥+ ∥w∥)2 .

Hence we merely need to show the Cauchy-Schwarz inequality. To that end, if w = 0 there is nothing to prove. So
define

z̃ := z − ⟨z, w⟩
∥w∥2

w .

By construction, ⟨z̃, w⟩ = 0 so

∥z∥2 =

∥∥∥∥∥z̃ + ⟨z, w⟩
∥w∥2

w

∥∥∥∥∥
2

= ∥z̃∥2 + |⟨z, w⟩|2

∥w∥4
∥w∥2 ≥ |⟨z, w⟩|2

∥w∥4
∥w∥2 .

Remark C.3. Be careful that in the foregoing example we have used the inner-product structure of Cn, but more
generally, a norm need not be associated with an inner product.
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Definition C.4 (Inner product space). An inner-product space is a vector space H along with a sesquilinear map

⟨·, ·⟩ : H×H → C

such that

1. Conjugate symmetry:
⟨ψ,φ⟩ = ⟨φ,ψ⟩ (φ,ψ ∈ H) .

2. Linearity in second argument:

⟨ψ, αφ+ φ̃⟩ = α ⟨ψ,φ⟩+ ⟨ψ, φ̃⟩ (φ, φ̃, ψ ∈ H, α ∈ C) .

3. Positive-definite:
⟨ψ,ψ⟩ > 0 (ψ ∈ H \ { 0 }) .

Example C.5. Of course Cn with

⟨z, w⟩Cn ≡
n∑
j=1

zjwj

is an inner-product space.

To every inner product one immediately may associate a norm, via

∥ψ∥ :=
√

⟨ψ,ψ⟩ (ψ ∈ H) .

The converse, however, hinges on the norm obeying the parallelogram law

Claim C.6. If a norm satisfies the parallelogram law:

∥ψ + φ∥2 + ∥ψ − φ∥2 ≤ 2∥ψ∥2 + 2∥φ∥2 (φ,ψ ∈ H)

then
⟨ψ,φ⟩ := 1

4

[
∥ψ + φ∥2 − ∥ψ − φ∥2 + i∥iψ − φ∥2 − i∥iψ + φ∥2

]
defines an inner product whose associated norm is ∥·∥ ≡

√
⟨·, ·⟩. Conversely if the parallelogram law is violated then

no inner-product may be defined compatible with that norm.

Proof. Left as an exercise to the reader.

Example C.7 (Normed vector space which is not an inner product space). Consider the space Cn, but now with the
L1 norm

∥z∥1 :=

n∑
j=1

|zj | .

Convince yourself that it is indeed a norm, and furthermore, that it violates the parallelogram law and hence cannot
be associated with any inner product.

Another example we will see later is that the space of bounded linear operators on a Hilbert space is a normed vector
space which is not an inner-product space.

We will continue with inner product spaces a little later, but for now we focus on normed vector spaces.
To any norm ∥·∥ a metric is associated via

d : V 2 → [0,∞)

(ψ,φ) 7→ ∥ψ − φ∥ .

Hence every normed vector space is also a metric space automatically. Recall that a metric space is termed complete if
every Cauchy sequence on it converges.
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Definition C.8 (Banach space). If a normed vector space (V, ∥·∥) is complete when regarded as a metric space, then
we refer to it as a Banach space.

Example C.9. It is clear that Cn as a TVS is also a Banach space with the Euclidean norm.

Example C.10 (Counter-example). Let X := { f : [0, 1] → C | f is continuous }. On X define pointwise addition
and multiplication, which makes it into a VS. We furthermore define on it the L2-norm

∥f∥2 :=

√∫
t∈[0,1]

|f (t)|2 dt .

One shows that on X, ∥·∥2 is indeed a norm. However, one may find Cauchy-sequences in X which converge to
discontinuous functions (i.e. do not converge in X) and thus X is incomplete. Contrast this with (X, ∥·∥∞) which is
a Banach space.

Here is an L2-Cauchy sequence of continuous functions converging to a discontinuous function:

fn (t) := χ[ 12+2−n,1] (t) + χ[ 12−2−n, 12+2−n] (t)

(
2n−1t− 2n−2 +

1

2

)
(t ∈ [0, 1] , n ∈ N) .

One shows that

∥fn − fm∥2 ≤ 2−n (m ≥ n)

and the sequence is hence Cauchy. But alsom,
∥∥∥χ[ 12 ,1] − fn

∥∥∥
2
→ 0 and χ[ 12 ,1] /∈ X.

Definition C.11 (Dense subsets). If (V, ∥·∥) is a Banach space and S ⊆ V then we say S is dense in V iff for any
ψ ∈ V and any ε > 0 there exists some φ ∈ S such that

d (ψ,φ) < ε .

This definition agrees with the topological one (S is dense iff S = V ).

Definition C.12 (Separable spaces). If (V, ∥·∥) is a Banach space which contains a countable, dense subset then V
is called separable.

C.1 The operator norm
Given any two Banach spaces X,Y , we may consider a continuous linear map

A : X → Y .

Such maps are automatically bounded: If A is continuous then A maps bounded sets of X to bounded sets of Y . We
rephrase this as saying: If A : X → Y is continuous, then

A (Br (0X)) ⊆ BM (0Y ) .

In other words,

sup
∥x∥X≤r

∥Ax∥Y < ∞ .

An extremely useful notion in this regard for continuous linear maps is that of the

Definition C.13 (The operator norm). Given a linear map A : X → Y between Banach spaces, we define its operator
norm as

∥A∥B(X→Y ) := sup ({ ∥Ax∥Y | x ∈ X : ∥x∥ ≤ 1 })

and B (X → Y ) as the space of all bounded linear maps. I.e., the operator norm gives us the maximal scaling of the
unit ball in the domain.
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Claim C.14. The “operator norm” is indeed a norm.

Proof. Absolute homogeneity is clear. Now if ∥A∥B(X→Y ) = 0 then ∥Ax∥Y = 0 for all ∥x∥ ≤ 1, which implies that
Ax = 0 for all x, and hence A = 0. Finally, the triangle inequality follows by that of ∥·∥Y :

∥(A+B)x∥Y ≤ ∥Ax∥Y + ∥Bx∥Y (∥x∥ ≤ 1) .

Take now the supremum over ∥x∥ ≤ 1 of both sides to obtain

sup
∥x∥≤1

∥(A+B)x∥Y ≤ sup
∥x∥≤1

[∥Ax∥Y + ∥Bx∥Y ]

≤

(
sup

∥x∥≤1

∥Ax∥Y

)
+ sup

∥x∥≤1

∥Bx∥Y .

Summarizing the above succinctly, if A : X → Y is linear and continuous, then

∥A∥B(X→Y ) <∞ .

Claim C.15. If A : X → Y is a linear map between two Banach spaces and if ∥A∥B(X→Y ) <∞ then A is continuous.

Proof. Given x ∈ X and ε > 0, we show continuity at x as follows: for any x̃ ∈ B ε
∥A∥

(x), we have (using Lemma C.16
right below)

∥Ax−Ax̃∥ = ∥A (x− x̃)∥
≤ ∥A∥∥x− x̃∥
< ε .

Lemma C.16. If A : X → Y is a bounded linear map between two Banach spaces then

∥Ax∥Y ≤ ∥A∥B(X→Y )∥x∥X .

Proof. We write thanks to the homogeneity of the norm,

∥Ax∥Y =
∥Ax∥Y
∥x∥X

∥x∥X

=

∥∥∥∥A x

∥x∥X

∥∥∥∥
Y

∥x∥X .

But since ∥∥∥∥ x

∥x∥X

∥∥∥∥
X

= 1

we must have ∥∥∥∥A x

∥x∥X

∥∥∥∥
Y

≤ ∥A∥B(X→Y ) .

Lemma C.17. The operator norm is submultiplicative: If A,B : X → X then

∥AB∥B(X) ≤ ∥A∥B(X)∥B∥B(X) .
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Proof. We have thanks to the above
∥ABx∥ ≤ ∥A∥B(X)∥Bx∥

taking the supremum over ∥x∥ ≤ 1 on both sides we obtain the result.

Claim C.18 (R&S Thm. III.2). If X,Y are two Banach spaces then B (X,Y ) together with the operator norm is itself
a Banach space.

Proof. Thanks to Claim C.14 we know that
(
B (X,Y ) , ∥·∥B(X,Y )

)
is indeed a normed vector space (with pointwise

addition and scalar multiplication). To show it is a Banach space we need to show it is complete. Let {An }n be
Cauchy. Then that means that ∥An −Am∥B(X,Y ) is small as n,m are large. This implies that for any x ∈ X,

∥(An −Am)x∥Y = ∥Anx−Amx∥

is small. I.e., the sequence {Anx }x is Cauchy in Y . Since Y itself is a Banach space (and is hence complete) that
means it converges to some y ∈ Y . Define a new operator, B, via

X ∋ x 7→ lim
n→∞

Anx ∈ Y

which is clearly linear too since the limit is linear.
From the triangle inequality we have

∥An −Am∥ ≥ |∥An∥ − ∥Am∥|

so that { ∥An∥ }n is a Cauchy sequence of real numbers, and so converges to some α ∈ R. Hence, by definition of B,

∥Bx∥Y = lim
n→∞

∥Anx∥Y
≤ lim

n→∞
∥An∥B(X→Y )∥x∥X

= α∥x∥X .

Hence B is bounded, and so continuous. We want to show that limnAn = B in operator norm. We have, by
definition of B,

∥(B −Am)x∥Y = lim
n→∞

∥(An −Am)x∥Y

so that for ∥x∥ ≤ 1 we have

∥(B −Am)x∥Y ≤ lim
n→∞

∥An −Am∥B(X→Y )

which implies
∥B −Am∥B(X→Y ) ≤ lim

n→∞
∥An −Am∥B(X→Y ) .

The right hand side however becomes arbitrarily small for large m.

Definition C.19. A linear map A : X → Y between Banach spaces is called an isometry iff ∥Ax∥Y = ∥x∥X for any
x ∈ X.

Claim C.20. A closed vector subspace of a Banach space is itself a Banach space.

D Hilbert spaces
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Definition D.1 (Inner product space). An inner-product space is a C-vector space H along with a sesquilinear map

⟨·, ·⟩ : H×H → C

such that

1. Conjugate symmetry:
⟨ψ,φ⟩ = ⟨φ,ψ⟩ (φ,ψ ∈ H) .

2. Linearity in second argument:

⟨ψ, αφ+ φ̃⟩ = α ⟨ψ,φ⟩+ ⟨ψ, φ̃⟩ (φ, φ̃, ψ ∈ H, α ∈ C) .

3. Positive-definite:
⟨ψ,ψ⟩ > 0 (ψ ∈ H \ { 0 }) .

To every inner product one immediately may associate a norm, via

∥ψ∥ :=
√

⟨ψ,ψ⟩ (ψ ∈ H) .

The converse, however, hinges on the norm obeying the parallelogram law as we have seen in Claim 5.32.

Claim D.2. Once we have an inner-product, we immediately have the Cauchy-Schwarz inequality

|⟨φ,ψ⟩| ≤ ∥φ∥∥ψ∥ (φ,ψ ∈ H) .

Definition D.3 (Hilbert space). A Hilbert space H is a inner-product space with ⟨·, ·⟩ such the induced norm ∥·∥
from this inner product makes H into a Banach space (i.e. a complete metric space w.r.t. to the metric induced by
∥·∥).

Hence we identify a Hilbert space as a Banach space whose norm satisfies the parallelogram identity.
One of the central notions available to us now in Hilbert space, which was not available before, is the notion of

orthogonality of vectors:

Definition D.4 (Orthogonality). Two vectors φ,ψ ∈ H in a Hilbert space are dubbed orthogonal iff

⟨φ,ψ⟩H = 0 .

A collection { φi }i is called orthonormal iff
⟨φi, φj⟩ = δij .

The following two claims involving orthogonality will be useful. Their proof will be a homework assignment.

Claim D.5. φ ⊥ ψ iff
∥φ∥ ≤ ∥zψ + φ∥ (∀z ∈ C) .

Proof. We have

0 ≤ ∥zψ + φ∥2 = |z|2 ∥ψ∥2 + ∥φ∥2 + 2Re {⟨zψ, φ⟩} . (D.1)

Hence if ⟨ψ,φ⟩ = 0 we have ∥zψ + φ∥2 ≥ ∥φ∥2.
Conversely, if ψ = 0 we are finished. Otherwise, let z := − ⟨ψ,φ⟩

∥ψ∥2 . Plugging this into (D.1) we find

0 ≤ ∥zψ + φ∥2 = ∥φ∥2 + |z|2 ∥ψ∥2 + 2Re {⟨zψ, φ⟩}

= ∥φ∥2 + |⟨ψ,φ⟩|2

∥ψ∥2
+ 2Re

{〈
−⟨ψ,φ⟩

∥ψ∥2
ψ,φ

〉}

= ∥φ∥2 − |⟨ψ,φ⟩|2

∥ψ∥2
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which is coincidentally a proof of the Cauchy-Schwarz inequality. But this also shows that

∥zψ + φ∥2 < ∥φ∥2

for one z if ⟨φ,ψ⟩ ≠ 0.

Claim D.6 (Cauchy-Schwarz). For any f, g ∈ L2 (µ) we have∣∣∣⟨f, g⟩L2(µ)

∣∣∣ ≤ ∥f∥L2(µ)∥g∥L2(µ) .

Theorem D.7. Every nonempty closed convex set E ⊆ H contains a unique element of minimal norm.

Proof. Let
d := inf ({ ∥x∥ | x ∈ E }) .

Let { xn }n ⊆ E so that { ∥xn∥ }n → d. Since E is convex,

1

2
(xn + xm) ∈ E

and hence

∥xn + xm∥2 = 4

∥∥∥∥12 (xn + xm)

∥∥∥∥2 ≥ 4d2 .

Then the parallelogram law Claim 5.32

∥xn + xm∥2 + ∥xn − xm∥2 = 2∥xn∥2 + 2∥xm∥2

has its right hand side tend to 4d2 also, so ∥xn − xm∥2 → 0 and hence { xn }n is Cauchy, which hence converges to
some x ∈ E (as E is closed) and we have ∥x∥ = d.

For uniqueness, if y ∈ E with ∥y∥ = d, then

{ x, y, x, y, . . . }

must converge by the above, so y = x.

Theorem D.8. Let M be a closed subspace of H. Then

M⊥ ≡ { φ ∈ H | φ ⊥ ψ∀ψ ∈M }

is also a closed subspace of H and M ∩M⊥ = { 0 }, and

H =M ⊕M⊥ .

Proof. Since ⟨φ, ·⟩ is linear, M⊥ is linear. Also,

M⊥ =
⋂
φ∈M

⟨φ, ·⟩−1
({ 0 }) (D.2)

and ⟨φ, ·⟩ is continuous by the Cauchy-Schwarz inequality, so M⊥ is closed. Next, if φ ∈M ∩M⊥ then in particular
⟨φ,φ⟩ = 0 so φ = 0.

Finally, let φ ∈ H. The set φ −M is a convex, closed subset and hence by Theorem D.7 we get some ψ ∈ M
such that ∥φ− ψ∥ is minimal. Let

η := φ− ψ .

Then
∥η∥ ≤ ∥η + ξ∥ (ξ ∈M)
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by the minimizing property. So by Claim D.5, η ∈M⊥. But

φ = ψ + η ∈M +M⊥ .

An important structural feature of the Hilbert space structure for us will be the Riesz representation theorem (not to be
confused with the related Kakutani-Markov-Riesz representation theorem appearing in Theorem 2.84).

Definition D.9 (Bounded linear functionals). A bounded linear functional on a Hilbert space H is a C-linear map

Λ : H → C

whose operator norm is finite:

∥Λ∥op ≡ sup
({

|Λφ|
∣∣ φ ∈ H : ∥φ∥H = 1

}) !
<∞ .

The space of all bounded linear functionals on a Hilbert space H is denoted by H∗: it is the dual space.

Unlike for Banach space, the fact these maps act on a Hilbert space exhibits B (H → C) ≡ H∗, the dual, as isomorphic
to H itself. I.e., Hilbert spaces are self-dual, or reflexive. This is the Riesz theorem:

Theorem D.10. There is an anti-C-linear isometric bijection K : H → H∗ given by

φ 7→ ⟨φ, ·⟩ .

In particular, every bounded linear map Λ : H → C is the result of an inner product with some vector φΛ ∈ H:

Λ = ⟨φΛ, ·⟩H .

Proof. Clearly K is anti-C-linear. To show it is isometric, we have by the Cauchy-Schwarz inequality

∥K (φ)∥op ≡ sup ({ (K (φ)) (ψ) | ∥ψ∥ = 1 })
≡ sup ({ |⟨φ,ψ⟩| | ∥ψ∥ = 1 })
CS
≤ sup ({ ∥φ∥∥ψ∥ | ∥ψ∥ = 1 })
= ∥φ∥ .

But also,
∥φ∥2 ≡ ⟨φ,φ⟩ ≡ (K (φ)) (φ) ≤ ∥K (φ)∥∥φ∥

where the last inequality was Lemma C.16. Hence ∥K (φ)∥ = ∥φ∥ so K is an isometry. But an isometry is always
injective, is it merely remains to show that K is surjective.

Let then λ ∈ H∗. If λ = 0 then K (0H) = 0 = λ. Otherwise, since ker (λ) is a closed linear subspace, the proof
above in Theorem D.8 says

H = ker (λ)⊕ ker (λ)
⊥
.

Let therefore η ∈ ker (λ)
⊥ and η ̸= 0. Since by linearity we have

[(λψ) η − (λη)ψ] ∈ ker (λ) (ψ ∈ H)

we have

0 = ⟨η, [(λψ) η − (λη)ψ]⟩
= (λψ) ⟨η, η⟩ − (λη) ⟨η, ψ⟩

i.e.,

λψ =

〈
(λη)

∥η∥2
η, ψ

〉
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or

λ =

〈
(λη)

∥η∥2
η, ·

〉
.

E Urysohn’s Lemma [Rudin]
Thanks to Olivia Kwon for contributing this section about the Urysohn lemma.

The purpose of this section is to prove Urysohn’s Lemma, which will be used in proving Theorem 2.84.

Definition E.1. We denote the space of all continuous compactly supported function by Cc(X).
Given compact set K, if f ∈ Cc(X) such that f(x) = 1 for all x ∈ K and f(x) ∈ [0, 1] for all x ∈ X, we write

K ≺ f.

Moreover, if V open such that f ∈ Cc(X) has range in [0, 1] and satisfies satisfying supp(f) ⊂ V, we write

f ≺ V.

Remark E.2. Notice that f ≺ V is stronger statement than 0 ≤ f ≤ χV which only implies that supp(f) ⊂ V̄ .

Proposition E.3. Suppose X is locally compact Hausdorff space. Suppose V is open set containing a compact set
K. Then, there exists some open set U with compact closure such that K ⊂ U ⊂ Ū ⊂ V.

Proof. Observe that every point of K has a neighborhood with compact closure by definition of locally compact
space. Also, observe that finitely many of these neighborhoods cover K. Therefore, we have that K lies in an open
set O with a compact closure.

If V = X, simply take U = O.
Suppose V ̸= X. Let C = V c.
For every point p ∈ C, we can construct an open set Op such that p /∈ Ōp and K ⊂ Op. To do so, for all x ∈ K,

using the definition of Hausdorff and the fact that K ∩ C = ∅, we find a neighborhood of x, Gx, such that p /∈ Ḡx.
Because K is compact, K can be covered by finitely many such G′

xs, say Gx1, · · · , GxN
. Now define Op =

⋃N
n=1Gxn

.
One can check easily that this Op has all the desired properties.

Define Fp = C ∩ Ō ∩ Ōp for each p ∈ C. Then, we have a collection of compact sets {Fp}p∈C with empty
intersection, i.e.

⋂
p∈C Fp = ∅.

We claim that we can find some finite subcollection Fp1 , · · · , FpM such that
⋂M
n=1 Fpn = ∅. This will finish the

proof. Observe that
⋂M
n=1 Fpn = ∅ implies Ō ∩ Ōp1 ∩ · · · ∩ ŌpM ⊂ V . Therefore, let

U = O ∩Op1 ∩ · · · ∩OpM .

Note that because Ū ⊂ Ō ∩ Ōp1 ∩ · · · ∩ ŌpM ⊂ V and because K ⊂ U , we are done.
Hence it only remains to show the existence of such Fp1 , · · · , FpM . For every p ∈ C, let Wp = F cp . Fix F1 in

{Fp}p∈C . Because no point of F1 belong to every Fp ∈ {Fp}p∈C , we see that {Wp} is an open cover of F1. Take a
finite subcover using compactness, say Wp1 , · · · ,WpM−1

. LetFp1 =W c
p1 , · · · , FpM−1

=W c
pM−1

, and F1 = FpM . Then,
by construction, we get that:

⋂M
n=1 Fpn = ∅.

Definition E.4. Let f be a real function on a topological space. If {x : f(x) > α} is open for every α ∈ R, we say f
is lower semicontinuous. If {x : f(x) < α} is open for every α ∈ R, we say f is upper semi-continuous.

Remark E.5. Notice that a real function is continuous if and only if it is both upper and lower semicontinuous.
Moreover, The supremum of lower semicontinuous functions is lower semicontinuous and the infimum of upper semi-
continuous is upper semicontinuous.
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Theorem E.6. (Uryshon’s Lemma) [Rudin’s Proof] S Given X a locally compact Hausdorff space, V open in X and
compact K ⊂ V , there exists some f ∈ Cc(X) such that K ≺ f ≺ V.

Proof. Put r1 = 0, r2 = 1, and {rn}n≥3 be enumeration of rationals in (0, 1). Because X is locally compact and
Hausdorff, by applying Proposition Proposition E.3 we can find open set V0 with compact closure such that

K ⊂ V0 ⊂ V̄0 ⊂ V.

Now applying it again on K and V0, we can find V1 such that

K ⊂ V1 ⊂ V̄1 ⊂ V0 ⊂ V̄0 ⊂ V.

For fixed n ≥ 2, choose open sets with compact closures Vr1 , · · · , Vrn such that ri < rj implies V̄rj ⊂ Vri using above
proposition again. Find rj among r1, · · · , rn such that ri is the biggest one smaller than rn+1. Moreover, find rj
among r1, · · · , rn such that it is the smallest one bigger than rn+1. We know the existence of ri and rj are guaranteed
because r1 = 1 and r2 = 1. They are unique because rationals are well-ordered. Now using the proposition again,
we can find Vrn+1 such that

V̄rj ⊂ Vrn+1
⊂ ¯Vrn+1

⊂ Vri .

Recursively, we can define {Vrn}n∈N such that K ⊂ V1, V̄0 ⊂ V, and for every rationals of [0, 1] r and s, each V̄r
compact and s > r implies V̄s ⊂ Vr.

Now, for all r ∈ Q∩[0, 1], define fr, gr : X → R, fr, gr ∈ Cc(X), by:

fr(x) =

{
r if x ∈ Vr

0 else.
and gr(x) =

{
1 if x ∈ V̄r,

r else.
.

Observe that for every r, fr is lower semicontinuous while gr is upper semicontinuous. Moreover, define

f = sup
r
fr and g = inf

r
gr.

By construction, because f is the supremum of lower semicontinuous functions, f is lower semicontinuous. Similarly,
because g is the infimum of upper semicontinuous, g is upper semicontinuous.

We claim that f = g. This will finish the proof because if f = g, then f is both lower and upper semicontinuous
implying that it is continuous. Moreover, it is visible that f(x) = 1 if x ∈ K and supp(f) ⊂ V̄0 ⊂ V, , so we get that
K ≺ f ≺ V , as desired.

To show f = g, we first show that f ≤ g then show that f < g is impossible.
Notice that fr(x) > gs(x) is only possible if r > s, x ∈ Vr, and x /∈ V̄s. However, r > s implies Vr ⊂ Vs and hence

this is impossible. Therefore, for all r, s, we have that fr ≤ gs and thus limits, we get f ≤ g.
Now suppose for the sake of contradiction that there exists some x ∈ X such that f(x) < g(x). This means that

there are rationals r and s such that f(x) < r < s < g(x). Since f(x) < r, we get that x /∈ Vr. Since g(x) > s, we
get that x ∈ V̄s. However, this contradicts the constructions of {Vr} because s > r implies V̄s ⊂ Vr. Therefore, this
is impossible and we get that f(x) = g(x) for all x ∈ X.

Corollary E.7. (Corollary to Uryshon’s Lemma) Given V1, · · ·VN open subsets of X and K compact such that
K ⊂ V1 ∪ · · · ∪ VN , there exists h1, · · · , hN ∈ Cc(X) such that hi ≺ Vi for all 1 ≤ i ≤ N and h1(x) + · · ·+ hN (x) = 1
for all x ∈ K.

Proof. We know for each x ∈ K, there exists some i such that x ∈ Vi. Using Prop Proposition E.3, find an open
neighborhood Wx such that x ⊂ Wx and W̄x ⊂ Vi. By compactness, we can find finite points x1, · · · , xm such that
K ⊂ Wx1

∪ · · · ∪ Wxm
. For every 1 ≤ i ≤ n, let Hi =

⋃
W̄xj

⊂Vi
W̄xj

. By construction, each Hi is compact and
contained in Vi.
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Using Uryshon’s Lemma, find gi satisfying Hi ≺ gi ≺ Vi. Now, define h1, · · · , hn ∈ Cc(X) by:

h1 = g1

h2 = (1− g1) · g2
h3 = (1− g1)(1− g2) · g3

...
hn = (1− g1) · · · (1− gn−1)gn.

Notice by construction that each hi ≺ Vi. Moreover, we can easily compute, using induction, that

h1 + h2 + · · ·+ hn = 1− (1− g1)(1− g2) · · · (1− gn).

Because K ⊂ H1 ∪ · · · ∪Hn, we see that for all x ∈ K, there exists gi such that gi(x) = 1 and therefore we get that
h1(x) + · · ·+ hn(x) = 1 on K.

F Glossary of mathematical symbols and acronyms
Sometimes it is helpful to include mathematical symbols which can function as valid grammatical parts of sentences. Here
is a glossary of some which might appear in the text:

• im (f) is the range or image of a function: If f : X → Y then

im (f) ≡ { f (x) ∈ Y | x ∈ X } .

• The bracket ⟨·, ·⟩V means an inner product on the inner product space V . For example,

⟨u, v⟩R2 ≡ u1v1 + u2v2
(
u, v ∈ R2

)
and

⟨u, v⟩C2 ≡ u1v1 + u2v2
(
u, v ∈ C2

)
.

• Sometimes we denote an integral by writing the integrand without its argument. So if f : R → R is a real function,
we sometimes in shorthand write ∫ b

a

f

when we really mean ∫ b

t=a

f (t) dt .

This type of shorthand notation will actually also apply for contour integrals, in the following sense: if γ : [a, b] → C
is a contour with image set Γ := im (γ) and f : C → C is given, then the contour integral of f along γ will be denoted
equivalently as ∫

Γ

f ≡
∫
Γ

f (z) dz ≡
∫ b

t=a

f (γ (t)) γ′ (t) dt

depending on what needs to be emphasized in the context. Sometimes when the contour is clear one simply writes∫ z1

z0

f (z) dz

for an integral along any contour from z0 to z1.

• iff means “if and only if”, which is also denoted by the symbol ⇐⇒.

• WLOG means “without loss of generality”.

• CCW means “counter-clockwise” and CW means “clockwise”.

• ∃ means “there exists” and ∄ means “there does not exist”. ∃! means “there exists a unique”.

139



• ∀ means “for all” or “for any”.

• : (i.e., a colon) may mean “such that”.

• ! means negation, or “not”.

• ∧ means “and” and ∨ means “or”.

• =⇒ means “and so” or “therefore” or “it follows”.

• ∈ denotes set inclusion, i.e., a ∈ A means a is an element of A or a lies in A.

• ∋ denotes set inclusion when the set appears first, i.e., A ∋ a means A includes a or A contains a.

• Speaking of set inclusion, A ⊆ B means A is contained within B and A ⊇ B means B is contained within A.

• ∅ is the empty set { }.

• ℵ0 is the cardinality of N: ℵ0 := |N|. c := 2ℵ0 = |R| is the cardinality of the continuum.

• While = means equality, sometimes it is useful to denote types of equality:

– a := b means “this equation is now the instant when a is defined to equal b”.

– a ≡ b means “at some point above a has been defined to equal b”.

– a = b will then simply mean that the result of some calculation or definition stipulates that a = b.

– Concrete example: if we write i2 = −1 we don’t specify anything about why this equality is true but writing
i2 ≡ −1 means this is a matter of definition, not calculation, whereas i2 := −1 is the first time you’ll see this
definition. So this distinction is meant to help the reader who wonders why an equality holds.

F.1 Important sets
1. The unit circle

S1 ≡ { z ∈ C | |z| = 1 } .

2. The (open) upper half plane

H ≡ { z ∈ C | Im {z} > 0 } .
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