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1 Soft introduction

1.1 The Riemann integral and its inadequacies

In a single-value analysis class we are introduced to the rigorous definition of the Riemann integral, which is a C-linear
map from functions

fila,b] =R

into numbers. In particular, the integral is interpreted in multiple ways as:

F= bia/[ayb]f

2. The (signed) area enclosed between the graph of f, the horizontal axis, and the vertical lines = a, z = b.

1. The average value the function takes:

3. The appropriate continuum generalization to the discrete sum

N
> fn)
n=1

understood in some appropriate sense.

There are various ways to rigorously define the Riemann integral | ]. Let us proceed somewhat informally. The
minimal assumption we make on f is that it is bounded (otherwise we do not even ask whether it is Riemann integrable
or not). To avoid the complication of partitions', let us always consider regular subdivisions of [a,b]. Then the lower /

upper Riemann sum at N subdivisions is given by
b—a
€ n+1
x (a+[nn+ ] I )})

e (a+[n,n+1] b;f) }) .

Definition 1.1. If the limits limy Ly (f) and limy Uy (f) exists and are equal, we say that f is Riemann integrable
on [a,b] and define its Riemann integral as equal to the result of these equal limits:

() =" N_linf({ /@)

and

i

ox(f) = s ({ )

] f = llj{fn LN (f) = h]{[n UN (f) .

We remind the reader of Lebesgue’s theorem. For it we need the notion of measure zero set:

Definition 1.2 (Zero measure sets). Let S C R be given. We say that S has zero measure iff for any € > 0 there
exists a countable collection of open intervals { U, }, .y such that both conditions below hold:

Z|Un\ < ¢

s < |YU.

neN

1We note in passing that while we are allowed to restrict to regular subdivisions, we are not allowed to restrict to both regular subdivisions
and always sample at the starting / ending point of each sub-interval.



Theorem 1.3 (Lebesgue’s theorem). The bounded function f : [a,b] — R is Riemann integrable iff its set of discon-
tinuities on [a,b] has measure zero.

Armed with this theorem, it is easy to come up with some examples and counter-examples of Riemann integrable
functions:

1.
2.

Any continuous function is Riemann integrable.

The indicator function on the cantor Set C, x¢ : [0,1] — R, is Riemann integrable. Its set of discontinuities is the
Cantor set C' which has measure zero (though it is uncountable).

The indicator function on a fat Cantor set is not Riemann integrable.

The indicator function onto the rationals xq : [0,1] — R is not Riemann integrable since it is discontinuous every-
where.

This last example is especially heinous: the set on which xq is different than zero is countable, it should somehow integrate
to zero, since the countable set should not interfere with the uncountablity of the whole interval. Hence, already we see
some deficiencies of the Riemann integral: what if the function we are trying to integrate doesn’t have zero measure?
Couldn’t we still say something about its average value? This brings us to the study of just which sets are measurable
at all, which we will get to eventually. Another question is what about unbounded functions? The improper Riemann
integral addresses this to an extent.

Example 1.4. Consider the function f : (0,1) — R given by x — ﬁ which is clearly unbounded. However, we may

make sense of it formally by defining f,, : [%, 1] —Rbyz— ﬁ For finite n € N, the function f,, is bounded and

Riemann integrable, and
2

— Uge =228 =2 2
/[u]fn/xe[;,l]\/fx Tleea 77T TS

n?

If we had a finite number of integrable blow ups like this we could somehow manage. But this approach can go horribly

wrong:

Example 1.5. Since (0,1) N Q is countable, let 5 : N — (0,1) N Q be the bijection which enumerates this set. Define
then a sequence of functions f, : [0,1] — R via

_ Ja—m) T e,
fo(z) = {0 < (neN,zel0,1]).

Then define f : [0,1] — [0, c0] via

o fn ()
fl)=3 =5 (z €[0,1]) .

n=1
f has the weird property that it is unbounded on every open subinterval of [0, 1], since each one contains a rational
number. Hence f is not Riemann integrable on every subinterval of [0, 1] which is not a singleton.

But somehow we still feel like we should be able to assign an area under the graph of f, since we can do so for
each f:

/ fn = lim fn—i—/ fn
[0,1] e= 0% J10,m,—¢) [ +e.1]

1
= lim (x—1n,) 2dx
e20F Jaen,+e,1]

1
+}

= lim 2(x—1n,)

e—0t

= 2v/1—1n.

T=Nn+e



and somehow it should equal

/ f= ZQ*”/ fo=Y 27T, <> 27" < oo,
[0»1] n=1 [051] n=1 n=1

From the more practical and less theoretical perspective, a much more severe limitation of the Riemann integral is
how it behaves with limits. Namely, we have

Theorem 1.6. Let f, : [a,b] = R be a sequence of bounded Riemann integrable functions which converges uniformly
to the bounded function lim, f,, : [a,b] = R. Then lim, f, : [a,b] — R is also Riemann integrable, and

lim fn = / lim f, .
" Jla,b] la,b] ™

However, establishing uniform converges is notoriously difficult, in fact it is false in many interesting applications. For
instance, letting 7 : N — (0,1) N Q again be the bijection which enumerates its codomain, define

frn = X{n; | jennnzy -

Clearly each f,, is bounded and Riemann integrable. Also, lim,, f,, = xqno,1) pointwise. But as we saw above, this limit
is not Riemann integrable. We are looking for a way to exchange integration and limit without uniform convergence. We
shall see that to do so we need to invent a new, more robust notion of integration.

1.2 Intuitive difference between Riemann and Lebesgue integration

We will see that conceptually, while the Riemann integral divides the domain into small pieces and measures the area of
each small rectangle, the Lebesgue integral does things somewhat sophisticatedly. To calculate the Lebesgue integral, we
first need the notion of a measure which generalizes volume on Euclidean space to arbitrary spaces. Then we divide the
codomasin into small chunks and ask what is the measure of the preimage of that chunk in the domain. This turns out to
give a more robust definition of the integral, which is not so susceptible to discontinuities and behaves better with limits.
For that reason we now turn to abstract measure theory.

2 Abstract measure theory [Rudin]

We now want to define the concept of measurability and ultimately assign a measure to measurable sets. This will be
useful when we define the Lebesgue integral, and furthermore, this has applications in probability theory where measurable
sets may be considered as those events for which a probability can be calculated.

2.1 Measurable sets and measurable functions

On a set X, we now want to define a system of subsets much like Open (X) is a system of subsets with certain ax-
ioms.

Definition 2.1 (o-algebra). Let X be a set. A collection 9 C P (X) is called a o-algebra in X iff 9 obeys the
following conditions:

1. X € 9 (contains the whole space).
2. X\ A e M for each A € M (closed under complements).

3. If { An },cn is @ sequence of subsets such that A, € 9 for each n € N then

| Ay e .

neN
(closed under countable unions).
The tuple (X,9) where 91 is a o-algebra on X, is together called a measurable space.

Note that this definition automatically implies: (1) closure with respect to countable intersections via De Morgan and
(2) @ e M.



Remark 2.2 (Etymology). The prefix o denotes the closure w.r.t. countable unions. If we had merely closure wr.t.
finite unions this would be called an algebra.

Contrast this with the notion of a topology on a given set X:

Definition 2.3 (Topology). Let X be a set. A collection 7 C & (X) is called a topology on X iff T obeys the
following conditions:

1. X, € T (contains the whole space and the empty set).
2. ﬂ?zl U e T ifUy,---,U, €T (closed under finite intersections).

3. UpegUa € T if Uy € T for any a € J, where J is an arbitrary set (not necessary countable) (closed under
arbitrary unions).

The tuple (X, T), if T is a topology on X, is together called a topological space.

When dealing with a topological space X, it is often convenient to denote its (already defined) topology as Open (X).
Similarly, given a measure space X, we denote by Msrbl (X) the o-algebra in it, should it be understood from the
context.

Definition 2.4 (Measurable function). Let f: X — Y be given where X,Y are two measure spaces. We say that f
is measurable iff f=1 (A) € Msrbl (X) for each A € Msrbl (Y).

Note that Rudin | | defines measurable function slightly differently (his codomains are always topological spaces).

Claim 2.5. The composition of two measurable functions is again measurable.

Proof. Let f : X —» Y and g : Y — Z be two measurable functions between measure spaces. Let A € Msrbl (Z).
Then g~* (A) € Msrbl (Y). But then f~! (¢7' (A)) € Msrbl (X). But f~* (g7 (4)) = (go )7 (A) so we conclude
g o f is measurable. O

Example 2.6 (The trivial o-algebra). Given a set X, we may consider its power set P (X) as a o-algebra on it. It
is called the trivial or largest o-algebra on X. The smallest one is of course { @, X }.

Example 2.7. Take X :={1,2,3,4}. Then a possible o-algebra is { &, {1,2},{3,4},{1,2,3,4} }.

Example 2.8. Let A € @ (X). Then { &, A, X \ A, X } is the smallest o-algebra which contains A.
We may consider the category of measure spaces, in which measurable functions are precisely the morphisms.

Remark 2.9. A topology mneed not be a o-algebra: it could fail to contain complements.

Claim 2.10. An arbitrary intersection of o-algebras is again a o-algebra. Not so for unions.

Proof. TODO, fix this: (even though a-priori it lies within an intersection of o-algebras). Let then 4, € o (F) for
every n € N. Let 9 € Q. Then A,, € M by definition, so |J,, A, € M, as M is itself a o-algebra. But since M €
was arbitrary, the union lies in the intersection o (§). The other two properties, complements and the entire space,
are verified in the same manner.

TODO: provide a counter-example. O

Definition 2.11 (c-algebra generated by a function). Let f: X — Y with Y a measure space and X a set. Then
the o-algebra generated by f is a o-algebra on X, denoted by o (f), given by

o(f)={f"(A)|AeMsbl(Y)}.

One may then rephrase and say that, if X already had a measure space structure, then f is measurable w.r.t. it iff
o (f) € Msrbl (X). Cf. with initial topology.



Remark 2.12. Recall that arbitrary intersections of o-algebras are again o-algebras, Claim 2.10. As such, if A €
Msrbl (X)) then we have a o-algebra structure on A given by the inclusion map ¢ : A — X and o (¢).

Example 2.13 (Baire c-algebra). Let X be a topological space. Define a o-algebra 171 in X via the following
criterion: 171 is the smallest o-algebra so that all functions f : X — C which are continuous and compactly supported
are measurable.

Theorem 2.14 (o-algebra generated by a collection of subsets). Let F C P (X)) with X some set. Then, there exists
a smallest (in the sense of set inclusion) o-algebra o (F) in X such that F C o (F). We call o (F) the o-algebra
generated by F .

Proof. (See | ] Theorem 1.10) Let €2 be the family of all o-algebras in X which contain . Of course P (X) is
in €, so it is not empty. Define the set

o(F):= ﬂ M.

Me
Clearly & C o (¥) by construction. The fact that o (F) is itself a o-algebra and not just a set follows via Claim 2.10.
O
Theorem 2.15. If ¥ C # (X) is countable (i.e., |F| =Rg) then o (F) C P (X) is either finite or |o (F)| = 2%0.
Proof. (Chayim Lowen) See HW3Q3. O

Definition 2.16 (Borel sets). Given a topology on X, by Theorem 2.14 there is a o-algebra generated by Open (X):
o (Open (X)). The elements of o (Open (X)) are called the Borel sets of X. In particular:

e Closed sets are also Borel sets, since they are the complements of open sets.

e Countable unions of closed sets are also Borel sets. These are called Fy,’s (F=closed, c=union (summe)). For
example [a,b) is a F,, set of R with its standard topology.

e Countable intersections of open sets are also Borel sets. These are called Gs’s (G=open, d=intersection (durch-
schnitt)). For example [a,d) is also a G5 set of R with its standard topology.

We denote this special o-algebra of Borels sets by B (X) := o (Open (X)).

Thus, given a topology on X we are automatically provided with the Borel o-algebra on it! If we don’t specify any
other o-algebra on a (otherwise topological) space, we shall always mean the Borel o-algebra.

Claim 2.17. Let f: X — Y be a mapping between two measurable spaces where
Msrbl (Y) = o (F)
for some F C @ (Y). Assume further that
f~H(F) € Msrbl (X) (Fed).

Then f is measurable.

Proof. We may consider the set
M:={AcPY)|f (A eMsrbl(X)}.

Cf. with final topology. We may verify it is stable under complements and countable unions: If A € 9, we want to
show that A¢ € 90, i.e., that f~1 (A¢) € Msrbl (X). But

A= [ @)



and Msrbl (X) is closed under complements so we are finished. Next, if { 4,, } C M then

o <U An> = )

neN neN

neN

and since Msrbl (X) is closed under countable unions, we have f~! (U, cn An) € Msrbl (X) so

neN

U A, €M
neN

so, M is itself a g-algebra in Y. By hypothesis, & C 91 and so actually
FCo(F)Tm

since, by construction, o (¥) is the smallest o-algebra which contains . But by o (F) C 9t we learn that f is
measurable. O

Corollary 2.18. Let f : X — Y be a mapping between where X is a measurable space and Y is a topological
space, such that f~1(U) € Msrbl(X) for any U € Open(Y). Then f is measurable w.r.t. Msrbl(X) and B (Y)
respectively. Similarly, if f=1 (F) € Msrbl(X) for any F € Closed (Y) then f is measurable w.r.t. Msrbl(X) and
B (Y) respectively.

Proof. We know that the Borel o-algebra is generated by the open sets
B(Y) =0 (Open(Y))
but in fact it may also be generated by the closed sets (one may verify this...), i.e.,
o (Open (Y)) = o (Closed (Y)) .
O

This then coincides with Rudin’s definition of measurable function, since he only considers maps whose codomains are
topological spaces and then restricts to the special case of the Borel g-algebra on them.

Theorem 2.19 (Rudin’s Theorem 1.8). Let u,v : X — R be two measurable functions (R is considered a measure
space w.r.t. B(R)). Let ¢ : R =Y be continuous where Y is some topological space. Let h: X —Y be given by

Xoz—=pu(x),v)eyY.

Then h is measurable w.r.t. Msrbl (X) and B (V).

Proof. The function f : X — R? given by u x v. We have h = po f, so we only have to show f is measurable. Let R
be any open rectangle on the plane with sides parallel to the axes: R = I; x I for two open intervals I, I and so

FTHR) = w ()Nt (I)
which is measurable by assumption on u,v. Since every open set V € Open (Rz) is the countable union of such
rectangles R;, we find
SR (VEARVIRIES
i=1 i=1

and hence f~! (V) is measurable and so is f. O



Theorem 2.20 (Rudin’s Theorem 1.9). Let X be a measure space. Then
1. If u,v : X — R are measurable then f: X — C defined by f := u + iv is measurable.
2. If f: X — C is measurable then Re {f},lm{f} and |f| are measurable functions from X — R.
8. If f,g: X — C are measurable then f 4+ g and fg are too.
4. If A € Msrbl (X) then x4 : X — R is a measurable function.
)

. If f: X — C is measurable then there exists some a: X — C measurable such that f = a|f|.

Proof. We only prove the last statement. Set E := f~*({0}) (a measurable set) and Y :=C\ {0 }. Let

p:Y > C
z
zZ = —.
K
Define
a(@):=¢(f(@)+xe(@) (zeX).
Show that ¢ is continuous on Y to conclude. O

In what follows, it will be convenient to consider the extended real line [—oco, 0], see Appendix A. In particular we shall
always consider it as a measure space w.r.t. B ([—o00,00]) unless otherwise specified.

Theorem 2.21. Let f : X — [—00, 00| be a map with X a measure space. Here we consider [—oo, 00| as the extended
real line with its topology, see Appendix A. Then if

7 ((ev, 00]) € Msrbl (X) (a €R)

then f is measurable w.r.t. Msrbl (X) and B ([—o0, 00]).

Proof. The set («, 00] is already open in [—o0, 00] so our goal is to build any of the basis elements of [—o00, co] using
this basic open set. To that end, let
Q:={EC[-00,00] | f'(E) €Msrbl(X)} .

Let o € R and { o, },, = a from below. Then (a,, 0] € Q by hypothesis, and we have

(@
(@

[_Oova) = [_oo7an] = (anvoo]c
n=1 n=1
so we get the other type of basic open set, [—0o0, ). Next, using
(Oé,ﬁ) = [—OO,B)ﬂ(Oé,OO]

we see that since every open set of [—o0, 00| is a countable union of segments of the above types, so that Q contains
all open sets of [—00, 0] and hence f is measurable. O

2.2 Limits of measurable functions

Recall the definition of the liminf and limsup: Let { a, } R be a given sequence. Then

nEN =
liminfa, = lim (inf a ) sup 1nf Ay, - (2.1)
n— 00 n—oo \ m>n neNm=>n

Similarly,

limsupa, = lim (Sup am> inf sup a,, .

n—00 =00 \m>n neN m>n

10



Evidently, we always have

liminf a,, < limsup a,
n—00 n— o0

and if the limit of { a, }, actually exists then both are equal to that limit.

Theorem 2.22. If f,, : X — [—00,00] is a sequence of measurable functions then sup, cy fn : X — [—00,00] defined

by
X 3z~ sup fp (x)
neN

and limsup,,_, o fn : X — [—00, 00| defined by

X 5z + limsup (f, (z))

n— oo

are both measurable.

Proof. Let us denote g := sup, ¢y fn and h :=limsup,,_, . fn. Then, from the definition of g it follows that
g (e 00]) = | £ (@, 00])
n=1

Indeed, let us show this. If z € g7 ((«, 0]) then g (z) > a. That means sup, ¢y fn (¥) > « so in particular there
must exist n € N so that f, (z) > a. Alternatively, if z € J,—; f,, ' ((a, 00]) then there exists some n € N for which
fn () > a. This in particular implies g () > a.

We conclude that ¢ is measurable. We write

h = inf :
fofsup fi

so that h is also measurable by similar representations. O

Corollary 2.23. We have
1. The limit of every pointwise convergent sequence of complex measurable functions is measurable.
2. If f,g: X — R are measurable then so are max ({ f,g }) and min ({ f,g}).
3. In particular, so are f* =max({ f,0}) and f~ = —min({ f,0}).
We may always decompose any R-valued function into its positive and negative parts as follows
f=f—f
with f* the positive and negative parts of f, and |f| = f* + f~ 2.

2.3 Simple functions

We shall build a theory of integration starting from primitive functions and then take limits. This will proceed as follows.
Given any function
f:X—>C

we write it as
f=Re{f}+ilm{f} .
Then we write
Re{f} =Re{/}" —Re{f}
and similarly for the imaginary part, so that any complex function is the (complex) linear combination of four nonnegative

functions. Measurability is inherited by all four. Then we want to approximate each nonnegative function with even
simpler objects, simple functions.

2Note a certain minimal property for these objects: Note that if f = g — h with g,h > 0 then ft < g and f~ < h. This is because f < g
and 0 < g clearly implies max ({ f,0}) < g.
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Definition 2.24 (Simple function). Let X be a measure space and s : X — C. If |[im (s)| < oo then s is called a
simple function. If in addition, im (s) C [0,00) then s is called a nonnegative simple function. We are not including
+o0 as part of C so that simple functions, by definition, cannot take on the values +oo.

Clearly simple functions always take on the form

S:ZaiXAi
i=1
for somen € N, ; € Cand A; ={zx € X | s(z) =y }.

Claim 2.25. A simple function X — C of the form s = Y. | a;xa, is measurable iff A; € Msrbl (X) fori =1,...,n.

Proof. (We consider C w.r.t. the Borel sigma algebra, as usual). By Corollary 2.18 we only need to check that
the pre-image of closed sets is msrbl. Hence let F© C C be closed. If F' does not contain any of the points «; then
s (F) = @ € Msrbl (X). If F contains o, , ..., q;, then

k
8_1 (F) = U Aij
7j=1

and the union of measurable sets is measurable. Conversely, if s is measurable, take the (closed) singleton { a; } to
verify that 4; € Msrbl (X). O

Remark 2.26. The product and sum of simple functions is again a simple function. Scalar multiplication also preserves
this property. Hence they form an algebra over C. As we shall see, they however are not closed under limits.

Now we want to establish that any nonnegative measurable function may be approximated by simple functions from
below.

Theorem 2.27 (Approximation by simple functions). Let f : X — [0,00] be measurable. Then there exist simple
measurable functions s, : X — [0,00) such that

1.0<s <sp K- < S

2. sp, — f pointwise.

Proof. (Thanks to Lydia Boubendir)
For every n € N, define

©n :[0,00] — [0,00)

2-n|2nt] 0<t<n
t —
n t € [n, o0

which is depicted, at n = 3 in Figure 1. The function ¢,, converges to t — ¢ as n — oo. It is doing that in two ways
simultaneously:

1. The region over which it does not resemble the identity function, [n, co] keeps shrinking.

2. The region over which it does resemble the identity function, it becomes finer and finer at approximation the
identity function there by subdividing [0, n] into roughly 2" sub-intervals and being saw-toothed there.

First, note that at each fixed n € N, ¢,, is a Borel function. Indeed, it is a simple function that takes on basically
2™ values on intervals and as such it is measurable. For monotonicity, want to establish

on(t) < @ng1(t) (t €[0,00],n €N) .

12
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Figure 1: The function (3 approximating the identity.

For ¢t > n + 1 this is easy because n < n+ 1. For n <t <n+ 1 as well, since there,

Ontr () =277 27T > 27 |27 ] = n=, (1) .

Finally, we want to show that for ¢ € [0, n],

?
2720t > 27 27
I
?
|27t > 2|2 .
This last relation is implied by the relation
1
el <5l2e] @20

which is always true. Indeed, for all m € N, if x € [m, m + 1), then |z] = m whereas

1 1
5 [22] =m + X[t 3,me41) (z) .
Now we set

Sp = ¥n © f

which automatically fulfills both of our constraints, using the fact that the composition of measurable functions is
measurable Claim 2.5. O

2.4 Measures

We now come to the notion of measure which for us is to be understood as a generalization of volume in R™ to much more
exotic sets (yet they still have to be measurable), or of a weight of sets.

13



Definition 2.28 (Measure). A complex measure is a map
p: Msrbl(X) - CU{ o0}

which is countably additive, i.e.,
m (U An> =Y n(An)  (An € Msrbl(X): A, N Ay, = 2Vn # m) (2.2)
n=1 n=1

and for which 34 : p(A4) < oo (otherwise it is not very interesting). If im (1) C [0, 00] then we say p is a positive
measure.

Note: Despite the “logical” Definition 2.28, when using the term compler measure Rudin assumes p never takes on the
value oo (unlike when we use the phrase positive measure). Following him, so we will really only consider the dichotomy:

e Either u takes values in C (complex measure).

e Or p takes values in [0, 0o] (positive measure).

Theorem 2.29. Let 11 : Msrbl (X) — [0, 00] be a positive measure. Then

1. p (=) =0 (so in particular (2.2) holds also for finitely many unions).

2. (monotonicity) A C B implies
1 (A) < p(B) (2.3)

for all A, B € Msrbl (X).

3. p may be approximated from “inside” as follows:

nh_}n;O w(A <U ) (2.4)
for all increasing sequences A, € Msrbl (X): A; C A; C A3 C -

4. p may be approximated from “outside” as follows:

Tim g ( <ﬁ ) (2.5)
2D A3D-

- with p (A7) assumed finite.

for all decreasing sequences A,, € Msrbl (X): 41 D A

Proof. By assumption, there exists B € Msrbl (X) with p (B) < co. Define now a sequence A, := B, A; := @ for
all 7 > 2. This sequence obeys the conditions of (2.2) since it is pairwise disjoint. Hence we find

00 > u(B) +Zu

and the only way this equation could hold is if (@) = 0. Now that we know u (@) = 0, we have additivity for finite

sequences.
For monotonicity, given A, B € Msrbl (X) with A C B, let us decompose B = AU (B \ A) which are now disjoint.

Hence additivity implies
p(B) =p(A)+pu(B\A)

and using positivity of the measure, we find this is larger than or equal to u (A).
Let us now establish the approximation properties. To do so, given any increasing sequence A; C As C A3 C -+
we decompose it into disjoint parts as follows:

Bl = Al
B, A \An1 (n>2).

14



Note that A, = Jj_, Bj. So by (2.2) we find

and moreover, since | J,, A, = |J,, Bn, we get

n n=1
The result now follows by taking the limit » — oo on the penultimate displayed equation.
For approximation from outside, we make the following new variables.
Cn:i=4A1\ A, (n>1).

This implies C; C Cy C C3 C --- and
1(Cn) = p (A1) — p(4n) .

Moreover, A; \ () An) = U,, Cn, so now we may invoke the previous statement on the sequence C,, to get
p(Ar) — p <ﬂAn> H (Al\ﬂAn>

(o)
= limpu(Cy)

= lim (4 (A1) = p(An))
= (A1)~ limp (4y)

from which our result follows. O

Our main example for a positive measure will be the Lebesgue measure on R™, but it will be a little while before we can
define it.

Example 2.30 (Counting measure). Let Msrbl (X) = & (X) and define ¢ : Msrbl (X) — [0, 00] via
S S|

(the cardinality of a set, oo if it is countable or higher). ¢ is called the counting measure. Usually we only define the
counting measure if X is countable.

Example 2.31 (Unit mass; “Dirac delta measure”). Let Msrbl (X) = { @, X, {20 },X \ {20 } } be a o-algebra and
define §,, : Msrbl (X) — [0, oo] by
1 zp€eS
S — { 0 = xs (zo) -

In cryptic symbols,
Iz = X (20) -

0z, is called the unit mass concentrated at zg. It is closely related to the Dirac delta function. While the latter is not
actually a function (it is a distribution), the unit mass is a very simple object.

Example 2.32. If we take the counting measure ¢ on N and set A,, := N>,, then (,, 4,, = @ and yet p (4,) = oo.
This does not violate the theorem above since the assumption p (A;) < oo is clearly violated here.

Definition 2.33 (Complete measure). A measure p : Msrbl (X) — C is called complete iff for any Z € Msrbl (X)
such that p (Z) =0, any subset A C Z is also measurable A € Msrbl (X).
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Example 2.34. We will later on see that the Lebesgue measure ;1 on R is not complete if we insist its domain is
B (R) since there are Lebesgue measurable subsets which are not Borel.

Theorem 2.35. Let (X, 11, 1) be a measure space. Define
M:={Ec®(X)|34Ag,Be €M : Ag CECBgAu(Bg\ Ag) =0}
and i : M — C via
A(E) = u(Ap)  (E<T).

Then M is a o-algebra in X and Ti is a measure.
Proof. TODO O

Claim 2.36. Let X,Y be two measurable spaces and p : Msrbl (X) — [0, 00] be a complete measure. If f: X =Y is
measurable and g : X — Y equals to f p-almost-everywhere then g is also measurable.

Proof. Let

N = {zeX|f@)#g@)}.

By hypothesis,
n(N)=0.

In particular part of the hypothesis is that N € Msrbl (X)!
Let A € Msrbl (V). We want to show that g~ (4) € Msrbl (X). Again, by hypothesis, f~! (4) € Msrbl (X).

g (4) = {zeX|g(@)eA}
= {zeX|g@)eA}NN|U{zeX|g(x) e A} NN
= [{zeX|g@)eAINN|U{zeX | f(z)e A} NN
= {zeX|g@)e A}nNJU[f' (4NN

Since p is complete, u (N) = 0 and
{zeX|glx)e A}NNCN,

{zeX|g(x) e A}NN] € Msrbl (X) .

Hence, g~ ! (A) is a o-algebra-closed combination of procedures on measurable sets, and is hence measurable itself. [

Definition 2.37 (o-finite measure). A measure p : Msrbl (X) — C is called o-finite iff VA € Msrbl (X), there is a
sequence { E; };2, € Msrbl (X) such that A C |J;2, E; and p(E;) < oo for all i € N.

Example 2.38. The counting measure ¢ : & (X) — [0, 00] is not o-finite if X is uncountable.

Example 2.39. We will see that the Lebesgue measure on R is o-finite.

2.5 Integrating positive functions

Given a positive measure g : Msrbl (X) — [0,00], we now proceed to define the Lebesgue integral associated to pu.
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Definition 2.40 (The Lebesgue integral of positive simple measurable functions). Let s = Z?zl ;X A; be a nonneg-
ative measurable simple function. Then we define the integral of s on a set w.r.t. p as

/ sdp = iaiu (A;NE) (E € Msrbl (X)) . (2.6)
E

i=1

We use the convention 0 - 0o = 0 in case a; = 0 yet p(A4; N E) = 0.

Definition 2.41 (The Lebesgue integral of positive functions). Let f : X — [0, 00| be measurable. Then

/fd,u = sup/sdu
E s JE

where the supremum ranges over all simple measurable functions s which obey 0 < s < f. Note if f is simple the two
definitions coincide, since then the supremum is attained on f itself.

Example 2.42 (The integral against the counting measure). Recall the counting measure from Example 2.30

S8

/Sfdc?

/Sfdc:Zf(m).

zeS

What then is

We claim that if S is countable then

(If S is not countable then the expression ) g f () requires a bit more definition) To prove this however we will
need a limit theorem (see Claim 2.50 below for the proof). We contend ourselves with just the simple function case
for now. Let f = >"" | a;xa, be a simple function. Then

/ fde=> aic(SNA;) =Y a;[SN Al
S i=1 i=1

since, by definition, 4; = f' ({a; }) ={2 € X | f (z) = a; }, we get the result of the claim.

Example 2.43 (The integral against the delta measure). Recall the delta measure §,, from Example 2.31. If
f: X =Y is measurable, then what is fs fddz,? We claim

/ Fdb,y = xs (z0) f (z0)
S

17



Indeed, by definition,

/fd(?m0 = sup /sd(?mO
S s simple s.t. 0<s<fJg§

= sup Z ;0g, (A;NS)

s simple s.t. 0<s<f i—1

n
= sup Z ;X 4,08 (o)

s simple s.t. 0<s<f . —

= sup xs (o) s (x0)
s simple s.t. 0<s<f

= xs (o) sup s (20)
s simple s.t. 0<s<f

= xs (20) [ (o) -

Proposition 2.44. In the following statements, all functions are assumed to be measurable from a measure space X
into [0,00] and all sets are elements of Msrbl (X):
/ fdp < / gdp . (2.7)
E E

1. If 0 < f < g then

2. IfAC B and f >0 then [, fdu < [, fdu.
3. If f >0 and c € [0,00) then

/cfd,u:c/ fdp. (2.8)
E E
4. If f =0 for all x € E then fE fdp = 0. Note this holds even if u(E) = occ.

5. If u(E) =0 then
/ fdu=0 (2.9)
E
, even if [ takes on the value co on E.

6. If f > 0 then
/ fdpu = / xefdu. (2.10)
E X

Proposition 2.45. Let s : X — [0,00) be a measurable simple function and p : Msrbl (X) — [0, 00] be a positive
measure. Define ¢ : Msrbl (X) — [0, o] via

p(E):= /Esd,u (E € Msrbl (X)) .

Then @ is also a measure on Msrbl (X).

Proof. Since p is a measure, p (@) = 0 so that ¢ (&) = 0 via (2.9) and this satisfies the first condition on a measure
having at least one measurable set not have infinite-measure.
Next, we verify the countable additivity. Let { A, },, € Msrbl(X) be a sequence of pairwise disjoint sets and

write
J
s = E QXB; -
j=1
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Then

Proposition 2.46. (Additivity of integral on simple functions) Let s,t : X — [0,00) be two measurable simple
functions and p : Msrbl (X) — [0, 00] be a positive measure. Then

/(s—i—t)duz/sdu—i—/tdu.
X b X

Proof. Write s = a1 xa, +---+anxa, and t = B1xp, + - + Bmxs,,- Then

s+t=o0axa, + - +onxa, +B8i1x, + -+ BmXBn

is not necessarily of the form Definition 2.24 since there might be intersections between the A;’s and the B;’s, and
on those intersections, the value of s 4t is o; + 8;. Hence let us write

s+t=mxc + -+ nxe

where the «’s and C’s correctly account for the intersections. Then we are allowed to write

/X(8+t)du571u(01)+--~+'nu(cl).

Now, when v; = «;, + 3;,, that means we are on an intersection, in which case we can write that intersection set Cj;
as Cj; = A; N B; and then

Ai = (A4 \ B;) U Cj;

and similarly

B;

and hence the result.

2.6 Limit theorems I

(Bj \ Ai) U Cyj

The importance of the following result on sequences of positive measurable functions cannot overstated.
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Theorem 2.47 (Lebesgue’s monotone convergence). Let f, : X — [0,00] be a sequence of measurable functions such
that
fn (2) < frg1 (2) (re X,neN). (2.11)

Assume further that f,, converges pointwise. Then (as we saw in Corollary 2.23) lim,, f,, is measurable and
lim ( / fndu) - / (hm fn) du.

Proof. The monotonicity (2.11) implies that

[ htn < [t wen

so that [, fndu C [0,00] is a monotone increasing sequence of numbers, and as such necessarily has a (possibly
infinite) limit in [0, co]. Moreover, we also have

fo<limfr  (neN)

and by Corollary 2.23, lim,, f,, is measurable too, so

[ fus [ (imf)de men

and taking the limit of both sides of this w.r.t. n we obtain

lim /X Fodp < /X (liTan fn) dp .

For the other direction, let s be a simple measurable function such that 0 < s < lim,, f,, and ¢ € (0, 1). In particular,
0 < c¢s < lim, f,, when lim,, f,, > 0. Then defining

E, = {zeX|fu(x)>ecs(x)} (neN)

which are all measurable, and obey E, C E,;1 by (2.11). We claim that X = |J,, Ey. Indeed, let € X. Then
either lim,, f,, (x) = 0 in which case s (z) = 0 so that x € E;. Otherwise, lim,, f, () > 0, so ¢s (z) < lim,, f, (z) and
so there must be some n such that f, (z) > cs(z) and for that n, x € E,,.

Finally,
/ fndp > / fndp > c/ sdp (neN).
X En E,

Taking the limit n — oo of both sides we obtain

lim/ fodp > clim/ sd .
nJX " JE,

By the above, we know that s, 1 define a new measure E — || 5 sdp on X, and applying the monotonicity result (2.4)
we obtain

lim/ fadp > c/ sdp .
"JX X

lim/ fnd/LZ/ sdp .
nJX X

Now take the limit ¢ — 1 here to get

20



Now take the supremum over simple functions s obeying 0 < s < lim,, f,, to get

lim/ fndp Z/ lim f,du

which is what we were trying to show. O

Theorem 2.48 (Exchanging the sum with the integral). Let f,g: X — [0, 00] be measurable. Then
/ (f+g)du=/ fdu+/ gdpu.
X X X

Proof. Let s,,t, be sequences of positive measurable functions which approximate f, g respectively, according to
Theorem 2.27. Since these approximating sequences are monotone, we have by Theorem 2.47 that

lim/ snd,u:/ fdu.
nJX X

Moreover, we know that s,, + t, is a sequence of positive simple functions which approximates f + g monotonically
from below. Hence again via Theorem 2.47

lirrln/x(sn-l—tn)du:/X(f—f—g)du.

But by Proposition 2.46 we know that

/(sn—i—tn)d,u:/ snd,u—i—/ tdu
X X X

since these are simple functions. O

Theorem 2.49 (Exchanging series summation with the integral). Let f,, : X — [0,00] be a sequence of measurable
functions. Then
/X <n=1 n=1 X

Proof. The sequence of partial sums ZnN:1 fn itself converges monotonically to f from below, so we apply Theo-
rem 2.47 to it, after applying Theorem 2.48 N times on the partial sum. O

Claim 2.50. If f : X — [0,00] and X is countable, and ¢ : P (X) — [0, o0] is the counting measure, then

/Sfdc=2f<w>-

zeS

Proof. Since X is countable, let  : N — X be an enumeration of it. Let us then define, for each n € N, the simple

function
n

50 (2) = X1,y (7 @) F @)=Y F () Xinyy (@) (z€X).

Jj=1

Then clearly s,, — f pointwise, and since f > 0, s, > 0. In fact 5,41 > s, for all n € N so this sequence obeys the
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conditions of the monotone convergence theorem. Then

/fdc = lim/sndc
S nJs

_ 1175112f(nj)|50{m}\

zeS

Remark 2.51. If X is not countable we can still make sense of this, however, then we need a definition of

> )

reX

for X uncountable. One such possible definition which is common is

Z f(z):=  sup Z f(z).

zeX FCXH|F|<00 e

It turns out that with this definition the integral against the counting measure is precisely > .\ f (x) but we do not
pursue this here.

Yet another corollary of Theorem 2.47 is the fact we can exchange double summation on positive double sequences.

Corollary 2.52. If a: N? — [0,00] is a double-sequence then

0o 00 o 00
5 § Anm = § § Anm, -
n=1m=1 m=1n=1

Proof. We set up the problem as N being our measure space with Msrbl (N) := & (N) and we choose c as the counting
measure. Then for any M € N we define by : N — [0, o0] via

M
bar (n) == Z nm, (neN).
m=1
This is an increasing positive sequence so Theorem 2.47 applies to it:

lim bMdc:/ lim bysde. (2.12)
N N

M—o0 M — o0

By Claim 2.50 the LHS of (2.12) equals

M
D SCIENTID ) o1

neN neNm=1

M
= lim E E a
M —o00 nm

m=1neN

- Y e

meN neN
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On the other hand the RHS of (2.12) yields

lim bMdC = E lim b]\/[ (Tl)
N M—o0 M — o0
neN
M
= lim E Anm
M — o0
neN m=1
= > D am
neN meN

O

Lemma 2.53 (Fatou’s). Let f, : X — [0,00] be a measurable sequence on a measure space (X, Msrbl (X),u). Then
/ (lim inf fn) dp < lim inf/ fndp.
X n n—oo X
Proof. We use the characterization of liminf given in (2.1). Then
liminf f,, = lim (inf fm) =sup inf f,.
n—00 n—oo \ m>n neNm>
Hence, let us define the sequence g, := inf,;,>y fr,. Then g, < f,, and so

/gndug/ fody  (REN) . (2.13)
X X

Moreover, g, is an increasing measurable sequence whose limit is liminf,,_, ., f, So applying Theorem 2.47 to
this sequence we find

lim gndp = / lim g,du
X X

n—oo n—roo

lim Xgndu = /X(liminffn) dp.

n—oo n— oo

Hence taking the liminf on (2.13) we find

%

liminf/ frndp liminf/ gndp

= lim/ gndp
noJX

- / (hminf fn) dp
X n—oo

which is what we were trying to show. O

With the monotone convergence theorem we can also generalize Proposition 2.45 from simple functions to general mea-
surable functions.

Theorem 2.54. Let f : X — [0,00] be measurable and define ¢ : Msrbl (X) — [0, co] via
v (E) ::/ fdu (E € Msrbl (X)) .
E
Then ¢ is a positive measure on Msrbl (X) and

/ gdy :/ gfdp (g9: X — [0,00] measurable) .
X X
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Proof. Since p is a measure, u (@) = 0 so that ¢ (&) = 0 via (2.9). Next, we want to verify countable additivity
of ¢. To that end, let { A; },.\ be a sequence of pairwise disjoint measurable sets. Our goal is to show that

¢ (Ujen 4i) = Xien ¢ (4i). Then using (2.10) we have

(U

Il
c—
¢
zZ
>

~

o,

=

I I

><\ ><\

Z N T
M <
> 2
=k
&H

—_
o o
= =

Now using Theorem 2.49 we get

90<UAi> = Z/XXAifdM

ieN

which is what we wanted to prove. O

2.7 Integrating complex-valued functions

Here again
(X, Msrbl (X), )

is a measure space. As we mentioned above in the beginning of Section 2.3, we shall write a so-called polarization identity.
For any f: X — C, we may decompose it as the complex linear combination of four non-negative functions as

f=Re{f}" —Re{f} +ilm{f}* —ilm{f}" . (2.14)

However, as it turns out, we don’t want to just define

[t [ Reryt = [ Regnyapi [ty an=i s (2.15)

because that might cause some weird algebraic cancelations of the form oo — ico. For that reason, we prefer to first
define

Definition 2.55 (L!(X,u) space). Recall that if f : X — C is measurable, then so is |f| : X — [0,00) by
Corollary 2.23. It is then legitimate to consider the integral

/leldu

and using it we define the space
LY (X, ) ::{f:X—>C‘fismsrbl. and / f|du<oo} )
X

We then only define (2.15) only for f € L' (X, u). We note that since

Re {f}" <1/l

/deus4/X\f|du

but actually we will quickly get rid of the factor 4 in Theorem 2.60 below.

etc we have
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Theorem 2.56. L' (X, p) is a C-vector space.

Proof. We want to show that if f,g € L' (X, ) and o € C then af + g € L' (X, 1) too. First, we know that af + g
is measurable by Theorem 2.20. Moreover,

laof + gl < laf[f] + |g]

/Iaf+g|§|al/ IfIdu+/ gla=tco"
X X X

so that

Theorem 2.57. The map
/ dp: L' (X, p) — C
X

is itself C-linear, so that the integral is a linear functional on the C-vector space L* (X, ).

Proof. Let f,g € L' (X, ) and o € C. We want to show that

/X(aerg)duza/deu+/ngu. (2.16)

To that end, let u,v € L' (X, 1) be two real-valued functions. Set h := u + v and note that the decomposition into
the positive and negative parts obeys

ht—h™ = ut—u 4ot —v™

hMt+u +v- = ut+o0ot+h".

Each side of this latter equation is non-negative, and so obeys additivity as stipulated by Theorem 2.48, i.e.,

/h*dqu/ u*dqu/ vfdu:/ u+d,u+/ v*dqu/ h™duy.
b'e b'e b'e b'e X b'e

By the u,v € L', each of these integrals is finite, so we may move sides again to get

/h+du—/ h_du:/ u+d,u—/ u_d,u+/ v+du—/ vodp.
X X X X X X

Now by definition in (2.15) we have
/ hdp :/ htdu —/ h™dp
b's b's X

/(u+v)du=/udu+/vdu
X X X

which is additivity for real-valued functions. Also note that if u = u™ — = is the decomposition into positive and
negative parts of u : X — R, then —u = —u™ + u~ so the positive and negative parts switch and so

/X(—u)du /Xu_du—/xu*'d,u
(o
—/Xudu
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so that still with u,v: X — R

/X(ufv)du:/Xudu+/x(fv)du:/Xud,u—/de,u

/(u+iv)du = /u+du—/u_du+i/ v+du—i/ v dp
X X X X X
= /udu+1/ vdp .
E X

Finally, we learn then that if f,g: X — C then

and

/X(f+g)du /X(Re{erg}Jrilm{erg})du

J Retr+gyduti [ tmis+g)du
— [ Relsb+Refghdu+i [ (tm{s}+m{ghdu
[ Retsyau+ [ Refobdu+i [ mifyduti [ tm g}

/deu—l—/xgdu.

Now we want to show that [ afdu = an fdp for any o € C and f € L'. To that end, we already know from (2.8)
that if o > 0 then

/X o fdy

/JERe{af}+du—/ERcB{ozf}_du—i—i/EIm{af}eru—i/EI]m{af}_du
[ aRetny du— [ aRe(s) dn+i [ atm (st aui [ atm{s)"an
a/ERe{f}fdu—a/ERe{f}‘duHa/E|m{f}+du—ia/E|m{f}‘du

= oz/xfdu.

Clearly if @ = —1 or & = i then this just rearranges the quadruplet Re {f}* ,Re {f} ™, lm {f}",Im {f} . O

Corollary 2.58. We may exchange real and imaginary parts with integration.

Claim 2.59. If u,v: X — R are L' and u < v then Jx udp < [ vdp.
Proof. We have

u++v*

Now invoking (2.7) we get
/ (u+ —l—v7) du S/ (v+ —|—u7)d,u.
X X

Using Theorem 2.57 and re-arranging we obtain the result. O

26



Theorem 2.60 (The triangle inequality). For all f € L* (1) we have
‘/ fdMIS/ |fldp.
X X

Proof. If [, fdu = 0 we are finished. Otherwise,

< |

Jx fdu
(Jx fdu/ |fX fd/‘|)

1
-/, [(fx Fanl Ty fdu|>] fu

where in the last line we simply inserted the scalar into the integral thanks to linearity Theorem 2.57. Taking the

real part of the equation
1
du| = d
for= [(fx Faul | fdu!)] T

for] = R‘B{/x l(fx T fdu|)] ! d”} il /xRe{ (eI }d”'

yields

Next, thanks to Claim 2.59 and u < |u| for u € L' which is real valued, we have

’/deﬂ‘ = /x RCB“(IX fdu/llfx fdul)] f} s /X

where in the last inequality we used |Re {z}| < |z| and then Claim 2.59 once more. But we note that

‘/deu’ < /le\du

which is what we were trying to show. O

1
([ fdu/ | [ fdul)

fldp

1
{(fx fau/|[x fdu|)} ’

1 so we obtain

2.8 Limit theorems II

We come to a basic result in Lebesgue integration, one of the most powerful limit theorems.

Theorem 2.61 (Lebesgue dominated convergence). Let f, : X — C be a sequence of measurable functions which
converges pointwise on X. Assume further there is some g € L (u) which dominates the entire sequence:

fn(@)]<g(x) (xeX,neN). (2.17)

(note this inequality automatically implies im (g) C [0,00))
Then lim,, f, € L* (u),

lim /

noJXx

lim/ fndu:/ lim f,dp .

dp =20

fn _lirlnfn’

and
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Proof. Recall from Theorem 2.22 that lim,, f,, is measurable. Taking the limit on (2.17) we obtain |lim,, f,,| < g so
that lim,, f, € L' (1) indeed. Moreover, by the triangle inequality we have

fn - hr/nfn’ < |fn| + liI/rlfn’ <gt+g=2g
so that 2g—| f,, — lim,,s fpr] > 0 and hence Fatou’s lemma Lemma, 2.53 applies to the sequence { 29 — | f, — limy,/ f/| },,.
It implies
/ lim inf [29 —|fn = tim £ } dp < liminf / [Qg — | £ = lim £ } du
X n n’ n X n’
!
/ 2gdp < lim inf/ 2gdp — lim sup/ fn—lm f/ | dp
X © X n X n
!
lim sup/ fo—lm frr|dp < 0
n X n’
1
lim/ fon—lm f.|dup = 0.
n X n’

Next, we have by Theorem 2.60 that

117an . (fn _hnI/nf”') du=0.

Corollary 2.62 (The bounded convergence theorem). Let (X, Msrbl (X), i) be a measure space such that p(X) < oo
and assume that f, : X — C is a sequence of measurable functions which converges pointwise and such that

sup|| fallo < o0-
n

Then
lim/ fndu:/ lim f,dp.

Proof. Let g : X — C be given by
g(x) :=supllfull,  (z€X).

Then as a constant function g is measurable and it dominates the sequence. Moreover, since p (X) < oo, g € L (p):

[ 1alan= [ gau= (supnfnnoo) 1 (X) < oo
X X n

Hence, Theorem 2.61 implies the result. U

2.9 Construction of non-trivial measures [Folland]

In our journey so far we have encountered only two measures: the counting measure and the Dirac delta measure. To
get more interesting measures we outline a construction whereby we define not a measure, but an outer measure, on the
entire power set P (X) and then restrict the domain to get an honest measure; see Figure 2. The definition of the outer
measure is a bit easier and follows geometric intuition.

Remark 2.63. Outer measures are NOT measures according to Definition 2.28.
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‘ Some function p : § — [0, co] for some & C P(X) ’

Proposition 2.66

/ Outer Measure ¢, : P(X) — [0, o0] /

Theorem 2.70

Measure pi,, = A,, — [0,00]
restriction of ¢, to a o-algebra A,

Figure 2: The process of constructing measures. If the initial input to this process p happens to be a premeasure defined
on an algebra, then Theorem 2.76 guarantees further properties to p,,.

2.9.1 Outer measures

An outer measure is a map defined on more sets than just measurable sets, in fact, it is defined on the entire power set,
but it is required to obey less axioms than an actual measure.

Definition 2.64 (Outer measure). Let X be some non-empty set (we don’t need to choose Msrbl (X) on it yet). An
outer measure ¢ on it is a map
¢ P (X) = [0,00]

such that
1. (zero on empty set) ¢ (&) = 0.
2. (monotonicity) p (A) < ¢ (B) if A C B.
3. (countable sub-additivity) ¢ (U;—y An) < > oo, ¢ (A,) for all sequences A,, € P (X).

We see that ¢ obeys less than a measure: it is merely countably sub-additive rather than countably additive. But it
is defined on the entire P (X).

We could define outer measures directly, for example

Example 2.65. An outer measure on R is given by

p(4) = {(1’ j;i (A€ R).

One easily verifies the axioms.

A more useful way for us will be to get outer measures out of more primitive functions:

Proposition 2.66. Let § C P (X) such that &, X € & and p : § — [0,00] be given such that p(&) = 0. Define
0p: P (X) = [0,00] via

¢p (A) = inf ({ Y p(En)

n=1

{En}, C6nAC|En }) (Ae®(X)).

Then ¢, is an outer measure.
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Proof. First we want to show that ¢, (&) = 0. Since @ € &, we may take the cover E,, = @ for all n. Since p (&) =0,
we get that we are taking an infimum over a set of positive numbers which contains zero, and hence the infimum
equals zero, so ¢, (&) = 0.

Next, if A C B are two subsets of X, then every cover of B is also a cover of A, so necessarily

BcUEn}c{{En}nces ACUEn}

n n

{{En}nCé

so the infimum over the bigger set will be smaller, and hence ¢, (A) < ¢, (B) as desired.

Finally, we need to establish countable sub-additivity. Let { A, },, € # (X) be some sequence, and choose € > 0
and another sequence { &, },, C (0,00) such that ) e, = e. By the approximation property for the infimum, we
have for every n,

0o () > 3 p(BSp) e

m=1

for some sequence { E7, },. C & which covers A,,. Moreover, since each such sequence covers A,, for fixed n, taking
the union of all sequences covers the union of all 4,’s. l.e.,

U4. cUUEm.

Since we have established monotonicity of ¢,, we invoke it now on this last inclusion to obtain

()= (W)

But now, we can explicitly estimate the term on the right hand side since Ef». covers itself so the infimum is attained
on itself and we obtain

op (UAn> <, (UUE%) <> p (B =Y 0 (B < Y lep (An) +enl =4+ 3 0 (An) -

Since € > 0 was arbitrary we obtain the result. O

Example 2.67. An example that will be actually the raison d’étre of this entire construction is to take X = R,
&:={la,b)|]a<beR}

and
p([a,b) :=b—a.
There are still some pitfalls with this construction.

Claim 2.68. If p is not countably additive, ¢, could fail to coincide with p when restricted to &.

Proof. Consider X =N, &:={ ACN||A] < ooV |A°| < 0o} and define

{1 |A°| < o0

A
p4) 0 |4] < oo

Then one may verify that ¢, = 0 always, and so, does not agree with p when restricted to &: (Chayim Lowen) It is
clear that @, X € & and that p(@) = 0, so ¢, is well-defined. Note that since every set forms a cover of itself, we
have ¢,(5) < p(S) for all S C &.* Since ¢, is an outer measure, it is countably subadditive. Hence

#p (N) = ¢y (U{z‘}) <D e{ih D el =3 0=0
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Thus ,(X) =0+# 1= p(X)°". O

%This holds in complete generality.
bSince ¢p is an outer measure, it will follow that ¢, = 0.

2.9.2 Constructing measures out of outer measures

Now that we have some idea of what an outer measure would be, we want a systematic process to get from an outer
measure ¢ to a measure fi,. To do so, we must restrict the domain of the resulting measure ji,. Indeed, it is not realistic
that the measure we shoot for will have # (X) as its domain since we know that eventually some sets will need to be non
measurable. It turns out that the correct criterion for this is as follows

Definition 2.69 (Measurable sets w.r.t. an outer measure). Let X be a non-empty set and ¢ : P (X) — [0, 0] be
some outer measure on it. Let

A, ={AcP(X)[VQeP(X), ¢(Q) =¢@QNA)+p(@QN(X\A)}.
We call the elements of A, the p-measurable subsets of X.
Note that since Q = (Q N A) U (Q N (X \ A)), by subadditivity we always have
Q) <e@QNA)+¢(@QN(X\A)
so one could just as well define

Ay ={A€P(X)[VQeP(X):¢(Q) <0, p(Q) 2 ¢(QNA)+¢(@N(X\A))}.

Theorem 2.70 (Carathéodory’s restriction theorem). A, is a o-algebra on X and p, : A, — [0, 00| defined via
A (A)

is a measure on X.

Proof. Following Definition 2.1, we show that X € A,. If ¢ (Q) < oo, then we want to show that

¢ (Q) p(@NX)+e(@N(X\X))
p(@Q)+¢(Q@N2)
v (Q)+¢(2)=¢(Q)

I v

which is true, so X € A,.
Next, we want to show closure under complements. Let A € A,. Then we want to show if ¢ (Q) < oo,

p(@Q) > v(@NX\A)+e(@N(X\(X\A))
= p@N(X\A4)+e(@NA)

which is true since A € A,,.
Finally, we want to show closure under countable unions. Let us first show closure under finite unions. So let

A,Be A, and Q € P (X) with ¢ (Q) < co. Then invoking A € A, we get
P (Q) =2 (@NA)+¢(Q@NAY)
and invoking now B € A, on each term on the RHS yields
(@) Z2¢(@NANB)+¢(@NANB®) +¢(@NA°NB)+¢(@NA°NB°).
Note that AUB = (AN B)U (AN B°) U (AN B), so since ¢ is subadditive, we get

e(Q@N(AUB) <9o(Q@NANB)+p(QNANB®) +p(QNA°NB)
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and so all together
Q)2 ¢(@N(AUB)) +¢(Q@NA°NEB).

Finally, observe that A°N B¢ = (AU B)“ which leads to the closure under finite unions we seek.
Now we want to go to closure under countable unions. Note that it will suffice to show this for pairwise disjoint

sequences via the construction
n—1
B, :=A,\ (U Ak>
k=1

given a sequence { A, },. So assume WLOG that { A, },, C A, is pairwise disjoint. Our goal is to show that
U, An € A,. Let Q € P (X) with ¢ (Q) < oco. Since we know that finitely many unions are in A, for any N we

have 4,0(@)290<Qm<Q1A7L>>+@<Qm<glAn>c> :

Let us invoke now Ay € A, on the set Q N (Ufj:l An) to get

e(on(Ua)) > o(en(U)aan)soen(Ua) o)

0 (QNAN) +<p< (U A ))
Performing now induction on N shows that

%

Hence we find

Note that [JY_, A, € U2, A4, so (UN_ An) D (U2, 4,)° and hence by monotonicity of ¢ we get

N 0o c
w(Q)ZZ«p(QmAn)Jrcp(Qm (U An> ) :

n=1

@2 Fvansie(an({s )C)

By countable subaddivitiy of ¢, we have > - 0 (QNA,) > ¢ (U, (

QNA
(g0

w(QﬂUAn>+¢<Qm<UA>> (2.18)
which is what we were trying to show.

Next, we want to show that p, is a measure. To that end, we may take @ € A, as that set for which

Take now the limit N — oo to get

¢ (Q)

v

\|C8

Po (B) =0 < o0.
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So we are left with showing countable additivity on pairwise disjoint sets. First let us show additivity. Let A, B € A,
with AN B = @. We already know that AU B € A, and so

pe(AUB) = ¢(AUB)
p((AUB)NA)+ ¢ ((AUuB)N A9
= ¢(A)+¢(B).

To get countable additivity, we invoke the above demonstration that A, is closed under countable unions, in
particular, Section 2.9.2, with @ = J,, A,. This yields

0 (UAn> > ¢o(A4n)
n n=1

and since the other direction of the inequality is true by definition, we get countable additivity on pairwise disjoint
sets which belong to A, and hence, of . O

Claim 2.71. p, as constructed above is complete, in the sense that if A € A, has p,(A) = 0 and B C A then
B ¢ A, too.

Proof. Let @ € ® (X) such that ¢ (Q) < oco. Then we want to show that

p(@Q)=p(@NB)+¢p(@NB°).

Note that QN BCQNAC As00<p(QNB)<p(A)=0. So we only have to show

(@) = ¢(@nNB°).

But this is of course true since @ N B¢ C @ and ¢ is monotone. ]

Again there are issues with this construction
p— Pp - 'LLSDP .

Claim 2.72. There are choices of p such that A, does not contain the o-algebra generated by &.

Proof. The example presented in the proof of Claim 2.68 will not do, because for that, actually o (§) = # (N) = A, .
For an actual counter example, consider X = [0, 1] with & := { @,[0,1] } U {[0,a) | a € (0,1) } and define

p(@) = 0
as well as
p([0,1]) = 1
and
p([0,a)) = 0 (a€(0,1)) .
One verifies that the resulting outer measure is given by
0 sup(F)<1
v, (E) = o
1 sup(F)=1

Moreover, a set A C [0,1] is ¢,-measurable iff sup (4) < 1 or sup (A°) < 1. BUT, ¢ (&) = B ([0, 1]), so that it is not
true that

Ay, 2 o(€).

P
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2.9.3 Constructing outer measures out of premeasures

In principle we are now already prepared to define a new measure out of a given outer measure. For example, this
construction applied on Example 2.67 yields the Lebesgue measure. The problem is that stopping now would lead to the
problems outlined in Claim 2.68 and Claim 2.72. We need a somewhat more systematic construction to get outer measures
compared with Proposition 2.66 which will guarantee all the properties we want. For that reason, we turn our attention
to

Definition 2.73 (Premeasures). Let A be an algebra (the definition is as in Definition 2.1 but replacing closure
under countable unions with closure under finite unions). A map p : A — [0, 00] is called a premeasure iff

e p(2)=0.

o If { 4; }j’;l C A is a pairwise disjoint sequence such that U;il A; happens to lie in A, then

rlU4 | = doray).
j=1 j=1

We see that a premeasure and measure basically obey the same axioms, the main issue is that the domain of a
premeasure is merely an algebra and that of a measure is a o-algebra. In particular, every measure is itself a premea-
sure.

Remark 2.74. Premeasures are also monotone: If A C B then p(A) < p(B) for all A, B € A, for the same reason as
is true for measures.

Since a pre-measure obeys p (&) = 0, it may well be the input for Proposition 2.66 so as to obtain an outer measure

out of it, ¢,,.
However, since ¢, is now coming with the assumption that p is a premeasure, we have additionally

Proposition 2.75. If A C ®(X) is an algebra and p : A — [0,00] is a premeasure, with ¢, : P (X) — [0,00] the
outer measure induced by it in accordance to Proposition 2.66, then ¢,|, = p and A C Ay, .

Proof. (Thanks to Ary Cheng and Joshua Lin) Let Q € A. We want to show that

With the cover £y = @Q and E,, = & for all n > 2 we get

0, (Q) < p(Q) .

For the reverse inequality, suppose that @ is covered by some sequence { E,, }~ ; C A. In principle | ;- ; E,, need not
lie in A since it is merely an algebra and not a o-algebra, so we may not plug it into p. However, Q@ = QNJ;~, En,
so { E,NQ}, is a sequence of elements in the algebra whose countable union, @, happens to lie in the algebra.
Then by monotonicity and countable subadditivity of p,

oo

p(Q)=0p (Qﬂ U En> <> p(QNE) <D p(En) .

n=1

Now take infimum over all covers E,, to get

p(Q) <9, (Q) -
Next, we want to show that A C A, . Let then A € A. We want to show that for any Q € # (X),

p(Q) 2 0o (QNA)+ 9, (QNA°) .
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By the approximation property of the infimum, for any € > 0 there exists a sequence { EZ }, C A such that
o0
v (@) > ZP(EZ)_E'
n=1
Then

0@ +e > ) p(E)

o

= S p(EINA) +p (BN A
1

n

I
NE

Pp (Ergt NA)+ Pp (ETEL N A°)

Il
iy

n

where in the last line we used the fact that ¢, restricts to p on A. But now, QN A C (J,, (E5 N A) so by countable
subaddivitiy of ¢, we get

o (@NA) <o, (U(EﬁﬂA)) SZSDP(ETELQA)

n

and same for A€ so all together
P (Q) +e =0, (QNA)+ ¢, (QNA°)

and since € > 0 was arbitrary we get the result. O

Theorem 2.76 (Carathéodory’s extension theorem). Let A C P (X) be an algebra and p : A — [0,00] a premeasure.
In this scenario we already know that there erists a measure ji,, induced by p via Theorem 2.70. Then, since p is a
premeasure, we have the following additional properties:

1. The o-algebra generated by A, o (A) is contained within A, (defined according to Definition 2.69).
2. If v:o(A) —[0,00] is any measure such that v|,; = p then v (E) < p,, (E) for all E € 0 (A) and

3. If X is o-finite w.r.t. p, in the sense that there exists some { A, } —; C A such that p(A,) < oo and
X CUpZ, An then py,, is the unique extension of p to o (A).

Proof. For the first statement, we know that A C A, by the previous claim and since the latter is a o-algebra and
o (A) is the smallest o-algebra containing A, we get the claim.
For the second statement, let E € o (A) and pick some cover { E,, }, € A such that |J,, E,, O E. Then

V()<Y v(B) = p(En) -
n=1 n=1
Taking now infimum over the covers we get
v(E) < pg, (E)

Moreover, by (2.4) we have

35



Now, if p1,,, (E) < 0o, by the approximation property of the infimum let us choose for any ¢ > 0 the cover so that
o0
poy | U Ei | <o, (B) +¢

=1

which implies
j=1

so that

Mo, (E)

INA
=
&y
 ~
(@
=

= UV GEJ NE | +v GEJ N E¢

< vB) tu, [ [UE)\E
=1
< v(E)+e

but since € > 0 was arbitrary we get equality.
Lastly, if X is o-finite w.r.t. p, e, X = U‘;‘;l Aj with A; € A and p(A;) < oo then (WLOG assuming A;’s are
disjoint) we get for any FE € o (A),

fig, (E Zp% (ENA;)=> v(ENA;) =v(E)
=l Jj=1

so really v = py,,. O

Remark 2.77. As we presented the theory so far, it may well happen that o (A) C A,,. For an example: let X :=R
and pick p so we get the Lebesgue measure on R. Then o (A) = B (R). Now pick any subset of R which has measure
zero, for example the Cantor set C. Thanks to Claim 2.71 the Lebesgue measure p is complete in the sense of
Definition 2.33, i.e., any subset of a zero measure set is Lebesgue measurable. That means that since p (C) = 0 then
any subset of C' is in Lebesgue measure, i.e., in A,,. But there are certainly non-Borel subsets of C'. Indeed, by
Theorem 2.15, the cardinality of B (C) is 2% (since the Borel sigma algebra on C can be generated by a countable
subset, even though C itself is uncountable, just like the Borel sigma algebra of R may be generated by a countable
set though R is uncountable; e.g. take the collection C' N (a,b) where a,b have rational endpoints) yet the power set
equals @ (C) = 2¢ so its cardinality is [# (C)| = 22" > 9% 50 there must be way more subsets of C' than there are
Borel subsets of C.

Actually, one can also go in the reverse direction:

Theorem 2.78. Let a measurable space (X,1M) and a measure on it p : M — [0,00] be given, such that p is o-
finite as in Definition 2.37. Then there exists an outer measure ¢, : P (X) — [0,00] such that when we apply the
Caratheodory restriction Theorem 2.70 to it to get p,, we get back [z and Ay, 2 M.
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Proof. Let us define

9, (A) = inf ({ > (M)

Then using the very same proof Proposition 2.66 we get that ¢, is an outer measure. In doing so, we treat p as an
“arbitrary” function such that p (@) = 0, we don’t need any of its additional structure to show that ¢, defined so is an
outer measure. The main issue is rather to show p,, = 7i. Since every measure is itself a premeasure, Theorem 2.76
applies to p,, to get a complete measure on A, (completeness thanks to Claim 3.10). The assumption that X is
o-finite in particular implies that p,, is the unique extension of y to o (1) = M. O

{Mn}neNCmAGMnDA}> (Ae (X)) .

n=1

2.9.4 The Kakutani-Markov-Riesz representation theorem [extra, Folland and Rudin]

Thanks to Olivia Kwon for contributing this section about the KMR, theorem.
So far we have seen one way to construct new measures:

p_>sDP_>M‘Pp

where p is a premeasure. This general strategy uses the Caratheodory extension theorem.
It turns out that there is yet another way to construct measures. It would yield yet another way to construct the
Lebesgue measure. First, we start with a

Definition 2.79 (Radon measure). A radon measure is a positive Borel measure such that:

1. It is finite on every compact set
2. (Outer Regularity) It is outer regular on all Borel sets
3. (Inner Regularity) It is inner regular on all open sets.

Definition 2.80. We say a set E in a measure space is o-finite if there exists {Ej}jen such that E = |J;cy E; with
p(E;) < oo for all j € N.

Proposition 2.81. (Folland 7.5) Every Radon measure p is inner reqular on all of its o-finite sets.

Proof. Suppose F is o-finite. We first consider the case in which u(E) < oo. Then, given € > 0, find an open set U
containing E such that u(U) < pu(E) +€¢/2 and a compact set F' such that p(F) > pu(U) — €/2 using the definition of
Radon measure. Then, since u(U — E) < ¢/2, we can choose an open set V containing U — E such that u(V) < ¢/2
as well. Define the compact set K = F — V. Notice that K C F and that

WEK) = p(F) = p(FNV) > (W(E) = €/2) — (V) > p(E) — e

Therefore, we have that F is inner regular.
Now consider the case when p(E) = co. By o-finiteness, we can find {Ej;};en such that £ = [J;c\ E; with

p(Ej) < oo for all j € N. We know that for every N € N, there exists N; such that N < M(Uf\gl E;) < oo. By

argument from the above paragraph, find compact set Ky C Uivzjl E; such that pu(Kx) > N as well. Because N is
arbitrary, we have that F is inner regular in this case as well. O

Corollary 2.82. (Folland 7.6) Every o-finite Radon measure is reqular. If X is o-compact, every Radon measure on
X is regular.

Definition 2.83. We say that a linear function A : C.(X) — R is positive if A(f) > 0 for all f > 0.
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In

]

Theorem 2.84 (Kakutani-Markov-Riesz). Let X be a locally compact Hausdorff space and A a positive linear func-
tional on C.(X — C). Then, there exists a unique positive measure p such that it satisfies

1. The equality:
M= [ Fan (fecx o).

2. u(K) < oo for every K compact.

3. (Outer regularity)
yA(E) = inf ({ua(U) | EC U AU € Open(X)})  (E € B(X))

4. (Inner regularity)

pa(E) = sup ({pa(K) | E2 K A K € Compact(X)}) (E € B(X) : u(E) < o)

5. p is complete.

addition, p satisfies:
7. uw(U) =sup{A(f): f € Co(X), f < U} for all open U C X.
8. w(K)=mf{A(f): f € Cc(X),K < f} for all compact K C X.

Proof. Notice that by Proposition Proposition 2.81, it is enough to show that p is a complete measure satisfying
the first condition such that when restricted to the borel sets, it is a Radon measure, as well as properties 7 and 8.
We prove the theorem in 5 steps. The moral of the proof is that we define an outer measure p and restrict it to a
sigma-algebra that satisfies the desired property, using Carathodory’s construction.

Step 1 (Uniqueness) This is the easiest part of the proof. Assuming the existence of such u, we show that it
must be unique.

Note that because u is a Radon measure, it is determined by its values on compact sets of X. This is because by
inner regulariy, the measure of open sets is determined by that of compact sets, and by outer regularity, the measure
of every Borel set is determined by that of open sets.

Therefore, given two measures 1, o satisfying the above properties, it is enough to show that they agree on
compact sets to prove the uniqueness.

Given two measures 1, 1o satisfying the above properties, fix arbitrary compact set K C X and € > 0. By outer
regularity property, find V' containing K such that pus(V) < pa(K) + €. Using Theorem E.6, find f € C.(X) such
that K < f < V. Then we have,

Nl(K):/XXKdMS/de,ul:/\(f):/xfdlmS/XXVdM:Mz(V)</~£2(K)+€~

Taking € — 0, we have that p;(K) < po(K). By symmetric argument, we have that pe(K) < pq(K) as well, giving
as the desired conclusion. [J

Step 2 (Defining ¢ and Proving that it is an Outer Measure) We first define ¢ on P(X). First, for all
open sets, define

p(U) = sup{A(f) : f € Ce(X), f < U}
Then for any arbitrary set £ C X, define

¢(E) =inf{p(U) : E C U,U open}.

We claim that ¢ is an outer measure.

First, notice that ¢(f)) = 0 because the only function satisfying f < @) is f = 0.

Secondly, ¢ is monotone. This property follows because if A C B, then for all U open containing B also contains
A and therefore u(A) < p(B) by construction.

Lastly, ¢ satisfies countable subadditivity. To prove this, we first prove finite subadditivity for open sets and
then generalize to the desired claim. Given Vi, V5 open in X, find g € C.(X) such that g < V4 U V5. Then, by the
Corollary E.7 on K = supp(g), V1, and Vo, we can find h; and hs in C. such that hq(x) + ha(z) = 1 on supp(g) and
h; < V; for 1 < ¢ < 2. Therefore, we have that ¢ = h1g + hog and hence

Ag = Ahlg + Ahgg S ,LL(Vl) + ,LL(VQ).
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Thus by the definition of p(V; U V2), we get that u(Va U Va) < w(Vy) + u(Va).

Now given {E;} C X, we assume for all i, u(E;) < oo for if there exists some ¢ such that u(E;) = oo, then the
inequality becomes immediate. Given arbitrary e > 0, using the definition of u(FE;), for all E;, find V; open such that
(Vi) < u(E;) + 57 Denote V' = | J,; V;. Given arbitrary f such that f <V, by compactness of supp(f), we can take
finite subcover of supp(f) such that supp(f) C V,,, U--- UV, . Therefore,

Af < M(an U"'UVHN) < N(an) +o +M(VHN) < ZM(‘/Z) < Z/J'(El) +e

ieN ieN
Hence, for f,, € C. such that Af, — u(V), we get that:
Afn <> (B +e

ieN
p(V) <> u(E;) +e (o Afp = u(V))

ieN
u(V) < Z,u(Ei) (" Take € to 0.)

ieN
,u(U E;) < Z,u(Ei) (" 1 is monotone.)

i ieN
as desired. O

Step 3 (Proving that every open set is y-measurable.) To show the claim, it is enough to show that if U
is open and F is any subset of X with p(F) < oo, we have that p(E) > o(ENU) + o(ENU®). We first prove it for
the case when F is open, then generalize it to prove the claim.

Suppose E is open. Then, given € > 0, because E N U is open, we can find f € C.(X) such that f < ENU
and A(f) > o(ENU) —e. Also, E — supp(f) is open, so we can find g € C.(X) such that ¢ < E — supp(f) and
A(g) > ¢(E — supp(f)) — e. Notice that by construction, f + g < E. So,

p(E) = A(f) + Alg)
> o(ENU) + ¢(E — supp(f)) — 2¢
>e(ENU) 4+ p(ENUS) — 2 (" ¢ is monotone and (ENU®) C (E — supp(f)))

Thus letting € — 0, we have the desired inequality.
Now suppose F is an arbitrary set with ¢(E) < oo. By definition of ¢, find open set V' containing F such that
o(V) < ¢(E) + €. Then, we get that:

p(E) +e>p(V)
>p(VNU)+o(VNU (*.- By the case when E open applied on V)
>e(ENU)+ p(ENU®) (*." ¢ is monotone)

Letting € — 0, we have the desired inequality. [

Now define p to be the measure generated by this outer measure via Caratheodory’s construction p,. u’s
completeness follows automatically by this Caratheodory construction. Step 3 tells us that M,, contains all the Borel
sets and therefore ¢ |5 (x) is a Borel measure. By definition of ¢, it is immediate that it is outer regular for all sets
and satisfies (1) of the property we want. Therefore, it remains for us to show the other two properties of Radon
measure, the fact that A(f) = [ fdu  (f € Co(X — C)) for all f € Cc(X), and that p satisfies property (2).

Step 4 (u satisfies (2), i.e. pu(K) =inf{A(f): f € C.(X),K < f} for all compact K C X.) Suppose that
K is compact and f € C.(X) such that K < f. For every 0 < € < 1, define U. = {z : f(z) > 1 — €}. Because
f is continuous, we see that U, is open. Given any g. < U., we have that (1 —¢)~1f — g. > 0 because for all
x € supp(ge) C Ue, we must have that (1 —€)~!f(x) > 1. This means that because A is positive linear functional,
we get that A(ge) < (1 —€)"YA(f). This means that u(U.) < (1 —€) *A(f). Hence, u(K) < u(U.) < (1 —€)LA(f).
Letting ¢ — 0, we then get that u(K) < A(f). Taking infimum over all such f’s, we get that

u(K) < inf{A(f) : f € Ce(X), K < f}.

39



On the other hand, given ¢ > 0, we can find open set V; containing K with pu(K) > u(V.)—e. By Theorem E.6 find
fe € C.(X) such that K < f. < V.. This means A(f.) < u(Ve) by definition of ¢. So we get that A(f.) < p(K) + €.
Because A is monotone i.e. f > g implies A(f) > A(g), we have that taking e — 0, the left hand side goes to
inf{A(f): f € Co.(X), K < f} while the right hand side goes to p(K). Therefore, we have that

nf{A(f) : f € Co(X), K < f} < p(K)

and hence the desired equality follows. (I

Step 4 tells us that p is finite on compact sets because inf{A(f) : f € C.(X), K < f} < oo for all compact set K.
It also tells us that p is inner regular on open sets: If U is open, given a < p(U), we can choose f, € C.(X) such
that f, < U and A(fy) > « (by the definition of ¢ via supremum). Let K, = supp(fs). Then, given g € C.(X) such
that K, < g, we have that g — f, > 0 by construction and hence A(g) > A(f,) > a. This means that u(K,) > «
by Step 4. This means that by the definition of infimum, g is inner regular on U. Hence we have also shown that
restricts to a Radon measure when restricted to its Borel sets. Now it remains us to show the last property.

Step 5 (A(f) = [y f dp for all f € Co(X — C).) It is enough to show the claim for f € Cc(X,[0,1]), ie.
compactly Supported continuous functions with range [0,1]. This is because C.(X) is linear span of f € C’ (X [0, 1)).
Given N € N, for 1 < j < N, define K; = {z : f(z) > £} and let Ky = supp(f). Note then Ky C Ky_1 C --- C
K, C Ky. Also, define f1, -+, fx € C(X) by

0 if(ﬂ%Kj,1 3 1 1
(@) = Ji(gc)—% %fxeKj,l—Kj —min(max<f]N,O),N).

Then, Nflij <f; < N’lxK]._l. Hence by monotonicity of integrals,

1
NM /f]d,u<NN( g= 1)

Also, if U is an open set containing K;_; we have N f; < U and so A(f;) < N~!'u(U) by the definition of . Hence,
by outer regularity, we get that A(f;) < +u(K;—1). Moreover, by Step 4, we know that +u(K;) = + inf{A(f) : f €
Ce(X),K; < f} and thus 1 u(K;) < A(f;). Putting them together we get:

() < A(f) < oK),

Observe now that f = Zjvzl fj. Hence, summing above two equations for 1 < j < N,

| XN | N-1

NZM(Kj) < | fdu < N n(K;)
j=1 X =0

| X 1 N-1

NZ#(KJ') <A(f) < N u(K5)
j=1 3=0

Therefore, it follows that:
L (5 - p(Ko) = p(Kn) _ plsupp(s))
A0~ [ fan] < 5 (X i) - Yty | = TN < o

Since supp(f) is compact, p(supp(f)) < oo. Since N is arbitrary, we can let N — oco. Then we have that
p(supn(f)
N
— [ fin
as desired.[]

With this, we have proved the Kakutami-Markov-Riesz Representation theorem. O

and thus we get that
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3 Borel measures on topological spaces

In this chapter we want to explore the special properties of Borel measures. These are measures defined on the Borel
o-algebra of a topological space X: given a topological space X, we saw in Definition 2.16 that there is a natural o-algebra
induced by the topology of X, namely the Borel o-algebra B (X). It is the smallest o-algebra containing all of Open (X).
It turns out that the topological structure of X implies some regularity properties on Borel measure pu : B (X) — C.
Loosely speaking, the measure of any Borel set may be approximated by open sets containing it or compact sets contained
within it. To establish this regularity one needs to make additional assumptions on X as a topological space.

Let us make precise the regularity properties we seek to establish on our Borel measures:

Definition 3.1 (Regular measures and p-regular sets). Let a Borel measure pu : B (X) — [0,00] be given. A set
A € B(X) is called p-outer regular iff

i(A) = inf ({ () | AC U € Open (X)}) .
A set A € B(X) is called p-inner regular iff
() = sup ({ 1 (K) | Compact (X) 5 K C A}) .

Note that it is not a-priori clear that compact sets are measurable, but we shall only invoke this definition on
Hausdorff spaces where compact implies closed and hence Borel measurable, as we see right below.

If all Borel sets are p-outer regular, then p is called outer regular. For inner regularity, some authors differ. Rudin
defines the measure p to be inner regular only if either all open sets and all Borel sets with finite © measure are inner
regular. Others ask that all Borel sets be p-inner regular.

If i is both outer regular and inner regular, it is called regular. Some authors also use the name Radon for measures
which are both inner regular and locally finite, which, depending on the topological properties of X, may imply outer
regularity.

3.1 Some topological notions

Let us present the topological definitions we will need to make on X.
In general we are interested in separation azxioms. These are axioms that allow to separate elements, or sets, of X
by open neighborhoods. These axioms are usually denoted by the label T where § is an increasing nonnegative rational

number: the higher the number the stronger the axiom, and generally if X is T then it is also T (E) for all E < f (but

not always).

Definition 3.2 (Hausdorff topological space, T2). A topological space X is called Hausdorff or T2 iff for any
z,y € X :x #y, there exist Uy, Uy, € Open (X) such that ¢ € Uy, y € Uy, and Uy NUy, = 9.

Example 3.3. R is Hausdorff, since given any z,y € R with z # y and, WLOG, x < y, we may choose, say, ¢ := 5~

whence (x — e,z +¢) and (y — e,y + €) are two disjoint neighborhoods of x,y respectively. In fact any metric space
is Hausdorff.

Example 3.4. Take X ={ 1,2} and Open (X) ={ X, 2 }. Then X is not Hausdorff.

Example 3.5. R with the cofinite topology is not Hausdorff (but it is T'1 in fact). The cofinite topology J is given
by
T ={ACR|A=gV|A | <x0}.

Claim 3.6. In a Hausdorff topological space, every compact set is closed.

Proof. Let K € Compact (X) and let x € K°. By the Hausdorff property, then, Yy € K, 3U,,, Uy, € Open (X) such
that x € Uy, y € Uy, and Uyy N Uy, = &. Then

Kc | U

yeK
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is an open cover which by compactness has a finite subcover by some { y1,--- ,y, } C K:

< JUys-

=

Define now "
0 o= ([ Wi
j=1

which is open (as a finite intersection of open) and also contains z, since each of the sets in the intersection contain
z. We claim U N K = @. Assume otherwise. Then 32 € U N K. Then z € U;.Lzl Uy« and so 35, € {1,--- ,n } such
that z € Uy, ,. But we also have 2 € U and hence z € U, which is a contradiction since we have that

Uy, o NUsy,, = 9.
We have thus established that K¢ € Open (X), i.e., K € Closed (X). O
Remark 3.7. Note that this does not mean that every compact is bounded. We have no notion of bounded for general

topological spaces: we need at least a topological vector space for that | |. More commonly, we need a metric
space, which further has what is known as the Heine-Borel property.

Corollary 3.8. In a Hausdorff topological space, every compact set is Borel.

Definition 3.9 (Locally finite measure). A Borel measure p : B (X) — C is called locally finite iff Yo € X there is
some U € Open (X) such that x € U and p (U) < co.

Claim 3.10. Let X be a Hausdorff topological space. If a Borel measure y : B (X) — C is locally finite then p (K) < oo
for any compact subset K.

Proof. Consider the open cover of K as

where U, is the open neighborhood of any x € K which is guaranteed to have finite measure by the locally finite
property of p. By the fact that K is compact there are z1,- -, x, such that

KgO@r
j=1

Then

jJax p (Us,) < .

SESIMUAETE

Definition 3.11 (o-compact topological space). A topological space X is called o-compact or countably-compact iff
X = UZOZI K,, and each K, is a compact subset of X.

Note that without loss of generality, since the finite union of compact is compact, we may define K, = U?:1 K; so

that |J,, K = U, K, and K,, C f(n_H is an increasing sequence.

Example 3.12. R is o-compact, since we may write R = J 2, [n — 1,n] U [-n, —n + 1].
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Example 3.13. The product space RN (countable Cartesian product of R with the product topology) is not o-
compact.

Proof. RN is the space of all sequences a : N — R. Recall according to the product topology, we define Open (RN)
as the coarsest topology such that the projections

m RN = R
a +— a(n)
are continuous. First we note that if &' C RN is compact then it is coordinate-wise bounded. Indeed, since 7,, are by
definition continuous, and the continuous image of a compact set is compact, we have that m, (K) € Compact (R)
for all n € N. Then by Heine-Borel on R, that means that m,, (K) is closed and bounded, so there must exist some

M,, < oo such that

sup |7, (a)| < M, .
aceK

Now if RN were o-compact, we would have
RV = | ] K
meN

for some sequence of compacts K,,. Hence for all n,m € N there exists M,,,, < oo such that

sup |mp (a)| < My, (n,m € N) .
aEKm

Define now a new sequence b € RN via
by i=max ({ M1, ,Mun }) + 1.
Now by construction b ¢ K, for all n since
by, > My,.
O

Definition 3.147(Locally compact topological space). A topological space X is called locally compact iff Vo € X3U €
Open (X) : x € U € Compact (X). In words: every point has a compact neighborhood.

Example 3.15. R is locally compact, because for any = € R, the interval (x — e,2 + ¢) has a closure [z — &,z + €]
which is indeed compact (by, say, Heine-Borel); this holds for any € > 0.

Example 3.16. Q (with the subspace topology from R) is not locally compact (prove this).

Definition 3.17 (Normal topological space, T4). A topological space X is termed normal iff any two disjoint closed
sets have disjoint open neighborhoods: VFi, Fy € Closed (X) such that F; N Fy» = @ 3U;,Us € Open (X) such that
F, CU;fori=1,2and Uy NUy = &. It is termed T4 iff it is both normal and Hausdorff.

Definition 3.18 (Perfectly normal topological space, T6). A topological space X is termed perfectly normal iff any
closed set is Gy, i.e., if for any F' € Closed (X)) there exists some { U, } C Open (X) such that F' =, .\ Un. We
say that X is 76 iff it is perfectly normal and Hausdorff.

neN

Clearly we can make the sequence U,, nested and decreasing by defining

Vn = ﬁ Uj
j=1

and noting that (,, Vi, = (U, that all the V,,’s are open, and V,, D V,, 4.

43



Example 3.19. Clearly every metric space is 76. The product of uncountably many non-compact metric spaces is
not normal. Consider the space
X :=[0,1] x{0,1}
with
(r,0) < (y,b) <= (x<yV]r=yAa<b]).
This makes X totally ordered and every such totally ordered set has a natural topology on it. Let Open (X)) be given
the order topology, i.e., the topology generated by the basis of “open intervals” (o, 8) = {z € X | a < x < 8 } together

with{zeX|a<z}and {z € X |2 <b}. Then X with this topology is a Hausdorff compact normal topological
space which is not perfectly normal.

3.2 Establishing regularity properties of measures from topological properties of X [Fol-
land]
Thanks to Olivia Kwon for contributing this section about deriving Borel regularity via the KMR theorem.

In this section, we discuss further properties of Radon measures, assuming Theorem 2.84.

Proposition 3.20 (Folland 7.7). Suppose that p is o-finite Radon measure on X and E is a Borel set in X. Then
1. For every € > 0, there exists an open set U and a closed set F' with F C E C U and p(U — F) < e.
2. There exists A € F, and B € G5 such that AC E C B and (B — A) = 0.

Proof. 1. Write E = UjeN E; where E; are pairwise disjoint and satisfies u(E;) < oco. Given € > 0, for every j,
because p is a Radon measure, we can find U; open such that £; C U; and

w(U;) < p(Ez) +27 01 De.
Let us moreover define U = jeN U;. Then U is open and contains E by construction, Moreover,
€ 1
pwU—-E) <> wU; — Ej) < 52@ =¢/2.
JEN JEN

Similarly, find an open set V' that contains E¢ and satisfies u(V — E¢) < €/2. Now, define F' = V°. By construction
F is closed and satisfies ¥ C F C U. Note also that £ — F =V — E°. Therefore, we have that:

wU—=F)=pU - E)+puE—-F)=plU - E)+u(V - E) <e

Hence we have the first statement.

2. Now, using the first statement, we prove the second statement. For every n € N, we find U,, open and F,
compact such that F,, C E C U, and (U, — F,,) < % Define A = (1, .\ Un and B = |J F,,. Then, we see that
B C E C A by construction. What’s more, we have that

A-B= (ﬂ Un>ﬂ<U Fn>c— (UnNFS) = () (Un — Fo).

neN neN neN neN

neN

Therefore, by (2.5), we have that

1
w(A—B) = lim (U, - F,) < lim —=0.

n—oo n—oo n

We are done. O]

Theorem 3.21. Let X be a locally compact Hausdorff space in which every open set is o-compact. Then, every Borel
measure on X that is finite on compact sets is reqular and hence Radon.
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Proof. If p is Borel measure that is finite on compact sets, then we have that then C.(X) C L'(u). Therefore, the
map A : C.(X) — R defined by

A(f) = /X fdu

is a positive linear functional. Let v be the restrictions of the associated unique measure given by Theorem 2.84 to
the Borel sets.

We first show that u and v agree on open sets. Given open set U C X, using the o —compact properties, write
U = U;en K where each K compact. Using Theorem E.6, find fi € Cc(X) such that

K < f1 < U.
Recursively, for all n > 2, find f,, € C.(X) satisfying

n

n—1
U |U|[ Usuwp(s) | < <0,

Jj=1 Jj=1

using Theorem E.6. Then, by construction, f,, pointwise to xy as n — oo. Therefore, by the Theorem 2.47 twice,
we get that

w(U) :/ xudp = lim / frdp = lim A(f,) :Hm/ fndy:/ xvdv = v(U).

Now, we show that p is regular. Given € > 0 and E an arbitrary Borel measure, by Proposition Proposition 2.81,
we can find open set V' and compact set F' such that v(V — F') < € and satisfies F' C E C U. Note that V — F is in
particular open, and hence u(V — F) =v(V — F).

By monotonicity,

u(V) < u(F) + e < u(E) +e,

proving that u is outer regular.
Moreover, by motonocity again,
u(F) > p(E) — € > p(E) — e

Since F is o compact (as X is), we can find compact sets {K;} such that (J;cy K; = F' and hence u(Kj) — pu(F).
Thus, we can find N big enough such that u(Ky) + € > p(F). Thus, we have that

1(Ky) > p(E) — 2,

proving that p too is inner regular thus Radon. O
Remark 3.22. By the uniqueness of v, we in fact have that u = v.

Corollary 3.23. Let X be a locally compact Hausdorff space in which every open set is o-compact. If Radon measures
11, b agree on all open sets then they are equal.

4 The Lebesgue measure on R

We focus our attention now to the special case of the measurable space X := R with the choice Msrbl (X) := B (R), i.e.,
the Borel sigma-algebra generated by open sets on R. Our goal is to define a positive measure A : B (R) — [0, o] which has
all the robust abstract properties discussed in the previous chapter (in particular that we could invoke the limit theorems
on its associated integral) and on the other hand, that it extends the notion of length when applied on intervals. It turns
out that to zero in on a unique such object we need an additional property on this measure:
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Definition 4.1 (translation invariance). Let X be a measurable space which also has the structure of a vector space.
A positive measure p : Msrbl (X) — [0, 00] is translation invariant iff

w(S+z) = p(S) (S € Msrbl (X) ,z € X)
where by S + & we mean the translation of the set S by x, which is a new set defined by
S+r={y+z|yeS}.
Our main and most immediate goal in this chapter is to prove

Theorem 4.2 (Existence and uniqueness of the Lebesgue measure on R). There exists a unique positive, translation
invariant measure A : B (R) — [0, 00] such that X ([0,1]) = 1.

We call the measure A\ guaranteed by the above theorem the Lebesque measure on R and the associated integral
(f : R — C Borel msrbl.) — / fdrecC
R

the Lebesgue integral on R.
To prove this theorem we employ the machinery to actually construct measures out of more primitive objects, the
premeasures, which we studied in Section 2.9.

4.1 The premeasure which generates the Lebesgue measure
Claim 4.3. Let
Ao ={@}U{(a,b]|ae€[-0,00),beRa<b}U{(a,0)]|ac[—00,00)}.

Then Ay is an elementary family in the sense of Definition B.1 below.

Proof. By definition we have @ € Ay. Next, we want to show closure under intersection. This is clear if we take an
intersection of anything with @. If we have

1% b<d Vb <a
(a,b)N (', V] =< (a',b] a<ad <b<l
etc.

we see that in all cases we obtain a set of one of the forms in Ay. Finally, if we take complements we get a finite
disjoint union of elements in Ay. Indeed,
¢ = (—00,00) € Ay .

(a> b]c = (700764 U (b> OO)
each of which lies in A, etc. O

Hence by Claim B.2 below, the set A of finite disjoint unions of members of A is an algebra.

Claim 4.4. The o-algebra generated by A, o (A), equals B (R).

Proof. We can write

(a,b] = ﬁ (a,b+;>

=i

so certainly o (A) C B (R). Conversely, every open set in R is the countable union of open intervals, and we may
write any open interval as an element in o (A). For example,

(a,b) = Q(a,b—ﬂ €o ().
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Theorem 4.5. Define p : A — [0, 00] via: If U;'L:1 (aj,b;] is a disjoint union of finite intervals,

p U (aj,b)] = ij - aj, (4.1)

p (U;.l:l (aj,bj}) = oo if the disjoint union contains an infinite interval, and of course,

p(@) = 0.

Then p s a pre-measure.

Proof. First let us verify that p is well-defined, since the representation U?:1 (aj,b;] for elements of A is not unique.

For example
1 1 1 1
o= o]0 (3] = (3]0 (5

and so on. But clearly, the sum in Theorem 4.5 telescopes so this does not a problem for us. We leave the remaining
cases as an exercise to the reader.

Once we know that p is well-defined, we need to verify the axioms in Definition 2.73. See HW3Q5 for a complete
description. O

Definition 4.6 (The Lebesgue measure). The Lebesgue measure on R is the measure obtained by p — v, — fi,,
according to Theorem 2.76, with the choice of p as in Theorem 4.5.

Theorem 2.76 yields a o-algebra of all Lebesgue measurable subsets, named there A,,. We call such sets Lebesgue
measurable. One of the conclusions of the theorem, combined with Claim 4.4, is that all Borel subsets are Lebesgue
measurable. Note that the reverse inclusion is not true: there are Lebesgue measurable sets which are not Borel measurable.

Since R is o-finite, another conclusion of the theorem is that the Lebesgue measure is the unique extension of p to

o(A) =3B (R).

4.2 Proof of the uniqueness theorem

We are now ready for the

Proof of Theorem 4.2 . For existence, we take the Lebesgue measure i, : Ay, — [0,00] from above and restrict it
to

A:B(R) — [0,00] .

Clearly, since A is an extension of p and [0, 1] € A, we have A ((0,1]) = p((0,1]) = 1 as desired. In a minute we shall
see that singletons do not matter for A so that will imply that A ([0,1]) = 1. Moreover, A is translation invariant
because p is, since it is defined via differences of the endpoints of half intervals.

We finally get to uniqueness. Let A : B (R) — [0,00] be some other translation invariant measure such that
A([0,1]) = 1. We want to show that A = X. By translation invariance, we immediately have

A([t,t+1) =A(t,t+1])  (t€R).

By ?7 it is sufficient to show A and A agree on open subsets. Now, let U € Open (R). We know that U is the
countable disjoint union of open intervals, so by countable-additivity of both measures we only need to show

A((a,b)) = X((a,b)) (a <b€R)
) (Ntransl. invar.)
A((0,0)) = X((0,0)) (b>0).
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to show A (U) = A (U). Let us show that translation invariant measures with ([0,1]) = 1 have a scaling property.
Before we start, let us also show that Slngletons cannot matter for ), i.e., that A ({x}) =0 for any =z € R and any
normalized translation invariant Borel measure \. By additivity of X, let { By }j:1 be N distinct points within [0, 1].
Then by translation invariance

;\ ({z; })

Jj=1

= A U{x]}

j=1

NA({0})

< A([0,1]) =

But we can certainly pick N as large as we want, so pick it so that N A ({0}) <1 to get a contradiction with
A({0}) > 0; thus A({0}) = 0. Hence for both A\ and A we may ignore singletons °.
Let us now start with showing that

To that end, write the “almost” disjoint union [0,1] = UZ;S [% k—] Using additivity and translation invariance

we get

[1*
1IN
= O =

>

/N 7N @

SO 5\([0, ﬂ) = % indeed. In * we used
AMAUB)=A(A\B)+X(B\A)+A(ANB)

to add and remove singletons of measure zero as necessary. In a similar fashion we can extract out of this the scaling
property for rational end points
~ m m
(o3l =
n n

Write [0,m] = Jp—, m [%, (kﬂ)} o

n



yielding the result A ([0, %D = 7. We then extend this to all end points b € R by monotone approximation and the
monotone property: ~ 5 5
A([0,75]) < A([0,8]) < A([0, ;])

for all rational sequences r; — b from below and g; — b from above. Taking the limit 7 — oo on both sides of the
inequality yields ~
b=1limr; < X([0,b]) <limg; =b.
J J

We conclude A = X on B (X ) which is what we were trying to prove. O

%Note that for A we should rather use [0,1) rather than [0, 1] since we don’t a-priori know yet that A ([0,1]) = 1. This, however,
doesn’t change the argument at all since we know that X is also translation invariant and certainly [0,1) contains as many points as we
need. Thanks to Kevin Xu for pointing out this discrepancy.

4.3 The Lebesgue measure on R"

To define the Lebesgue measure on R™, we appeal to the construction of a product measure which appears below in
Section 5.1.1.

Definition 4.7 (Lebesgue measure on R™). We define the Lebesgue measure on R™ to be the result of the product
measure of n copies of the Lebesgue measure on the n-fold Cartesian product of R.

Remark 4.8. In our convention the Lebesgue measure on R™ is indeed complete as it should be, because in our
convention product measures are always complete, being the result of the Caratheodory construction.

Remark 4.9. Clearly we could have defined the Lebesgue measure on R™ directly using a similar premeasure as in
Section 4.1, defining volumes of boxes instead of lengths of intervals. The two constructions yield the same measure
by a uniqueness theorem identical to the one we proved in the one dimensional case.

Remark 4.10. What about C or C™?7 One also defines the Lebesgue measure on these, and the complex structure here
plays no role. For the purposes of both topology (and hence measure theory, since we are using the Borel o-algebra
to construct everything) C* = R?".

Theorem 4.11. The Lebesgue measure on R™ is invariant not only under translations, but also under reflections and
rotations. Under dilations it has a simple transformation formula.

Proof. The invariance under translations is immediate from the fact that each constituent in the product measure
is invariant w.r.t. translations and we can break an arbitrary translation in R™ into composition of translations in
each axis. The other properties will be a direct consequence of Theorem 6.18. [

We also phrase an analog of Theorem 4.2:

Theorem 4.12. There exists a unique positive, translation invariant measure X : B (R™) — [0,00] such that
A([0,1]") =1.

The proof follows a similar pattern to the one-dimensional proof, with the fact that we only need to work on boxes,
and on those, we may show a scaling property to get that any translation invariant Borel measure u : B (R™) — [0, o]
must satisfy

w([0,b1] X -+ x [0,b,]) = b1+~ by

4.4 Exotic phenomena

In this section we want to explore sets which are Lebesgue measurable but not Borel, or sets which are not even Lebesgue
measurable. We first encountered such questions in Remark 2.77 where we saw that since A (C') = 0 for C' the Cantor set,
any subset of it must be Lebesgue measurable by completeness of A\. But, since the cardinality of B (C) is ¢ = 2%, and

the cardinality of # (C) is 22N0, there must be Lebesgue measurable but non-Borel sets! Can we study these sets directly?
What do they “look” like?
In HW4Q8 and HW4Q9 we explore some of these explicit constructions.
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4.5 The relation between the Riemann and the Lebesgue integral

Now that we have defined the Lebesgue integral with respect to the Lebesgue measure on R and on R™ it is natural to
study the relationship between the preexisting Riemann integral.

Recall that we only want to Riemann integrate bounded functions f : [a,b] — R for some a < b € R and that according
to Lebesgue’s Theorem 1.3, f is Riemann integrable iff it is continuous A-almost-everywhere, i.e.,

A({z €[a,b] | f is not continuous at x }) = 0.
The first step in our study is to verify that any Riemann integrable function is at all Lebesgue measurable:

Claim 4.13. If f : [a,b] — R is Riemann integrable then it is measurable w.r.t. £ ([a,b]) (the Lebesgue measurable
sets, on which X is complete) on its domain and B (R) (the Borel subsets of R) on its codomain.

Cf. with Claim 2.36.

Proof. By Theorem 1.3, f is continuous outside a set N C [a,b] of measure zero. Hence by Corollary 2.18, f|y. :
N¢ — R is continuous and hence measurable w.r.t. (B (N¢),B(R)). Let A € B(R). Then

71 = [ A@nNulftEnnNg.
Since A is complete and A (N) =0, f~' (A) N N is £ ([a, b])-measurable. Moreover,

(flye) " (4) = FH (A NN°

fLANNe € B(NO)
— 5 (Open(N¥))
= oc{UNN°|U € Open ([a,b]) })
= {BNN°|Be®B(ab])}
C {BNN°|BeL(ab))
so that f=1 (A) N N¢ € L ([a,b]) as desired. O

Now, if f : [a,b] — R is Riemann integrable, then it is measurable. Since it is bounded, we necessarily we have
Ifl<M
with M := sup,¢ (o4 |f (2)| < 00 so that f € L' ([a,b] — R, \) and
[fllpy < M(b—a).

Hence we can also Lebesgue-integrate f. Do the two integrals always agree?

Theorem 4.14. Let f : [a,b] — R be Riemann integrable. Then its Riemann integral and its Lebesgue integral agree.

Proof. We use the characterization of Riemann integrable as in Definition 1.1 to get that the two limits in the
following equation exist and agree,

lim Ly (f) = lim U (f)

and they are both equal to the Riemann integral of f, where

= <a+[n,n+1]bj_va> }) .

Iy(f) = b]‘v“]:_:inf ({r@

Now we define the simple function I, (f) : [a,b] — R via

N-1
IN(f) (@) =D xp, (@)in(f) (= €e,b))
n=0
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with
b—a

N

I, :=a+[n,n+1]

and
in(f)=if({f(z)|z€ln}).

It doesn’t quite matter that I,, N I,, # @ for n # m since the overlap has Lebesgue measure zero (this could be
avoided with uglier notation). Then, observe that

/ In (f)dr= Ly ()
[a,b]

by definition of an integral of a simple function. However, it is also clear that

lim In (f) = f

N—o0

pointwise wherever f is continuous (a set of full measure by Theorem 1.3), and that

lin (NI <If] -
Hence with |f| a dominating L' function, we have

Riemann integral of f = Nlim Ly (f)
—00

=  lim In (f)dA

N—o0 [a,b]

< Fd.
[a.]

O

This deals with functions which are bounded on a bounded interval. We know, using the notion of an improper Riemann
integral, that we can also Riemann integrate functions on unbounded intervals, or unbounded functions, via limits outside
of the integral.

Example 4.15. Going back to Example 1.4, we study
f:(0,1) =R

given by
1
T —
VT

and ask whether this function is Lebesgue integrable, since it is unbounded, so we may not ask whether it is Riemann
integrable (and indeed only the improper Riemann integral of f exists). Since it is continuous on (0,1) it is clearly
Lebesgue measurable there, and as it is positive, we may well calculate its integral (though it may be infinite).
Consider the sequence of positive measurable functions

which converge to f pointwise from below monotonically. As such, using the monotone convergence Theorem 2.47 we
find

n

fdr = / lim f,d\
(0.1)

(0,1)

= lim Fud).
n Jo

Once we are dealing with [ ©.1) frndA, frn is a bounded Riemann integrable function and so using the previous theorem

we can replace its Lebesgue integral with its Riemann integral 2 — % to get the result 2.
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Figure 3: A Venn diagram comparing the Riemann and the Lebesgue integrals.

Be that as it may, one has to be careful because sometimes functions are improperly Riemann integrable only due
to oscillations, which cannot help a function being Lebesgue integrable (since it always deals with absolute integrabil-

ity):

Example 4.16. Cousider the function f : (0,00) — R given by = — # We can show (e.g. using contour integrals,
see e.g. Example 6.40 in [Sha23a]) that the (improper) Riemann integral yields

/ sin (x)dx _ T
0 x 2

is Lebesgue measurable, but does not decay to infinity quickly enough to be integrable.

[sin()]|

whereas (0,00) 3 z —
Another possible (possibly simpler) example is N 3 n +— % w.r.t. the counting measure on N.

Of course, there are many Lebesgue measurable functions which are L' and yet not at all Riemann integrable. An
obvious example is x[o,1)ng : [0,1] — [0, 1].

5 More abstract measure theory

In this chapter we want to continue with the abstract theory that is not necessarily linked to X being a topological space.
We start with the notion of product spaces. These have already been explored in HW1Q6 and in fact above we used the
product structure to define the Lebesgue measure on R™. For the sake of completeness let us present this again in full
detail.

5.1 Products [Folland]
5.1.1 Products of measurable spaces

Let { X, } aca be an indexed collection of non-empty sets (indexed by some set A, not necessarily countable) and let

II x E{f:A—)UXa

a€cA «

f(ﬂ)GXﬁVﬁéA}

be the Cartesian product of this collection of sets. For any § € A, let
m: [[ Xa — X5
acA

be the canonical projections, i.e.,

s (f)=f(8) .
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Definition 5.1 (The product c-algebra). If we furnish each X, with a o-algebra 171, then we define o-algebra
®aecalll, on the product via

@acalla =0 ({ 75" (Ea) | Ea € Mo ha € A}).

Le., this is the smallest o-algebra on the Cartesian product so that all projections 7, are measurable.

Claim 5.2. If A is countable then actually

®a€ATna =0 ({ H E,

acA

E, eﬂ?ﬁaeA}) .

Proof. See HW2Q6. O

5.1.2 The product measure

We may continue the product construction also at the level of measures (for now only for finite products): |A| < oo
and assume p, : M, — [0,00] is a measure for any « € A. We seek to define a measure p on ®ucall, as defined
above.

Definition 5.3 (Rectangular sets). Any subset A C ], 4 Xo of the form

A:HEQ

a€cA

where E, C X, for all @ € A is called a rectangular set. We denote all rectangular sets of measurable sets by the
symbol Aj.

Claim 5.4. Ay is an elementary family in the sense of Definition B.1.

Proof. Indeed, @ € Ay, the intersection of two rectangular sets is again rectangular, and the complement of a
rectangular set is a finite disjoint union of such rectangular sets (since |A| < c0). O

The collection of finite disjoint unions of elements in Ay, the rectangular sets, forms an algebra A by Claim B.2. Then
0 (A) = ®acallly, as we saw in Claim 5.2. Hence let us define a premeasure p : A — [0, 00] given by

1% (l—l?:1E1,j X oo X E|A|v]) = Z H Ha (EO&J) . (51)
j=lacA

Claim 5.5. p is indeed a premeasure.

Proof. We need to verify the axioms of Definition 2.73. Clearly we have p (&) = 0. From the definition of p it
is clear that it is finitely additive. Now, let { A; };11 C A. We assume all A;’s are pairwise disjoint, and that

U;il A; happens to lie within A. But A is itself finite disjoint unions of rectangles. So somehow the countable

union U‘])il A; of rectangles happens to be a finite union of rectangles.
We write
NNV R )] J
Aj =200 By X X E|A|,z'
SO

o) =3 I e (22.) -

i=1 acA
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Now by hypothesis, [J;=, A; € A, so

oo oo
— " pd J
U4 = Uzl x - x By
j=1 =1
is a finite disjoint union of rectangles, i.e.,

oo

LTI Y] J _ N
U Ui By X X By = U Fre X - X Flaje -
Jj=1

Hence
oo
p U Aj | = p(URL Fiex - X Fla)
j=1
N
= Z H to (Fa k) -
k=1a€cA
Now,
N N oo My co My
DB | BENED I ONNIED D) D - ID D) DN | RT3
k=1acA k=1 j=1i=1 j=11i=1 acA

Integrate both sides of this equation on X, w.r.t p, we get

ST b (o = 3555 T e (L)

k=1acA j=1i=1 acA

where on the RHS we have used the monotone convergence theorem Theorem 2.47 to exchange the j series with the
integrals. As a result,

p UAj => p(4))

as desired. O

Definition 5.6 (The product measure). By Caratheodory’s procedure Theorem 2.76, p — ¢, — i, yields a complete
measure on a o-algebra ®,¢ 411, which contains ®,c41,. That resulting measure is defined as the product measure

[Taca ta (for [A] < No).

Note that by definition, on rectangular sets where each factor in the product is measurable, we have

(1) (1)1

acA a€cA acA

Remark 5.7. We caution the reader that there may be a strict gap between ®,c a1, the product o-algebra, and the
o-algebra ®,c4 M, given by the Caratheodory construction starting from the premeasure (5.1). Indeed, the latter
contains the former and there are cases when the inclusion is strict.

Thus, according to our convention the o-algebra on which the product measure acts is automatically complete since it
1s the result of the Caratheodory construction. This is at odds with some authors, e.g., Folland, who let the product
measure act on the product sigma-algebra, which may be incomplete. They then consider the completion of this
measure, which is the same thing.

Example 5.8. Consider £ the g-algebra of Lebesgue measurable subsets of R. Then the product o-algebra of £ & oL
is strictly smaller than the o-algebra of Lebesgue measurable subsets of R? (which is defined using the Caratheodory
construction as £ ® JL'). Indeed, the latter is complete whereas the former may fail to be. There are measure zero
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subsets of R?(in particular they are Lebesgue measurable) which are not Lebesgue measurable in £ ® L. Indeed, let
A C R be any non-Lebesgue measurable subset (e.g. a Vitali set) and consider the set A x {0} which is Lebesgue
measurable (verify this) and of measure zero.

5.1.3 The Fubini-Tonelli Theorem

Let (X, M, 1) and (Y, 7,v) be two o-finite measure spaces and f : X x Y — C be measurable w.r.t. 71 ® 1. In this
subsection we shall use the two projections
m: X XY > X

and
T X XY =Y.

We also have two induced functions: for each fixed z € X,

fz:Y — C
y = flzy)
and for each fixed y € Y,
fy: X — C
x = fl(x,y) .

Claim 5.9. For any 111 ® M-measurable f : X xY - C,z € Xandy €Y, f, : Y = Cand f, : X — C are both
measurable. Moreover, for any A € Ml ® N and fixed z € X, y € Y, the sets

Ay(z)=m ({2} xY)NA) ={yeY|(z,y) e A} CY

and
Ar)=m (X x{y)NA) ={eeX|(ny) cA}CX

are both measurable. The sets Ay, Ay are called the sections of A.

Proof. Let
R:={ECXXY |Ei(yyeMVyeYANEy(z) eNVx € X } .

P . . . . g y¢V

Clearly, if E is rectangular, i.e., if E = U x V with U C X and V C Y then its sections are E; (y) = . cv
Y
o x¢U . .
and Fs (x) = v U Hence R contains all rectangular sets. In fact R is a o-algebra. Indeed, X x Y € R.
%

Moreover, R is closed under complements. Assume E € R. Let x € X. We want to show that (E°), (z) € 1. We
have

(E)y (@) ={yeY |(z,y) € E°}.
We claim that (E€), (z) = (E2 (z)). Indeed,

y€ (B, (x) <= (2,y)€E°
= (v,y)¢E
— y¢ Ea(x)

— ye(By(x)".
So we see that really R is closed under complements. Actually also under countable unions, using the identity

oo

UE| @=UE)»e

Jj=1 9

which may be proven similarly. But 771 ® 11 is the smallest o-algebra containing the rectangular sets.
The first statement follows from
—1 _
(f2)" (B)= (f71(B)), (x)
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and similarly for the other function. O

Definition 5.10 (Monotone class). Let X be a non-empty set. A monotone class C on X is a subset of # (X) which
is closed under countable increasing unions and countable decreasing intersections.

Claim 5.11. Every o-algebra is a monotone class, and the intersection of any family of monotone classes is a monotone
class. Hence for any & C P (X), there is a unique smallest monotone class generated by &, C (&).

Proof. TODO O

Lemma 5.12 (Monotone class lemma). If A is an algebra of subsets of X then

C(A)=0(A).

Proof. By the above claim, any o-algebra is itself a monotone class, so by definition
C(A)Co(A).

We will show that C (A) is actually a o-algebra (due to the fact A is not just any set, but an algebra) which will
finish the proof. To this end, for any E € C (A), let

D (A) = {FeC(A):E\F,F\E,ENFeC(A)}.

Clearly we have &, E € Dg (A), and
FeDp(A)<—= EecDp(A).

Actually D g (A) is itself also a monotone class. In fact, if E € A then F € Dg (A) for all F € A as A is an
algebra, so
A CDp (A)

and hence
C(A) CDg(A) .

Hence if F € C(A), F € D (A) for all E € A. But that means that E € Dp (A) for all E € A, so
A C D (A)

and hence
C(A) CDp(A) .

Hence, if E,F € C(A), then E\ F, F\ E and ENF are all in C (A). Now X € A C C(A), so C (A) is an algebra.
Now if { E; };2, C C (A) then

O@emm

as it is an algebra. But moreover, C (A) is closed under countable increasing unions such { U?:l E; } , e,
n

SO

and we are done. O]
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Theorem 5.13 (Relate product measure to integral on sections). Let (X, M1, u) and (Y, 1, v) be two o-finite measure
spaces. If E € M ® 1N then
z v (B (2),y = n(Er(y))

are measurable on X and Y respectively, and

(ux 0 (E) = [

XZ/(EQ)d‘U:/ w(Ey)dv.

Y

Proof. Case 1: u and v are finite.
Let C be the set of all subsets ' € Nl ®M for which the statement of the theorem hold. Clearly, if E is rectangular
of the form F = A x B then

v(Ey (7)) =xa(@)v(B), p(E(y)=p(A)xs )

and so E € C. By additivity the same is true for finite disjoint unions of rectangles, and we know that those form an
algebra, so by Lemma 5.12 it is sufficient to show that C is a monotone class generated by rectangular measurable
sets. Let { E, }, be an increasing sequence in C. Want to show that E :=J,, E, € C. Consider

fn (y) =1 ((En); (v)) (yeY).

This forms a sequence of measurable functions which increase pointwise to

fy)=u(Er(y)) .

So f is measurable and by the monotone convergence theorem Theorem 2.47,

[ e ar=tim [ (), dv = lim n x 0) (B2) = (0 x 9) (B)

where in the last step we have used (2.4). Similarly for the other integral.
Next, if { E,, },, is a decreasing sequence in C, we want E := () E, € C. The function

y > p (B (y))

is in L! (v) since
W (Br (@) < 1 (X) < oo

and v (Y) < oo by assumption. Hence we may invoke the bounded convergence theorem Corollary 2.62 may be
applied to show E € C.

Case 2: If p, v are o-finite, we write X x Y as the union of an increasing sequence of rectangles { X; x Y; }j each
of which has finite (product) measure. Now for any £ € 111 ® 11, Case 1 applies to E N (X; x Y;) for each j to give

(03 0) (B (X x¥5)) = [ v(Bafe) Y5

and now we apply the monotone convergence theorem again to get the result. O

Theorem 5.14 (Tonelli). Let (X,M,p1) and (Y,N,v) be two o-finite measure spaces (as in Definition 2.37) and
f: X xY —[0,00] be measurable w.r.t. N @ N . Then

/Xxyfduxu/}((xHszdu)du/Y<yH>/Xfydlu>d,/.

Proof. If f is a characteristic function onto a measurable set then we are finished by Theorem 5.13. By linearity of
the integral it therefore holds for nonnegative simple functions. For the general case, let { f,, },, be a sequence of
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simple functions that increase pointwise to f as in Theorem 2.27. By Theorem 2.47,

xH/Y(fn)de

is an increasing sequence to

x»—>/ fzdv
Y

and similarly for f,, so that these limits are measurable. It also implies that
/ (a: .—>/ fxdv) dp lim/ (a: .—>/ (fn)s du) du
X Y noJX Y
= lim/fnd(ﬂ X V)
— [ fduxv)

and similarly for f,. O

Theorem 5.15 (Fubini). Let (X, M1, 1) and (Y, N,v) be two o-finite measure spaces and f : X XY — C be measurable
w.r.t. M &N such that

feEL' (X xY,uxv).

/Xxyfduxy_/x(xH/YfrdV>dﬂ—/Y<yH/Xfydu>dy.

Proof. Apply the above to the positive and negative parts of the real and imaginary parts of f separately. Moreover,
(ac — fY fzdl/) is finite v-almost-everywhere, i.e., f, € L' (v) for almost every x and similarly for f,. O

Then

Note that if f: X x Y — C is measurable w.r.t. 771 ® N then it is automatically measurable w.r.t. 771 ® 1 since
mencmen.

The reverse is of course false, and sometimes we may want to consider functions measurable w.r.t. 771 ® 71.

Theorem 5.16 (Fubini-Tonelli for complete products). Let (X, 1, 1) and (Y, 1N, v) be two o-finite complete measure
spaces and f: X XY — C be measurable w.r.t. M @ 1 such that either

fel' (X xY,uxv)

or f>0. Then f, : Y = C, f, : X = C are measurable for almost-all x,y respectively,

oo [ vy [ g
Y X

are measurable and, if f € L', they are also integrable, and

/Xxyfduxu:/x(a:»—>/yfxdu>du=/y(yH/Xfyd,Qdy,

Proof. TODO O

Example 5.17. Let R :=[0,2] x [0,1] C R? and define F : R — R via

F (z,y) := ze¥.
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We want to calculate

/ FdA.
R

Since F' is continuous, it is measurable. Since F' > 0 and A (R) < oo, Theorem 5.14 applies and we may thus calculate

this integral iteratively:
/ FdX / x> / (y — xe?)dA| dA
R [0,2] [0,1]

/ m'—>x(e1—eo)d)\
[0,2]

= (e 1)5(4-0)
= 2(e—-1).

Example 5.18 (Counter-example). Consider the product space
N x N

with the counting measure c on it. Now consider the function

1 =y
flzy) =< -1 z=y+1 =10z — g yt1-
0 else

This function is measurable since everything is measurable w.r.t. & (N). It is not L' since

1 z=y
1fl(z,y) =41 z=y+1="0uy+ eyt
0 else

and so by Tonelli’s theorem,

/Nmed(CXC = GN[ |f] (z,y) de (z )]dc(y)

L Gt s de)] ae)

MS

o0
> (Bay + Ouyr1)
z=1

1

<
Il

= 0.

I
M8

<
Il
—

As a result, Fubini’s theorem is not applicable. And indeed we see that the iterated integrals do not agree:

>3

y=1lz

o

7y+1 20_07&1—251/1—22 zy 7y+1

1 rz=1y=1

Mz

Example 5.19 (Counter-example). Let X = Y = [0,1] both with B([0,1]). On X choose the Lebesgue mea-
sure but on Y choose the counting measure. Then one may verify that X x Y is not o-finite. Indeed, if D :=
{(z,y) € X XY |z =y} then

H/nyXDd“X”’/X(/YXDd”>d“’/Y(/XXDdM>dVH=3~
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5.2 Push forward and pull back measures [Not sure about the source]

Let (X, M1, 1) be a measure space, (Y, 1) be a measurable space and ¢ : X — Y be measurable.

Definition 5.20 (The push-forward measure). Define a new measure p, : 1 — C on Y via

o (A) = (7 (4))  (Aen).
ty is called the push forward of by . In terms of maps,

fig = pop !

which makes sense since ¢!, while not being a function Y — X, is a function @ (Y) — @ (X); of course ¢! (A) is

the preimage of A under : we are not assuming ¢ is invertible.

Claim 5.21. The push-forward measure is a well-defined measure.

Proof. Clearly as ¢ is measurable, ¢~ (A) € M for all A € 11, so the formula for p, makes sense on its domain. It
obeys the axioms of a measure Definition 2.28. Indeed, first we show that u, is not infinite on all sets. Take

po (@) = p (™! (@) = u(2) =0 < oo

since 1 is a measure. For countable additivity, let { A; }j C N be a disjoint sequence. Then
w U4 | = vl {UA
J J
= p|UF @)
J

= Zuf (45)

where we have used the fact that the preimage preserves disjointness: If AN B = @ then f~1(A)N f~1(B) = 2.
Indeed,

FFrANfHB) = ffHAnB)=f"(9)=2.
O

The following result is the weakest form of change of variable formula, which relates the integral w.r.t. the push forward
measure [, to integrals w.r.t. p. It is so general that it doesn’t even need any type of invertibility for .

Theorem 5.22 (Abstract measure-theoretic change of variables formula). Let (X, 71, 1) be a measure space, (Y, 1)
be a measurable space and ¢ : X =Y be measurable. Then for any f:Y — C in L* (Y, u,),

fope L' (X, p)

/Xfocpdu:/yfdugp- (5.2)

and

Proof. Step 1: Assume that f is a simple nonnegative measurable function of the form:

n
f = Z QiXA; -
=1
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Then

/de,ucp = Z aifhy (As) (def of int on simple func)
i=1
n
=> aip (e (4)) (def of msr)
i=1
= Zai/ Xo—1(4,)dp (int of char func is msr)
=1 /X

:/ Zaixw—l(Ai)dﬂ (linearity)
X =1

:/Xfmpd,u.

In the last line we have used the fact that
Xp—1(A) = XAC®.

Indeed,

Xp—1(A) (I) =1 < «zx¢€ gOil (A)
— px)e A
= xale(@)=1.

So we learn that (5.2) holds for nonnegative simple measurable functions.
Step 2: Assume f :Y — [0,00] is measurable. Then by Theorem 2.27 there is a sequence { f,, },, of simple
nonnegative measurable functions which converges monotonically from below, pointwise, to f:

Then by the monotone convergence Theorem 2.47 we have

[ fane = i [ pde,
Y Y

n— o0

= lim fnowdu.
X

n—r oo

But now, f, o is a monotone sequence that converges to f o, by construction. Thus, invoking again the monotone
convergence theorem we get

n—00

lim [ froopdy = /fosodu
X X

and hence (5.2) for f: Y — [0, o] measurable.
Step 3: Assume f:Y — C is measurable and L' (Y, y,,). Then by (2.14) we have

[ e = [ Rely duy— [ Re(ry dug i [ sy dup =i [ () ang
= [ Re{sytovdu— [ Re{ry opdu+i [ tm{f*owdu—i [ {7} opd
= [ Refoet du= [ Relfor) duri [ m{foet du—i [ m{fop) du

O

If, however, we do assume that ¢ is at least somewhat invertible (i.e. it is injective but we don’t even assume that the left
inverse is measurable!) then we may localize the integrals to subsets.
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Corollary 5.23 (Change of variables formula with injective map). Let (X,M1, u) be a measure space, (Y,N) be a
measurable space and ¢ : X =Y be measurable and injective. Then for any f:Y — C in L' (Y, p,),

fope L' (X, p)
and

[rovdu=[ fa  @aem. (5.3)
A »(A)

Proof. We have by the above

/ fdi, = / o
©(A) Y
= /(X«:(A)W)(fowdﬂ-
X

But we claim that if ¢ is injective then x,(4) 0 ¢ = xa. Indeed,

(Xeay09) (2) =1 = ¢(z) € p(4)
— p@)=p(a)Jac A.

Now if x € A then take a = z. If z ¢ A then there cannot exist a € A with ¢ (z) = ¢ (a) because that would imply
z = a which would imply = € A. We conclude ¢ (z) = ¢ (a) Ja € A if and only if z € A. O

We note that we could have localized without assuming ¢ is injective also previously but we then would’ve been stuck
with

fdug = / (Xe(a)09) (fop)du.
e (4) X

If ¢ is not injective then
Xp(A) O P = XA
but the two could fail to be equal.

Example 5.24. Consider ¢ (t) = t? for t € R which is not injective and A = [—1,2]. Then ¢ (A) = [0,4] and then

X041 (£2) = xqo.21 ([1]) = X[=2.2) (£) > (=121 (¢) -

5.3 Important inequalities

Theorem 5.25 (Jensen). Let (X,9M, ;1) be a measure space with p : 9 — [0,00) a measure such that 1 (X) = 1. Let
feLY (X — (a,b),p) for somea<beR and ¢ : (a,b) — R be conver. Then

w(/deu)S/wadu.

Note we do not require p o f € L' (u). It may well happen the RHS is co.
Proof. This is in HW5Q6. O
Definition 5.26 (Conjugate pairs). Let p,q € [1,00]. If % + é = 1 then we say that p and q are conjugate pairs.

Theorem 5.27 (Holder’s inequality). Let p,q > 1 be a conjugate pair with p € (1,00) and (X, M, 1) a measure space.
Let f,g: X — [0,00] be two measurable functions. Then

foms (f ) ()
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Proof. This is in HW5Q8. O

Theorem 5.28 (Minkowski). Let p € (1,00) and (X, I, 1) a measure space. Let f,g: X — [0,00] be two measurable

functions. Then ) L 1
P ! P ’ P ’
(/X(f+g) du) g(/Xf du) +(/Xg du) :

Proof. This is in HW5QT. O

5.4 The L? structure of a measure space

We have seen that given a measure space (X, 9, 1) there is a space of integrable functions

Ll(u)z{f:X%C’fismsrbl. and/|fdu<oo}.
X

We saw that L' (u) is a C-vector space. Actually one has to be aware of the fact that this vector space is infinite
dimensional and it is in this sense that it is way richer than the space C™, which is basically entirely determined by its
dimension. For infinite dimensional vector spaces, the topology becomes much important. One convenient way to deal
with topological questions in Hilbert space is via a norm. In fact L' (1) s a normed vector space with the norm

s = 171 o= [ 171 (5.4)

Claim 5.29. The formula in (5.4) yields a norm.

Proof. We follow the axioms of Definition C.1 below: Let « € C and f € L' (u). Then

lafl, = /X il — /X ol 1] A = [ /X Fldu = lal £,

where in x we have used the linearity of the integral Theorem 2.57. For the triangle inequality, let f,g € L' (u).
Then

I+l = [ 1 +alan.
Now we invoke the triangle inequality at the level of the complex plane: for any = € X,
f (@) + g (@) < |f (@) +]g ()] -

Plug this in and use the linearity of the integral to find

/|f+g|dué/ Ifldu+/ lgldu = [1£1l, + lall, -
X X X

Finally, we want to show that if f € L' (u) has ||f||, = 0 then f = 0. This is actually false. Consider for instance
the function

f=xc
where C' is the Cantor set, X =R and p = A. Then

Iflly =2 (C) =0

vet f is clearly not the zero function. O
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Let’s try again. We define an equivalence relation on L' (11):

frge=p{zeX[f(x)#g(x)})=0.
Before we begin we must show that the set { z € X | f () # ¢ (z) } is measurable. We have proven in HW1Q10 that this
is indeed so for functions whose domain is R. Here it is even easier:
{reX|f(x)#g(x)} {zeX|f(x)-g()#0}
(f=9) ({0}

and we are done since { 0 } is measurable in B (C).
~ is indeed an equivalence relation:

1. Reflexive: f ~ f since
p{zeX|f(z)#f(x)})=n(@)=0.
2. Symmetric: f ~ g <= g~ f since f (x) # g (x) is symmetric.
3. Transitive: f ~gAg~h= f ~ h. First we note that
fx) #g(x) = |f(x) —g(x)] > 0.
Next, write
|f (@) =h(z)] < [f(z)=g@)|+]g(x)—h()

so if x € X is such that 0 < |f () — h (x)| then one of |f () — g (x)] or |g (z) — h (z)| must be nonzero. This means
that
{eeX[f@#h@)}c{eeX|f(@)#g@)}u{reX|g(x)#h(z)}

and so taking p of this equation we find

p{zeX|f(x)#h()}) p{zeX|f(x)#g(@)u{zeX|g(z)#h(z)})
(

<
< p{reX[f@)#g@ ) +p{zeX|g(@) #h(z)})
= 0+0=0.

Hence f ~ h.
The result is that ~ is an equivalence relation on L! (). We denote the equivalence classes with
oy ={9el W] f~g}

and now define

L () = { Moo | F€ 2 1) } -

One easily verifies that is also a C-vector space with

iy + 19l = [F+al
alflpgy = laflng

and the same norm (5.4) now is an honest norm:

H[f]Ll(ﬂ)‘

= du .
) /X\fl I

Proof. First, it is clear this formula is a well-defined function at the level of the equivalence classes. Indeed, if f ~ g
then since the two functions differ on a set of measure zero, the integral of their absolute values will agree. Same
goes with the proof of homogeneity and the triangle inequality. So we are left with showing that

|f1200]| =0 = [Alragy =0

L(p)
i.e., that

/X|f|du=o:»u {zeX||f@)|>0}]|=0.
=:N
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To see this, let us define
1
Nn::{xeX’|f(m)|>n} (neN).

Then

1 1
ui) = [ s [ Ifldes [ irldn=o.
e N, T N, N
Hence p (Ny,) = 0 for all n € N. But
N = U N,

neN

so the claim follows. O

It is time to lighten up the notation a little. First, a piece of terminology:

Definition 5.30 (Almost-everywhere). If for two measurable functions f,g : X — C we have

p{rzeX|f(z)#g(@)})=0

we say that f = g p-almost-everywhere, abbreviated as p-a.e.. In the context of probability one says p-almost-surely
or just almost surely.

Thus, even though |[|-||;; is not honestly a norm on L' (1) and strictly speaking one should work with

HHLI(”)’ L) 1)

with abuse of notation, we avoid this notation and shall use the previous notation, even though whenever we appeal to
this normed vector space structure we really mean to talk about equivalence classes of L' functions which only differ on
sets of measure zero.

Another important fact is that the norm (5.4) makes L' (i) complete: any Cauchy sequence w.r.t. the norm con-
verges.

Proposition 5.31. The norm (5.4) is complete.

Proof. Let { fn },, € L* (1) such that for any £ > 0 there exists some N. € N such that if n,m € N are such that
n,m > N, then
[fn = fmlly <e.

We want to show that implies there exists some f € L' (i) such that f, — f in the L' (u) norm. From this
Cauchy condition, for any j € N, if n,m > Ny—; then

1fn = fully <277

jen € N such that

This allows us to find a strictly increasing sequence { n; }
||-f”.7‘+1 - fm” < 27j (j € N) !
Define now, for any € X for which it makes sense,

oo

f @)1= fu @)+ 3 [fagsn (@) = fa; @] (55)

We claim that this series converges absolutely for almost-every = € X. Indeed, set

k
9k ‘= Z |f7lj+1 - fnj
Jj=1

o= Il .
) g llgngk
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By the Minkowski inequality Theorem 5.28,

k
lgll, <> 277 < 1.
Jj=1

Hence by Fatou’s lemma Lemma 2.53,

/ <lim infgk> dp < lim inf/ grdp < liminf1 =1
x k k x k

so that
lgll; 1.

This implies that g (xz) < oo for p-almost-every = and we indeed get absolute convergence of (5.5) p-almost-
everywhere. Set f = 0 on the measure-zero complement of this set. Since the sum in the definition telescopes,
it is clear that wherever the sum does converge,

f(@) = lim fo, (@) .

Jj—o00

We now want to boost this almost-everywhere pointwise convergence to L* (1) convergence. By Fatou’s lemma, for
any m > N. we have

/\f—fmlduﬁliminf/ |, = fm|dp <€
X J—oe Jx

so that f € L' (u) and f,,, — f in L* (u). O

A complete normed vector space is called a Banach space. We have thus exhibited L! (1) as a Banach space.
A basic question one may pose is: does this norm arise from an inner product?
The answer is that this is so if and only if the norm obeys the parallelogram rule.

Claim 5.32. If a norm satisfies the parallelogram law:

1o+ l” + 19 = ¢l* < 2[[¢l* + 2llell* (e, ¢ in the normed vector space)

then 1
2 2, 2 . 2
W) =7 [l + el* = v = eIl + il = > = illig + )’
defines an inner product whose associated norm is ||-|| = 1/(, ). Conversely if the parallelogram law is violated then

no inner-product may be defined compatible with that norm.
Proof. Left as an exercise to the reader. O

Claim 5.33. The L' norm does not in general satisfy the parallelogram law.

Proof. TODO O

If we seek to work with an inner product then there is a space we can work with: the L? space. We define

L2(u)_{f:X%C‘fismsrbl. and / f|2d,u<oo}
X

g = [ 11 (5.6)

with the associated norm
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Claim 5.34. The formula in (5.6) induces a complete norm (again with the song and dance about equivalence classes
of functions which differ on sets of measure zero) which does satisfy the parallelogram law. The associated inner
product is

(f:9)r2) = / fgdu.
X
This makes L? (1) into a Hilbert space: an inner product space whose associated norm is complete.

Proof. The same completeness proof presented above for L! (1) works for any p € [1,00). O

5.5 The Lebesgue decomposition theorem [Rudin]

In this chapter we want to perform the opposite operation as in Theorem 2.54. Recall from there that if f : X — [0, o0
is measurable then given a measure p : Msrbl (X)) — [0, 0o] we may induce a new one ¢, ¢ : Msrbl (X) — [0, o] via

ouf(E) = /Efd,u (E € Msrbl (X)) . (5.7)

Question: Can we do the opposite? Given two measures (i, ¢, does there exist a function f so that (5.7) holds? This
is what we want to explore here.
Let (X, M) be a measurable space and p : 111 — [0,00],v : 111 — C be two measures on it.

Definition 5.35 (Absolute continuity). We say that v is absolutely continuous w.r.t. p, and write
v,

iff for any E € N1,
uw(E)=0=v(E)=0.

Said differently,
pt{ohcri({o}).

Example 5.36. Let f : X — [0, 00] be measurable and y : Msrbl (X) — [0, 00] be a measure. Define ¢, ¢ as in (5.7).
Then

Pu,f L.
Proof. Assume that E € Msrbl (X) is such that p (E) = 0. Then we want to show that
?
0 = purE)= [ fdu= sup / sdy = sup Zam (A;NE)=0.
E s simple s.t. 0<s<fJE s simple s.t. 0<s<f P

Example 5.37. Let (X, 91, ;1) be a measure space with g : Msrbl (X) — [0,00] and let ¢ : X — X be a measure-
preserving map: u(A) = p (ga’l (A)) for all A € 9. Then the push-forward measure i, given in Definition 5.20
has
Py AL
Definition 5.38 (Concentration). Let v : 9t — C be a measure. If 3A € 171 such that
v(EY=v(ANE) (Eem)
then we say that v is concentrated on A. This condition is equivalent to

ENA=g = v(E)=0 (Ecm).
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Definition 5.39 (Mutually singular measures). Let p, v be two measures on (X,MM) and let A, B € 111 be such that
AN B = @ and such that p is concentrated on A and v is concentrated on B. Then we say that p and v are mutually
singular and write

wluv.

Proposition 5.40. Let (X,N1) be a measurable space and p, A\, A\1, A2 be measures on M. Assume further that u is
a positive measure. Then

1. If \y 4 and Ay L p then Ay L As.
2. If \ 4 and A L pu then A =0.

Proof. For the first claim, since Ay L p, there is some A € 11 such that p(A) = 0 and Ag is concentrated on A. But
A1 € pso, A\ (E) =0 for all E C A so that \; is concentrated on A°€.
For the second claim, using the first one we have A | A\ which forces A = 0. O

Lemma 5.41. If p is a positive o-finite measure on a o-algebra 1M in a set X, then there is a function w : X — (0,1)
such that w € L' (p).

Proof. Since p is o-finite, 3{ E,, } C M such that X = J,,cy En and p (E,) < 0o. Define

neN

0 x ¢ E,
Wn (@) := . —
2" (1+u(Ey)) n

and w := ) .\ wpn. Then w has the required properties. Indeed, we clearly see that w > 0, so |[w| = w. Then,

du = nd
[ S

neN

= Z/Xwndp (MCT)

neN

(z € X)

B p(En)
B % 2n (1 + U(En))

We conclude that w € L!. Moreover, Since X = J
For such x, we have

neN En, given z € X, there exists some n; € N such that x € .

1

Hence w > 0. The same argument also shows that w < 1. O

The existence of this w allows us to construct a new, finite measure out of y as follows. Using Theorem 2.54 we may
define a new measure fi : 11 — [0, 00| via

i(B) = [ wap.

Clearly we have i (X) < oo and for all N € M, i (N) =0 iff u(N) = 0, since w > 0.
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Theorem 5.42 (Lebesgue-Radon-Nikodym decomposition theorem). Let p be a positive o-finite measure on a o-
algebra M in a set X, and let X be a (finite) complex measure on M. Then

1. (Lebesgue decomposition) There is a unique pair of measures Ag, A5 : N — C such that
A=A+ As, Ao A L, As Lop.

Moreover, if A is positive and finite, so are Ay, As; here by Ay + As we mean the pointwise sum of measures,
which is a new measure.

2. (Radon-Nikodym derivative) There is a unique element of L' (i), denoted as 61:1);21’ such that

N (E) = /E(i;;‘du (Eem).

Proof due to von Neumann. Case 1: Assume that A is a positive bounded measure on 771 and let w be associated
with p as in Lemma 5.41. Define now a new measure ¢ via

@(E)::/\(E)Jr/Ewdu (Eem).
—AE)

Then ¢ is also a positive bounded measure on 771, and

/dewz/xfd/\+/xfwdu

holds for any measurable function f : X — C of the form f = yg by definition, hence for any simple f and hence by
the monotone convergence Theorem 2.47 for any nonnegative measurable f.

Moreover, we have
50 < [ e
X X

— [ 1r1de= [ 1fluds
g/xlfldnp

§\// |£12 deov/0 (X)
X

where in the last inequality we invoked the Cauchy-Schwarz inequality Claim D.6. But we have ¢ (X) < oo so

f|—>/de/\

is a bounded linear functional on the Hilbert space L? (X — C, ). Hence by the Riesz representation theorem
Theorem D.10 there exists a unique g € L? (X — C, ) such that

| 1= Do = [ 1300 (FEP(XoC). (5.8)
X X

Note that elements of L? (X — C,¢) are only defined up to a set of ¢ measure zero, so g can only be determined
up to that equivalence class. Now let E € 9t be such that ¢ (E) > 0 (there must be such a set or else ¢ is the zero
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measure; since both A, i > 0, that implies both of these measures are the zero measure, in which case we are anyway
finished). Then plugging in f = xg into (5.8) we get

/\(E):/Egdgp.

But 0 < X\ < ¢ as measures, or equivalently, 0 < % < 1 and hence
0 < MEB)
¢ (E)
I
gd
0 < J299% _
¢ (E)

Right below in Lemma 5.43 we show this implies § € [0, 1] p-almost-everywhere, so we may re-define g for this to
hold for every x while still keeping (5.8) (and thus we can drop the bar § — g since g is anyway real-valued) and
hence we rewrite (5.8) as

/ngd<p=/xfgd/\+/xfgwdﬂ
0

/X fdr= /X fodr+ /X fowdy
0

/X (I—g)fdr= /ngwdu- (5.9)

Define now
A=g71(0,1), B=g'({1}),

These are measurable sets as g is measurable as a member of L?. Define two new measures

M (E):=AANE), MN([E)=ABNE) (Eem).

Oz/wdﬂ.
B

But since w > 0 for all x € X, we conclude p (B) = 0. Hence A; L p.
We may moreover replace f = xg Z?:o g’ for n € N and E € 90 into (5.9); here by g/ we mean the jth power
of g. We get then

Insert f = xp into (5.9) to get

/nggjdu /(1—g)szgjdA
E- 5 X o

(1—g)g’dr
]Z_;/E 99

n

/Ez_: (¢ — ¢+ dA

telesc:oping / (1 _ gn+1) .
E
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On B, g =1s01—g""" =0. On A4, g — 0 monotonically. Hence the RHS of the above converges to
AMANE) =X, (F) as n — oo. On the LHS,

n .
gwd g’
j=1

increases monotonically to a non-negative measurable limit, call it h, so by the monotone convergence Theorem 2.47,
the RHS converges to [ g hdp as n — oo. Hence we have proven

n

A (B) = /Ehdu (Eem) .

Taking E = X we find that h € L! (1) since we assume )\, (X) < A (X) < co. Moreover, this equation shows that
Ao <« i and the proof is complete for positive .

If \ is a complex measure, write A = A1 + i\ for A1, Ao real and apply the preceding case to the positive and
negative total variations of A\; and Ay respectively (TODO: cross-ref below).

We proceed to the uniqueness claims: Let Xa, Xs be another pair which satisfies A = Mo + Xs. Then

Xa + As Ao + As

Aa—Aa = As— s

But we also know that ):a — Ay € ppand Ag — ):5 1 p. So it must be that both sides of this equation are zero, via
Proposition 5.40. For the uniqueness of h we employ Lemma 5.44 right below. O

Proof. Tf we now relax A to have range in [0, co] instead of C, and be o-finite, most of the theorem is still true, since
we can write X = |J,, X, with p(X,,) < oo and X (X,,) < co and then decompose each

A(-N Xn)

w.r.t. pu. However, it is not longer true that h € L' (1), although it is “locally in L'” in the sense that [, hdu < co
for each n. O

Lemma 5.43 (Range of function vs. range of its normalized integral). Let p : 9 — [0,00) be a positive measure and
feL'(X = C;pu). Let F € Closed (C) such that

S fdu
p(E)

Then for p-almost-all x € X, f (x) € F.

er (EeM:u(E)>0).

Proof. Assume F # C since otherwise we are finished. Since F° is open, it contains some ball, say, B. (z) C F¢. It

is well-known that F° is the countable union of such balls, say { Be, (2n) },,en:

Fe=|J B, (z) .

neN

Let us show that for each n € N,

w(f~' (Be, (za)) =0.

Assume otherwise. Then
J1-1(Buy zayy FAH

w(F 1 (Be, ()
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And in particular, since Be, (z,) C F¢,

Ji-1(8.,, 2y T

L (B., ) T
But now,
Jr-1(8., (2 S 1
St S = %m = —2zp)d
p(f71(Be, (z1))) p(f~1(Be, (z))) /fl(Ban(Zn)) U et
1
—zn|d
= p(f~1(Be, (zn))) /fl(BEn(zn)) i o
1
d
S W (B, ) /HBM(Z,L)) e

= gn

which leads to a contradiction (we have used the fact that on f=! (B, (24)), |f — 2n| < €n). Hence we reach a
contradiction, so it must be that

Y (f71 (Be, (Zn))) =0.

But since this is true for any n € N, this is true for all of F¢: p (f’l (FC)) = 0 which is tantamount to saying that
f € F p-almost-everywhere. O

Lemma 5.44. Let f : X — [0,00] be measurable and E € M be such that fE fdu = 0. Then f = 0 p-almost-
everywhere on E. If f € L' (X — C;p) and fEf =0 for all E € M then f =0 p-almost-everywhere.

Proof. For the first statement, let A, := f~! ((l, oo)) N E. Then

n

1
4 (An) s/ Fdu s/ fdu =0
w An E
by hypothesis. Hence p(A,) =0 for any n € N. But
f_l ((0700)) = U An,

neN

SO

p(f71((0,00)) €D (An) =0.

neN

Hence f = 0 p-almost-everywhere.
Now assume f € L' (X — C; ). Apply the first statement on the measurable set

Re {f} ™" ([0,00])

to obtain that

/ R@{f}+du:R®{/ fdu}chB{O}zO.
Re{f}~([0,00]) Re{f}~((0,00])

Hence by the first statement, Re {f}7 is zero p-almost-everywhere on Re {f} ™" ([0,00]). Similarly we deal with the
other parts of f to get the result. O

It is customary (at least in mathematical physics) to further decompose the singular part of a measure further into its
atomic, pure point part and its singular continuous part. To that end, let us define, for the measure space (X,9, u) and
the measure A : I — [0, 00) the set

Xpp ={zeX|AX{z})>0}.

Note that if X is o-finite then | X,,| < Xo. Then the pure-point measure A, is given by
App = A (Xpp M) .
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By definition, App, is concentrated on Xp,. The singular continuous part is whatever remains of Ag after removing App:
Asc i= As — App -

Hence by construction, A\s. ({ z }) =0 for all z € X.

Example 5.45. Take f : R — [0, 00] given by x — H-% Then clearly f € L' (R — C; \). Hence

BR)S A /Afd/\ o s (A) € [0,50)

defines a Borel measure on R, which is finite. This measure is absolutely continuous w.r.t. A\, and

dexys
o

Example 5.46 (Atomic measures). The Dirac delta measure
A xa (xo) = sy (A)

is a point mass measure that is mutually singular w.r.t. A. In fact we can have infinitely many masses, and still have
a finite measure, via, e.g.
396 = fapp.

neN

Then ppp is mutually singular w.r.t. A.
Example 5.47 (The Cantor measure). We know that the middle—% Cantor set is bijective with 2N, because for any
x € C, we may represent x unique in ternary as

z = 0.a1a2a3 - - -

so that a : N — { 0,2} (this avoids possibly infinitely repeating 1s). Then we define the Cantor function fo : [0,1] —
[0,1] via

[eS) %an
fe(z) = 2=t rec :
SUPyecciy<w fC (y) T € [07 ” \C
We now seek to define a measure pc on 3 ([0, 1]) such

c(02]) = fo(x)  (ze[01]).

To that end, recall from HW3Q5 the definition of the Lebesgue-Stieltjes measure associated with an increasing right-
continuous function (which fc is). Essentially we have

c ([a,b]) = fo (b) = fe (a)

and extended to a premeasure, outermeasure and then measure by the Caratheodory procedure Figure 2.
One can show (see the upcoming HW) that uc¢ is concentrated on C, it is mutually singular w.r.t. A, and that it
has no atoms, i.e., it is singular continuous.

In principle any given measure on R is the sum of these three basic types:

M= Hac + fhsc + Hpp

with
dptac = fdA

Hpp = Z Olndxn

neN

for some f € L' (R — C, \) and

for some { z,, },, C R and { a, },, € C. g is characterized as “anything that remains”.
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Definition 5.48 (The Stieltjes transform). Let u : B (R) — [0, 00] be a Borel measure on R and denote by C, the

open upper half complex plane
Ci={zeC|lm{z} >0}.

We define the Stieltjes transform of u, H, : C4 — C_via

H)= [ dil)  (zeCy)

eERT — %

for all z for which the z — —- € L' (R — C; ).

1
Proposition 5.49. Given a Borel measure yu : B (R) — [0,00] such that z z%ﬂ € L' (R — C;p), its Stieltjes

transform H,, is a well-defined analytic function.

Analytic functions C; — C are called Herglotz-Pick-Nevanlinna functions. There is a representation theorem for all
such functions, see | ]

Proof. We first verify that that H,, is well-defined, i.e., that H,, (z) € C, for all z € C,:

m{H, ()} = 5 [Ha () - T

A e [ ]

- /IERzll[xizxiz dp ()
- ~/mER (x —Re {IZI){QZ_]; lm {z}° dp (x)

1
= Imiz wer (z — Re {z})? 4 Im {z}? du

().

So Im {H, (z)} > 0 indeed. Next, we study analyticity, which follows similarly:

H, (w)—H, (2)

/ 2 .
H,(z) = z%1—>mz w—z
1 1
_ hm fweR :v—wd” (x) - fzeR r—zdy’ (CL’)
w—z w—z
1 1
= lim wdﬂ (x)
w=2 )R w—z
1 1
w—z
= lim = ( )= dp ()
w=z [ eR w—z
1 1
= lim dp (x).

w—=z JL R T —WT — 2

Now, the dominated convergence (2.17) may be invoked. The sequence of measurable functions { miw miz }
w

converges pointwise to ﬁ, and

1
V@ —Rez)? + m {21/ (@ - Re {w})? + Im {w}?

1 1

r—wr—=z

At  ~ Re {z} and w =& z this expression is bounded from above by

o
|lm {z}|
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whereas at |z| - oo and w = z it is bounded by ;—2 So there should be some constant C' so that for all z and all
|w — z| sufficiently small,
1 1

r—wr—=z

1 1
Im{z} 22 +1"
In either case, by our assumption, this is integrable, so we may invoke the dominated convergence theorem and get
that H), (z) exists and equals

o L
H#(Z)—/weR )

Definition 5.50 (The support of a measure). Let X be a topological space and p : B (X) — [0, o] a Borel measure.
The support of the measure, a subset of X, is defined via

supp (u) :={z € X |VU € Open(X):x2 € U,u(U)>0} .

Theorem 5.51. Let a Borel measure p : B (R) — [0,00] be given such that x +—
C; — C. is Stieltjes transform. Let

=5 € L!(R—C;p) and Hy, :
W= ac + fsc T fpp

be the Lebesgue decomposition of u w.r.t. the Lebesgue measure X : B (R) — [0,00]. Then there exists some M € (0, 00)
such that

M

Moreover,
supp (fae) = { z€R| lim Im{H, (z+ie)} € (0,00) }
e—0t
and d )
Hac T L .
Y (x)—al_1>ré1+7rlm{HM(x+1€)} (x €eR).
Moreover,
supp (us) = { z€R| lim Im{H, (z+i¢)} = oo} , supp (fpp) = { z€R| lim elm{H, (z +1ie)} € (0,00) } )
e—0t e—0t
Proof. TODO O

5.6 Total variation and complex measures [Rudin]

We remind the reader that in our convention (following Rudin) complex measures p : 9 — C are by definition finite
measures. Since they have countable additivity (as they are measures), we must have

p(UA;) =Y (4y)

jEN

for any collection { A; }, C 901 of pairwise disjoint measurable sets. Since y is a finite measure this implies that } .y p (4;)
converges to some (finite) complex number. However, the order of terms here was arbitrary, so in principle the series
converges for any rearrangement.

Claim 5.52. If a series 3, a; of complex numbers { a; }; € C converges to the same value for any rearrangement of
its terms then it actually converges absolutely.
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Proof. Suppose for contradiction that ), [a;| = co. Then
co=3 lajl <) IRefa;}| + ) [lm {a;}]
J J J

so that either {Re{a;} }, or { Im{a;} }, defines a conditionally convergent series of real numbers. But then the

Riemann series theorem implies there is a rearrangement o : N — Nsuch that, say, > y Re {aa(j)} converges to
something other than > Re {a;}. But that would contradict

ZR@{ag(j)} +iZ|1m{aj} = Zaj'
O]

As a result, we get the important fact about complex measures which is that the series associated to their countable
additivity converges absolutely, i.e., for any any { A, }j C 9M pairwise disjoint,

I (4)

converges. This suggests that there might be a positive measure |p| associated to p which dominated p in the sense that
(A <|pl(4)  (Aem).

It turns out that defining
1l (A) = [ (A)]

will not yield a measure (clearly, it will violate additivity). Instead, what works is:

Definition 5.53 (Total variation measure). Let p : 9 — C be a measure. Let us define a new “measure” (putatively)
|| : 9 — [0, 00) called the total variation measure via

ul (A) == sup D |u(4)]  (Aem)
{Aj }jENjEN

where the supremum is taken over all collections { A4; }j en © M such that A; N A; = @ for all i # j and such that
U ; Aj = A. Such collections are called partitions of A.

Note that even though u only takes on finite values (as it is a complex measure), it is not a-priori clear that ||, even
if it ¢s a measure, is a finite measure (but it will turn out that it is indeed). This is because one could perhaps construct a
sequence of partitions of X, where, even though each sum of each partition is finite, increases to infinity. We will exclude
that possibility.

Theorem 5.54. Let pu: 9 — C be a measure. Then its total variation measure || : M — [0,00) is indeed a measure.
It satisfies:

1. |pu[ (A) = | (A)] for any A € M.

2. |p| is minimal in the sense that for any other positive measure v : M — [0,00), if v (A) > |u (A)| for all A € M
then v > |u|.

3. If p is a positive measure then |u| = p.
4. |p] (X) < oo indeed.

Proof. TODO O
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Definition 5.55 (The C-vector space of complex measures). If y,v : 91 — C are two complex measures, we define
u + v pointwise:
(1+v)(A) = p(A) +v(4)  (Aem),

This is indeed a complex measure. Moreover, for any « € C, we define au also pointwise as
(ap) (A) :==an(4)  (Aed).
This furnishes the set of all complex measures on 9 as a C-vector-space. It is in fact normed because

[lall = Ll (X)

is indeed a norm.

Theorem 5.56. In fact u— |u| (X) is complete so the C-vector space of complex measures on X is a Banach space.

Proof. TODO O

Lemma 5.57. Given any complex measure pn : O — C, its real and imaginary parts Re {u},lm{u} : M — R are
also (complex) measures.

Proof. Since p is a measure, we have

Re {u} (2) = Re {u(2)} = Re {0} = 0;

similarly for the imaginary part. Next, to show countable additivity, let { A; }, C 9t be a sequence of pairwise
disjoint sets. Then

Re {u} (U;A4;) =Re{n(U;4;)} = Re ZM(AJ‘) = Z Re {1 (4))} = Z Re {1} (45) ;

J

similarly for the imaginary part. O

Definition 5.58 (Jordan decomposition). For any complex measure, using the above lemma, we may decompose it
as

p = Re{u}+ilm{u}.
Moreover, for any real finite measure v : 9 — R, we may decompose it as
v = vt —uvo (5.10)
where
4 1
vii=g (v £v) . (5.11)

The decomposition Definition 5.58 with the choice (5.11) is known as the Jordan decomposition of a real measure.
Clearly v* are also finite measures.

Lemma 5.59. If v : 9 — R is a measure then v¥ from the Jordan decomposition are both finite positive measures.
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Proof. The fact v* are finite measures is clear since we have proven in Theorem 5.54 that || is a finite positive
measure. We are left to verify that v+ are positive measures. To that end, let A € 9. We want to show that

v (4) 2 v (4) .

To that end, we use the definition

(A= sup D v (4).
{4y }jeNjeN

Let { 4; }; be any partition of A. Then

J

v(4) < v (4)] = ZV(Aj) <Y (4

Taking now supremum of the above inequality over all partitions we obtain the desired result. O

Proposition 5.60. Let p,v : 9 — C be a measure.
1. If p is concentrated on A € M, so is |p].
2. If u L v then |p] L |v|.

3. If v 4 p and p is positive then |v| < .
Proof. TODO O

Theorem 5.61 (Yet another characterization of absolute continuity). If p : 9T — [0,00] and v : M — C are two

measures then v 4 p iff
Ve>030>0: IfAcDM:pu(A) <6 then [v(A)] <e. (5.12)

Proof. Assume (5.12) holds. Assume that A € 9 is such that p(A) = 0. We want to show that v (A) = 0. But
(5.12) implies that |v (A4)| < e for any £ > 0, and hence it is zero as needed.
Conversely, assume v <« p but somehow (5.12) were false. Then Je > 0 and some sequence { A, }, € 9 with
wu(A,) <27™ and yet
lv(An)| = €.

This implies that |v| (A,,) > ¢ since the total variation measure dominates |v (4,)|. Now

u (D A@) Siﬂ(Az) < izfi :2fn+1

so { Uy, 4i },, is a decreasing sequence where at least one element is finite. Hence by (2.5) we have
u(ﬂ UAi> —nlLH;Oﬂ<UAi> <0
neN i=n i=n

and moreover

v| (ﬂ GAJ = lim_|v] (QA) >e>0.

neNi=n

So v « p is violated. O
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Theorem 5.62. Let p1: 9 — C be a complex measure. Then p 4 |u| and

d
dmeLwX%cwn

actually takes values within S' = {2 € C||z|] =1}.

Proof. TODO O

Theorem 5.63. Let pu: 9 — [0, 00] be a o-finite positive measure and v : M — C another measure such that v < .

Then |v| 4 p too and
vl _ v

dp — |dp

Proof. TODO O

Theorem 5.64 (Hahn decomposition theorem). Let p: 9 — R be a measure. Then there exist sets AT € M such
that
ATUA =X,

AT N A~ =@ and such that

pt(E)=p(ATNE), p(E)=-pn(A"NE) (Eem).

Proof. By Theorem 5.62, we have . <« ||, = dl#l € L' (Ju|) and

'du

1 © )‘:1 (zeX).

Since p is real, % may be chosen to take real values (by Lemma 5.43) (first |p|-a.e., then redefine it to actually be
so on a set of measure zero). Thus,

du
=+1 zeX).
@=%  @eX)
Set .
du —
At = +11}) .
g (D
Then,

(Il (B) + ()
= /d”+/mﬁ“0

Az@*ﬁﬁ““

Lt 3

_ dp =0

= d|pl
/EmA+ d|,“|

= u(En4).
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The other part follows similarly. O

Corollary 5.65. If u: 9 — R is a measure and p = Ay — A2 for two non-negative measures Ay, Az : M — [0, 00)
then necessarily

Proof. We have p < A1 so
;ﬁ(E)zu(EmA*)g/\l(EmA+)§/\1(E) (Eem).

The other equation follows similarly, from the fact that —p < As. O

5.6.1 Integration with respect to complex measures
Let p: 9 — C be a complex measure. Then we know now we may write
p=Re{u} +ilm {u}

and each of which we can further decompose into positive and negative parts. Then we define, for any f : X — C
measurable,

/X fdu= /X fdRe {} " — /X fdRe {u} +i /X fdlm {}* —i /X Fellmn {pu}

Each of these integrals is in turn further decomposed since f itself is written as the sum of four positive functions.

6 Differentiation of measures on R” [Rudin]

In this chapter we are back to the special case of the Lebesgue measure A : B (R™) — [0,00] (although some of the
definitions and theorems below may be generalized to any reference positive Borel measure on R™, see e.g. | D-

6.1 The Lebesgue differentiation theorem

While we are motivated on our goal to prove the change of variables formula in R™, another motivation to study the
Lebesgue differentiation theorem is to establish the analog of the fundamental theorem of calculus in the context of the
Lebesgue integral. The question is, if f : R — C is in L!, then

d / fAN L f.
a
To answer this question we examine the definition of the derivative:

(a /a | fdA) (z) = Eliréhé [ /a o Fdx — /u ’ fdA]

1 x+e
= lim - / FdX.

e—0t €

Clearly if f is continuous at x then we get the result we are looking for. Indeed,

z+e T+e
RS ORI YR

3 S

and
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Now the continuity of f at z is tantamount to the fact that for any & > 0 there exists some & (6) > 0 such that if
Y € Bj (x) then f(y) € Bz(f(x)). Since & — 0%, for fixed € > 0, eventually we will have ¢ < 6 (£). Thus, for all

€€ (0, 6 (é)) we get
1/”6 )~ F (@) dr ()| <.

3

But since € > 0 was arbitrary we get the result.
More generally, there is a vast gap between continuous functions and L' functions, and it is not clear how to proceed
for L' functions. Motivated by Theorem 2.54, fd\ defines a new measure @, ; so we are essentially asking

o (e ¢
ey @

Motivated by this we make the

Definition 6.1 (The symmetric derivative). Let p : B (R™) — C be a complex measure. Then the symmetric
derivative of i at x € R™ w.r.t. A, is given by

(Dap) () := lim =m0

for all points € R™ at which this limit exists. Here
Be(z)={yeR" ||z -yl <e}.

We also define the Hardy-Littlewood mazimal function Myp : R™ — [0, 00]

(Mp) () == S (B (0) (x eR") .

In the special case of measures @y 5 which are derived from functions f, we use the shorthand notation

My f =My
Note that in R",
AB. (@) = —
x = ————€
c r(2+1)

where T' is the Euler gamma function. Since the RHS is rather complicated and not more transparent than the LHS
(except that it gives the explicit scaling as e — 0) we will usually continue to use the LHS.

Our main motivation in studying the symmetric derivative is that if © € A then we can calculate its Radon-Nikodym
derivative via the symmetric derivative. Indeed, we will see that in this case,

dp
- _p
dA

To get to that statement we build some machinery.

Claim 6.2. If p: B (R™) — C is a complex measure then 17, p is lower semicontinuous.

Proof. Let a € R. Lower semicontinuity would be implied if we show that the following set is open:
E:={zeR"|(Myu)(z) >a} € Open(R") .
Let z € E. Then

up 1L (B )
226 (B (@)

So there must exist some € > 0 such that there exists some b > a with which

Bl (B () _,
AB- @)

> a.
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1
Since g > 1, pick some § € (O,E ((g) n— 1)), so that (e +§)" < 35”. Now, if y € Bs (z), Beys (y) 2 Be (x) so that

€
e+6

muBHuw>zmuBaw>=auBam>:b< )«MBHa@D>wMB&Mw)

which implies
|1l (Bets (1))

A(Bzys (y))
Hence we have established that Bs (x) C E and hence E € Open (R") as needed. O

>a= Mrp)(y) >a=y<cE.

Corollary 6.3. The Hardy-Littlewood mazimal function Myu is measurable, since every lower semicontinuous func-
tion is.
Example 6.4. We list a few examples of the Hardy-Littlewood maximal function for various measures:

e Clearly M)\ equals the constant function 1.

e Consider the Dirac delta measure d,, for some z¢ € R”. Then |dz,| = 65, = X. (20). As such,

1 (B= () _ xp.(w) (0)
NB-(2) % _a
Mz )

ETL

We see that for any given = # xg, if € < ||z — x| then we get zero, and if € > ||z — z]| then the function starts
decreasing from its maximal value of

1

[0
T2 n

to zero as € — oo. Conversely, if z = zy then any ball contains xy and so we can shrink ¢ — 0 and get oo.

Hence
T SF 1
(Mx0z,) (x) = § T(z+) llz=oll ~ decays like = away from xzg .
! . e ol

Compare this with
0 z#ux
0o T=x0

(Drdzy) (x) = {

e Let f:R™ — C be continuous. Then as we saw,

(Dapxrg) (z) = f(z) .

On the other hand, for the Hardy-Littlewood maximal function, we always have

(Mf) (x) = [f (@)]  (z€R").

However, (M1, f) (x) may exceed |f (z)] if somehow the average over a point exceeds the value at that point, for
some ball. For example, fix some € > 0. Then define

TS
f@%—{s lel<e o ¢ gmy

1 lz]| > e

which is clearly continuous. Now f (0) = 0 but if we average over balls of radius larger than e, we get the value
1 for the function and the £ ball matters less and less, so that the supremum yields the value 1. Hence

(M f)(0) =1#0=[f(0)] .
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e TODO: present example of measure p where (Dyp) (z) does not exist for some z.
Lemma 6.5 (Vitali’s covering). Let { z; }Z]\Ll CR™ and {r; }fil C (0,00). We use the abbreviation B; := By, (x;)
and 3B; := Bs,, (x;) for i =1,--- ,N. Then there exists some S C {1,--- ,N } such that:

1. BiNBj=ifi,j €S andi+j.

2. U'fil Bi C Uics3Bi-

3. A (vazl Bi> <3 Y g A (Bi).

Proof. Without loss of generality assume r; > r; for all ¢ < j € {1,--- ,N}. We define S by including it in
members of {1,---, N } in descending order according to the following rule: 1 € S. The next element in S should
be the smallest index j after 1 so that B; N By = &. Continue in this fashion until there are no more indices left.

The resulting collection S is clearly pairwise disjoint. Moreover, Uf\/:l B; C U;cg 3B necessarily holds. Indeed, let
ie{l,---,N }\S. That means there exists some j € S with j < i such that B; N B; # @. But since the radii are
ordered, necessarily r; < r;, so in the worst case scenario, Bs,, (z;) 2 B;, (z;) which is what we needed. O

Theorem 6.6. Let p: B (R™) — C be a measure and a > 0. Then

Mo e R () (2) > a ) < 3 L

Proof. As we have seen in the proof of Claim 6.2, the set E, := {2 € R™ | (M p) (x) > a } is open. We know that
the Lebesgue measure \ is regular (see Definition 3.1), so we have

ME,) =sup ({ A(K) : Compact (R*") > K CE, }) .

Hence, let a compact K C E, be given. For any « € K, by definition, since K C E,, (M\u) (z) > a, there exists
some &, > 0 such that

B

1l (Be, @) _
A (B, (2))

Since K is compact, for the open cover
UB.. @2k
reK

there exists a finite sub-cover { z1,--- ,2y } C K:

Now using the Vitali covering Lemma 6.5, we get a subcollection S C {1,---, N } of pairwise disjoint balls whose
three-fold inflation covers the original union. Thus,

N

ME) SA U Bew, (@) | 3" Y A(Bey, () <3° 0 11l (B, @) = 3= |l (Wyes B, (21)) < 3"~ Jul (R™) .
Jj=1 JjES Jj€ES

We note that in the equality used here, we invoked the pairwise disjoint property of the collection S (so that we

could invoke additivity rather than subadditivity in the opposite direction); taking now supremum over K we obtain
the desired result. O

Corollary 6.7 (Hardy-Littlewood maximal inequality). Let f € L' (R®™ — C,\). Then for any a > 0,

A({w e R | (Maf) (@) > a)) < 2]l

83



This corollary prompts us to define a new space of functions which generalizes the L' functions:

Definition 6.8 (Weak L'). We define a new space of functions,

L. (R"—=C,\) :={f:R"—>C supa)\({a:ER”|f(a:)|>a})<oo}.
a>0

Claim 6.9. We have
L'R" - C,\)CLL . (R"=C,\).

weak

Proof. Let f € L' (R* — C,\). Then for any a > 0,

AR |f@I>ah < [ iy
dA
< /Rn\fl
= Il
< ©o0.

To show that the inclusion is strict, consider the function
(0,1)5 2 >
, T —.
x

That function is not L' ((0,1) — C, ) but it is in L}

weak

aA({xE(OJ)‘i>a}>:ai:1<oo.

((0,1) = C, \). Indeed,

O

Remark 6.10. Putting everything together, we find that the Hardy-Littlewood maximal function can be interpreted
as a map
My :L'(R" = C,\) = Ll . (R" = C,\).

weak

Definition 6.11 (Lebesgue points). Let f € L' (R® — C,\). Then x € R" is called a Lebesgue point of f iff

1

Sy O T @l =0

In particular, at such points,
1

@) ., [ OPW =@

Hence, going back to our motivating question from the beginning of this section, we give a special name to those points
where the function equals its infinitesimal average. By that discussion, all points at which f is continuous are Lebesgue
points.

Theorem 6.12 (Lebesgue differentiation theorem). If f € L' (R® — C, \) then A-almost-all points of R™ are Lebesgue
points. Le., for almost all points of R™ we have

1

I X o1

84



Proof. Define for r > 0,

TH® = 55wy o O @IRE) @R

and
(Tf) (2) = limsup (T.f) () (z €R").

r—0t

Our goal is to prove that Tf = 0 M-a.e.. Let a > 0,m € N.
We know that C. (R") is dense in L! (R™) (this was proven in HW5Q15). Now if f € L!, then

/'umx<m,
R’VL

so in particular,

lim [f]dX < o0
R—oo BR(O)

As such, for any € > 0 there exists some R. < oo such that

/ If]dr < <.
Br.(0)° 2

Then approximate [xpy_(0) € Lt (XBRE (0)) by a continuous function g with compact support within Bg_ (0), up to
precision 5. So we get

”f - gHLl(R") < Hf - fXBRE(O)HLI(Rn) + ||fXBRs(0) - gHLl(Rn)

= HfXBRE(O)C |L1(Rn) + HfXBRE(O) - gHLl(BRE(O))
< ELf_.
-2 2
Pick € = % for some m € N to get
1
I =glly < =

Define h := f — g. Now, by continuity of g, T'g = 0 everywhere. Moreover,

-

3B, )
1

BT ooy OO+ G

A5, (@)

e+ @)

(T,h) () ‘é()mm—hwwu@>

IN

+ |k (2)|

As a result, taking the lim sup r — 0,
Th <NMppx+h.

Hence
{zeR"|(Th)(z) >2a} C{xeR"| (Mypy)(x)>atU{zeR" | h(z)>a}.

Moreover |[h||; < -1 and

A({z € R [ ()| > a)) < ],

since

(maxem|mu»>ans/

mmxs/ Il dA = 1A,
{zeR™ | |h(z)|>a } R™
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Moreover Theorem 6.6 now implies

[enal () _ galibl, _ 3"
a a am

| g

A({z €R™ | (Mppy) (@) >a}) <3 ||<P2,/\

We thus find e
A{zeR" | (Mepy)(x) >atu{zeR" |h(z)>a})< prennl

Actually since this was true for arbitrary m, we find

{zeR"|(Th)(x)>2a}C ﬂ {zeR"| Mppr)(x) >atU{zeR"|h(z)>a}.

m=1

We find that { z € R™ | (Th) (z) > 2a } is a measurable subset of measure zero. Since this holds for any a > 0, we
find that Th = 0 A-almost-everywhere, as desired. O

Theorem 6.13. Let p1: B (R™) — C be a measure and y 4 A. Then

i _

-0
a_ H

A-almost-everywhere.

Proof. Let x € R™ be a Lebesgue point of g—ﬁ € L'. Then, in particular,

Be(x)

(2) = lim AT S5 X(B(0)  em0r A(Be (@)

B 20+ X (B (0)) = (Du) () -

O

Theorem 6.14 (The fundamental theorem of calculus). Let f € L' (R — C,\). Then if x is a Lebesgue point of f,

(o san)@=r@.

In particular the above equation holds A-almost-everywhere.

Proof. Let x € R be a Lebesgue point of f. Then we know by Theorem 6.12 that

1 1
_ dA [ — — dA
T L W@ < s [ e - @l
=0 0.
A similar consideration leads also to
. 1
ng(]g{r m /(x_m) |f (y) = f(z)|dA(y) = 0.

In particular we thus have

1 T+e T 1 T+e
lim = { / fdx — / fdA] = lim - / fdA = f(x)
e—0t € — &9 e—0t € J,

([ [ L[]
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We now only state, but do not prove, the other half of the fundamental theorem of calculus:

Definition 6.15 (Absolutely continuous functions). Let f : [a,b] — C is called absolutely continuous iff for any ¢ > 0
there exists some ¢ > 0 such that

M-

1f(B5) — [ i) <e

1

J

for any n € N and any disjoint collection of segments (a1, 51), -, (an, Bn) C [a, b] which satisfies

Zﬁj—aj<6.
j=1

Theorem 6.16. Let f : [a,b] — R be continuous and nondecreasing. Then the following are equivalent:
1. f is absolutely continuous.
2. f maps sets of measure zero to sets of measure zero.

3. f is differentiable \-almost-everywhere on [a,b], f' € L' ([a,b]) and

Theorem 6.17 (2nd half of the fundamental theorem of calculus). Let f : [a,b] — C be absolutely continuous. Then
f is differentiable \-almost-everywhere on [a,b], f' € L' (la,b] — C,\) and

f(fc)=f(a)+/lf’dk (z € [ab]) -

6.2 The change of variable formula revisited on R”

We now want to go back to the change of variables formula (5.2). So we assume that (X, 171, ) is a measure space, (Y, 1)
is a measurable space and ¢ : X — Y be measurable and injective. We know, by (5.3), that for any measurable f : Y — C,

/fowdu=/ fdpe
A p(A)

We may slightly rephrase this: assume ¢ is bijective so that ¢! : Y — X is measurable. Then with g := foy: X — C,

f=gop ! sothat we get
/gdu=/ gop tdu,  (Aem).
A p(A)

Relabeling 7 := ¢~! and B :=n~! (A) we find

/ gdu:/ g ondpiy-1 (Ben).
n(B) B

Let us assume that there is yet another measure v on Y and that additionally p,-: <« v. Then by the Lebesgue
decomposition theorem Theorem 5.42,

dp,
/ gdu=/gon Lilay  (Ben).
n(B) B dv

. . dup, — . .
Our goal here is to explore the expression “d"y ~ when p = v = X is the Lebesgue measure on Y := R". We will see that
then

A1
dA

= |det (@n_1)| .

1 1

where @Dn~" is the Frechet derivative of n~*.
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Theorem 6.18. Let V € Open (R™) and ¢ : V — R™ be a continuously differentiable map whose inverse (defined on
its image) is also continuously differentiable. Then the push-forward measure

)\g,—1 = oy

1s absolutely-continuous w.r.t. the Lebesgue measure A\ and its Radon-Nikodym derivative equals

dAg
A

= |det (Dyp)| . (6.1)

As such, the change of variables formula becomes
/ ﬂuzi/fowkmu®¢ﬂdA (AeBRY) . (6.2)
©(A) A

We begin with some preliminaries necessary for the proof of the theorem. The first one should be intuitive: it states
that if we scale the Lebesgue measure by a matrix, then we get a factor of the determinant outside. Since the Lebesgue
measure measures volume, and the determinant measures the volume of a parallelepiped, this makes sense.

Lemma 6.19. Let M : R™ — R™ be a linear map (an n X n matriz). Then

A(MA) = |det (M)A (4)  (AeBRM).

Proof. If M does not have full rank, then det (M) = 0. In which case, M A lies in a k-dimensional subspace of R,
the subspace MR™, whose measure is zero as it is lower dimensional. To see this, we may choose a coordinate base
where eq, - , e is an orthonormal basis of MR™ (k < n by hypothesis) and eg1,- - , e, completes to a basis of R™.
We then consider

R" =~ RFxR"F

where the first factor is MR™ and the other one is its orthogonal complement. Then for any A € B (R™), M A is a
rectangular set in this product structure, and so

Are (MA) = Age (MA) Agn-—x ({0})
= e (MA)-0
0.

Now if M does have full rank, then it is invertible and its inverse is continuous, so that M A = (M _1)_1 (A) is
also a Borel set. Then translation invariance of A and linearity of M implies

AMA+2)=A(MA+ Mz)=X(MA) .
Hence the positive Borel measure A (M) is translation-invariant. We define the normalized measure

_ A
A0,

which must, by the uniqueness Theorem 4.12, equals to the Lebesgue measure. We thus find
A(MA)=X(MI[0,1]") X (A) (AeB(R) .
We are thus left with proving, for all invertible M,

A(M[0,1]") = |det (M)] .
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For diagonal matrices M this is true by the stated scaling property in the proof of Theorem 4.12:

my

and then
AM0,1]") = A([0,[ma] x -+ x [0, [mn]]) = [ma - -my| = |det (M)] .

In the more general case, any matrix M may be factorized into M = LU where |det (L)| = 1 because it is a “shear’-it
does not change volume-and U is upper triangular. U maps [0,1]" to a parallelepiped whose volume is |det (U)].
Admittedly to follow through this proof completely one has to have a geometric interpretation of A\ as measuring
volume using the premeasure on R™ directly rather than with the product measure construction we have presented
above. O

The above statement was for a constant matrix. If we have a general map, then this gets changed by the differentiable of a
map. Recall that a map ¢ : R® — R™ is said to be differentiable at some zy € R™ iff there exists a linear map M : R® — R"
(dependent on ¢ and on zp) such that the following limit exists and equals zero:

i 1% (o +y) — ¢ (z0) = Myl _

0.
y=0 Iyl

When that happens, we say that M is the (total, or, Frechet) derivative of ¢ at xo and denote that linear map as
(D) (z0) -

In principle,
R" 5 To — (@(,0) (lEO) € Mat,, xrn (R)

defines a new map. The determinant of this map is called the Jacobian function associated to ¢.

Theorem 6.20. Let ¢ : V — R™ be continuous where V€ Open (R™). Assume that ¢ is differentiable at x € V.

Then
Al (B (1))

Jim 2R = et (D) ()]

Proof. By possibly shifting the coordinate axes and shifting ¢ by a constant, assume that z = 0 and ¢ () = 0.
Define M := (D) (0).
Case 1: M is invertible. Define ® := M ~! o ¢. Then by the Leibniz rule,

(@®) (0) = M~ (D) (0) =1, .
We want to show that

i M@ (B (0)
o0t A (B, (0))

Let € > 0. Then ® (0) =0, and (D®) (0) = 1, so there is some § > 0 such that if x € Bs (0) \ {0} then

=1.

P (z) =~ ®(0)+ (DP)(0)x +---
7 T

or more preicsely,
1@ (z) — ]| < el|]. (6.3)

Now, if € (0,d) then
B (0) @ (B, (0)) -

This will be proven right below in Lemma 6.21. Assuming this, we get

® (B, (0)) € B4y (0)
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from (6.3). Thus

which implies

Taking ¢ — 0" we obtain the claim. But now,
Ap(B)) = A (M2 (B)) = [det (M)| A (®(B))

for every ball B. As a result, we get the result.
Case 2: M is not invertible. Since ¢ is continuous differentiable, for any n > 0 there exists some § > 0 such that
if x € B; (0) then
lp (2) — Mal| < nlal|.

Since M is not invertible, its image is a subspace of dimension k < n, and hence of measure zero. That means that
for any € > 0 there exists some 1 > 0 such that

A({xzeR"|dist(MB1(0),z) <n})<e.

Hence if r < 4,
¢ (Br(0)) C{zeR"|dist(MB, (0),z) <rn}

and so
AMe(Br(0) < A{zeR"|dist(MB,(0),z) <rn})
< er”
for any r € (0,6). Hence
i D~ 2
for any € > 0 and thus the limit is zero. O

Lemma 6.21. Let S*~ ! C R” be given by
S ={zeR |||z =1}.

Note S~ = 9By (0). If

f:B1(0) = R"
is continuous and € € (0,1) is such that
If () —z| <e (xes™™)

then
f(B1(0)) 2 B1—-(0) .

Proof. Assume there exists some point
a€Bic(0)\f(B1(0)) .
Then, for any € S"~ 1,
e> |If (@) —zll = Izl = [If (@) = 1= |If (@)

ie.,

If @) >1-e.
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Asaresult,a ¢ f(S"7!). Soa ¢ f (31 (O)) So define a continuous G : By (0) — Bj (0) via

oy 22 S@)
la = £ (@)l
We now show that G fixes no point of By (0), in contradiction with Brouwer’s fixed point theorem | | (Section

2.2). Indeed, if x € S"~1, then

(z,a — [ (2)) = (z,0)+(z, 2 — [ (2))—(2,2) = (z,0)+(z,z — f (2))-1 <|[lz[l[la]+]|lz[llz — f (@)[|-1 < [laf+e-1 <O.

Hence

(z,G(x)) <0
so in particular x # G (z) for all z € S"~!. If x € B;(0), then z ¢ S"~! but by definition im (G) C S"~!, so
x # G (z). O

Lemma 6.22. Let E C R™ be a null set: A\(E) =0, ¢ : E — R™ and assume that

lim sup e ) = » @I < 0 (x € E). (6.4)

Esy—z ly — |

Then A (¢ (E)) = 0.

Proof. Let m,p € N be given and define
Fnpi={z€E|lp®) - 0@ <mly—alvye By (@)NE} .

Let € > 0. We have A (F, ) < A(E) =0, so there are balls B,, (x;) such that x; € F,,, ,, 7; < % and
UBr (@) 2 Fnp A A(Br, (2:) <e.

Now if x € F,,, , N By, (), then ||z — x| <7 < % and hence z; € F), ,. Thus
o (z:) — ¢ (@)|| < m|z; — 2| <mry

and so
@ (Fin,p N By, (2:)) C By, (¢ (2:))

and thus
@ (Fmp) S | Bumr, (0 (22)) -

We estimate

A (U By, (0 (xz))> < Z A (Brar, (¢ (21))) < m” ZBH (zi) <m"e.

But the Lebesgue measure is complete and ¢ was arbitrary, so ¢ (F, ) must be measurable and A (¢ (F, p)) = 0.
To complete the proof we note that
E=|]Fny-
m,p

We are now ready for the
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Proof of Theorem 6.18. The first item on the list is the proof that
Ao € A

This is a consequence of the fact that once ¢ is differentiable, it obeys (6.4), so in particular it maps sets of measure
to sets of measure zero. In fact ¢ maps measurable sets to measurable sets.
Moreover, we have just seen above that

Ao\ Ae(Br(x)
D (x) = T_1>I(I)l+ W = |det ((CD‘P) (37))| .

7 Probability theory—measure theory with a soul [Folland]|

[TODO: remove reference for “distribution” by itself, always specify “cumulative” or “density”|

In this chapter we use the tools we’'ve developed to introduce the basics of probability theory.

A probability space is a measure space (€, 9, 1) with © a non-empty set, 9 some o-algebra on it, and p : 9 — [0, 0o]
a measure such that p(2) = 13. Clearly, given any finite measure space u(2) < co we may re-define p to normalize
it so the main question is whether 1 (Q2) = co or not. Probability theory has a few different notations and terminology
compared with (and sometimes in contrast to) the rest of measure theory:

e The normalized measure p is usually denoted by P:
PQ)=1
and we even go further and denote the measure of sets with square rather than round brackets for some reason:
P(A)— P[A].
We will follow suit.

o The (Lebesgue) integral (2.15) with respect to the (fixed) probability measure P is denoted by E and a measurable
function f : Q — C, usually denoted by X : 2 — C rather than f, is called a random variable. Then it is customary
to use the notation

/XdPE X (w)dP (w) — E[X] .
Q weN

So in probability we almost never write out the integration variable explicitly. This integral of X is referred to as
the expectation of the random variable X.

e Rather than speak of the “bare” probability measures, we are often more interested in the probability distributions
induced by random variables, as it were. That means, if X : @ — C is a random variable with associated probability
measure P : Msrbl () — [0, 1], then a probability measure is induced on B (C) via the push forward construction:

Px[4]:=P[X ' (4)] (Ae®B(C)) .

In more concrete terms this is the probability that X takes on values in A. It is called the law of X. Using (5.2), if
f : C — C is measurable, then

E[f (X)) = f(X (W) dP (w) = /ecf(x) dPx () = Ex [f] -

weN
o If X :Q — R (i.e. it is real-valued) then the function
R3¢~ Px [(—o0,t]]

is called the cumulative distribution function. Formally its derivative is the distribution of the random variable
X (although sometimes it is not differentiable, so the cumulative distribution function is somewhat more “robust”
object to handle). When Px <« A then we have a Radon-Nikodym derivative ddp)ff and

[ i@eso= [ 10T wae.

3In this chapter we use a different convention where our ambient set is not X but Q, since X will be used for measurable functions.
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The function
dPx

dA
is called the distribution (density) function of X. There are many standard distribution functions that we will
encounter.

e (Clearly we can create new functions out of old ones via algebraic manipulations. These then yield new random
variables. We define the variance of a random variable X : ) — C as

Var[X] = E [(X - E[X])Z] —E[X? —E[X]?.

Usually this is only defined for real-valued random variables; the variance measures the typical degree of deviation
of the function from its mean, average value, i.e., the standard deviation

Var [X]
is the “typical” deviation of X away from its average E [X] as we shall see. Note the variance has the scaling
Var [aX] =a’Var[X] (e €R). (7.1)
e The characteristic function px : C — CU{ oo } of a random variable X : Q — C is given by
wx (t) :== E[exp (itX)] (teC).
The moment generating function Mx : C — CU{ 0o } of a random variable X : 2 — C is given by
Mx (t) :== E[exp (tX)] (teC).

Note that it’s not a-priori clear that both these functions exist on the entire complex plane. Both of these functions
yield the moments of X by taking derivatives w.r.t. ¢:

P (0) = (1) E[X™

and )
M (0) =E[X"]

which is the reason for the name, at least of the latter.
It should be noted that in the definition of both ¢ x and Mx, usually one takes ¢t € R. Our point of view of taking
t € C is not common and is just meant for later flexibility.

e We also have the cumulant-generating function
Kx (t) :=1log (Mx (t)) (teC).
Its derivatives at zero give linear combinations of moments called cumulants:
K (0) = 0}li—glog (Efexp (tX)]) -

Clearly, the zeroth cumulant is zero, the first cumulant is the mean, the second is the variance, but the third and so
on are already different. Two random variables have the same sequence of moments iff they have the same sequence
of cumulants.

e In statistical mechanics, if we start with a finite measure u(2) < oo which is not necessarily normalized, then
Z = () is called the partition function.

e In statistical mechanics we are often times interested in random variables on product spaces, i.e., situations where
Q= Hie{ 1, N} S for some space S, and then p is given as a density w.r.t. the product measure. HW6Q5 becomes
a useful resource then.

Example 7.1 (Standard normal random variable). Choose as the probability space
(©, Msrbl () ,P) =: (R,B (R), fdX)

with f: R — R given by the Gaussian

f(z):= exp <;x2> (z €R).
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Define the random variable X : R — R given by the identity map x +— x. We say then that X is a standard normal
random variable, denoted by
X~n(0,1),

One verifies that then, E[X] =0 and E [X2] = 1. In this case the function X : R — R is just the identity map, so the
measure P carries all the probabilistic information already.
When we have only one random variable then it will be convenient to choose X : R — R as simply the identity map.

Example 7.2 (Cauchy random variable). We say X is a standard Cauchy random variable, denoted by
X ~ Cauchy (0,1)
iff X : R = R z — x is distributed according to

dPx 1 1

o B =rE

We note the peculiar fact that E [X"] = oo for all n € N, i.e., the Cauchy distribution has no moments.

Example 7.3 (Uniform random variable). Let —oo < a < b < oo be given. We define a measure P on Msrbl (Q?) :=
B (R) via

dP 1

I (@) =X () =

-
Then if X : Q — R is again the identity map x — x, we get that the law of X is the uniform distribution
X ~ Uniform (a,b) .

We don’t always have to pick the identity map. For instance, consider the random variable Y : Q@ — R as = — %x
implies

Py [4]

| @ @ae
rz€R

1 1
/IGR XA <21’> Xla,b] () md/\ (z)

We now use the change of variable formula (6.2) (with ¢ : 2 — 1z) to get

Py [4]

1
[ xa @) o (20 7200 0)
yeR —a

= / XA (Y) X[2 ] (y)gi
yeR 2

dA (y)

a
2

so that

. a b
Y ~ Uniform <2, 2) .

7.1 Multiple random variables

Often we are interested in situations where there are multiple (or even infinitely many) random variables. They all have
their domain as the same probability space, however, sometimes that probability space takes itself the form of a product
space. For instance, consider the case

Q=01 x Qo

is the space of events, with 9t := 9; ® M». Consider then that we are given the total probability measure P : 9t — [0, 1]
(we do not know that it is a product measure). Then if

Win‘)Qj

is the projection onto the jth coordinate, it is natural to take X; := 7; as two random variables. Then the induced laws

Px, [A] =P [r71(4)] .

J
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Example 7.4. Consider Q := R? and what is usually called the joint probability distribution function

dP 1 1
a(scl,xg):%exp <—2 (J;f—!—x%)) (z1,22 €R) .

Then with X; := m; for j = 1,2 indeed, we have
Px,[4 = P [7r1_1 (A)]

1 1
/ Xt (21, 22) 5 exp (—2 (27 + x%)) dA (21, 22)
HAS

= /MRXA (1) \/12—7Texp (—;ﬁ) dA (1)

dPx, 1 1,
d (IE1) - \/%GXP (Q‘Tl) (xl € R) .

The law Py, is called the marginal. We may alternatively also consider the conditional probability measure

so we recognize that

PXcAMNY € B
P[Y € B]

Px[X € AlY € B] := (A, B msrbl.) . (7.2)

Clearly
A Px[X e AlY € Bl € [0,1]

is a probability distribution.

Definition 7.5. For any two real-valued random variables X,Y | we define their covariance as
Cov[X,Y]:=E[(X —-E[X])) Y —E[Y]))]=E[XY]-E[X]E[Y].

This may be considered a measure of their mutual dependence.

Example 7.6. Of course the most dependence we could have is for a random variable with itself, whence
Cov[X, X]| = Var [X] .
As we shall see, if two random variables are independent then their covariance vanishes. The converse is false.

Definition 7.7 (Stochastic process). Given a probability space (Q, Msrbl (Q), P), a stochastic process is a sequence of
random variables { X, : 2 — C }_\. In principle we could also consider the indexing set of the sequence a continuous
variable.

Remark 7.8. Do not confuse marginal with martingale: the latter is a type of stochastic process, which we will cover
later in TODO: CITE.

7.2 Independence

Definition 7.9 (Independent events). Let A be some index set. The collection of events { Eq },. 4 € Msrbl (Q) is
said to be independent iff for any S C A such that |S| < oo,

(]<Ea = II P{Ea]'

a€eS a€esS

P

Definition 7.10 (Independent random variables). Let A be some set. The collection of random variables { X, : Q@ — C }
are said to be independent iff { X1 (Ba) }a ca © Q) is an independent collection of events, for any collection of Borel
sets { B }, € B (C).

acA
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Claim 7.11. The collection of random variables { X, : 2 — C } . , are independent iff for any S = { ay,--- ,a,, } C A4,

n
P(Xal,”' ;Xan) = H PXaj (73)
j=1
where by P (Xayr Xa, ) We MmeAD the induced distribution of the variables X, ,- - - , X, where all others are “integrated
TR gy,

out”:
P(XM,,..’XO{”) [A] = P[(Xal,'-- , Xa, ) € A] =P [(on17'-- 7‘Xan)*l (A)} (A€ B(Ch).

On the RHS we mean the product measure construction Definition 5.6.

Proof. Let us assume (7.3). Let { By }, € B (C) be given and pick any S C A such that |S| < co. Then we want

to show that
P lﬂ X' (Ba)
a€ES

=[[P[x:'(Ba)] -

aesS

We recognize the RHS as

On the LHS, we have

P[ﬂ X5 (Ba)

a€cs

I1 5

a€eS

P(Xay Xar)

=P [(Xom"’ ,Xo )7t (H Ba)

acs

Since we are assuming (7.3), we get

- H Px, [Ba]

acsS

1.

P (Xar Xan) L
a

so the two are indeed equal as needed. For the other direction, if two Borel measures agree on all rectangular Borel

sets, then they agree by regularity. O

Corollary 7.12. Let A be some indexring set and { Xo : 2 — C}_ 4 be an independent sequence of random variables.

Then for any S ={ ay, - ,a, } T A,
ElHXal = [T Exal.

a€ES a€esS

Proof. We have

E lH Xa] = E(x0, o Xor) lH Xal

acsS a€esS

= /(9317' [n)EC Tq-- 'x”dP(Xalw' Kan) (£1, - ,Tn)

= / 1 Tnpd H Px, | (21, - ,2,) (independence)
(T1, ,xn)ECT j=1 ’
= H/ z;dPx, (x;) (Fubini)
j:1 :chC 7
= H E [XO‘J]
j=1
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Corollary 7.13. Let A be some indeving set and { Xo : Q — C} 4 be an independent sequence of random variables.
Then for any o, B € A,
Cov|[X,, Xg] =0.

Proof. We have
Cov[Xa,Xs] = E[XoXs]—E[X.]E[Xg]
PP E[Xo] E[Xg] — E[Xa] E [Xg]
= 0.

O

Example 7.14. The converse is false: there are random variables which are not independent yet their covariance is
zero.

Thanks to Akshat for this counter evample. Take X uniform in [-1,1] and Y := X2. Clearly X and Y are not
independent since Y is a function of X. More formally, consider that

P(X,Y) [AXB] = )EAXB}

PI(X,
= P[Xe€AAY € B|
= P[Xe€AAnX?€ B

= ;/e[_l ’ xa () xp (2%) dX (x)

1 1
(2 /:EE[LI] xa () dA (@) (2 /ase[l,l] x5 (z%) dA (@)

for all A, B € B (R) (take e.g. A = [—1, —f] and B = [0, 4])7 so that P(x y) is not the product measure, so that
X, Y are not independent. On the other hand,

N

Cov[X,Y] = E[XY]-E[X]

Il
m
>
|
m
=

since X is an odd function. O]

Claim 7.15. Functions of independent random variables are themselves independent random variables.

Proof. For the sake of simplicity we only show this for the case of two random variables, to illustrate the principle.
Let f,g : C — C be measurable and X,Y :  — C be two random variables. Then we want to show that f (X),g (Y)
are also independent. To that end, if By, B € B (C), then we want to show that

Pirx).gv)) [B1 x Ba] = P[(f(X),g(Y)) € B1 x By
= P[(X, Y)ef "(B1) x g7 (By)]

= PXef ' (B)|P[Y eg7'(By)]
= P[f(X )€B1]P[g( ) € By]
= Pyx)[Bi]Py) [B2] -
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Remark 7.16. Since a probability space is a finite measure space, in this particular context, we always have

IP(Q—=CP) C LI(Q—=CP) (1<qg<p<oo).

Proof. Let X € LP (2 — C,P). Let ¢ € [1,p]. Then

/|X\qdpz/(|X|P)%dP.
Q Q

Now, the map « +— ar is concave. As such, Jensen’s inequality (Theorem 5.25) implies that
[axmEae < ([ xro)
Q Q
< 0o0.

O

In particular, L™ C L™, so having higher moments guarantees the existence of lower moments, but not vice versa. This
is in contrast to the p (X) = oo scenario,

Proposition 7.17. The product of L' independent random variables is itself an L' random variable, and the expec-
tation of the product is the product of expectations.

This is in stark contrast to the usual case where if f, g € L' then it is certainly far from obvious whether fg € L!
(consider for instance f = g = [0,1] 2 =z — ﬁ which are both L' but fg is not L'; of course, f,g are not indepen-

dent).

Proof. Let X,Y : Q — C be two independent L' random variables. Then we want to show that XY € L' too.

EfXY]] = E[X[]Y]]
= Ex,y) [IX[1Y]]
= (Ex x Ey) [|X][Y]]
= Ex [ X[JEy [[Y]]
where in the last step we invoked Tonelli’s Theorem 5.14. The step E(xy) = Ex X Ey is where we invoked
independence. Once this is known, the same maneuver without the absolute values shows that the expectation of
the product is the product of the expectations. ]

Proposition 7.18. The sum of L? independent random variables is itself in L?, and the variance of the sum is the
sum of the variances.

Note that the sum of L? functions is always L? by the triangle inequality (regardless of independence):

1f + gl <M fllze + llgll e -

Proof. Let Xi,---, X, : Q@ — C be independent L? random variables. Let S := >>"_, X;. The following calculation
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shows both that S € L? and our claim:

Var [S] = E [S?] —

o= ) (2 )

=E ZXXl

7,l 1

— > B X - EX]E(X]

n

:fﬁvﬂfam% > EIX; X)) - E[X;]E[X)]

=t =Var[X;] =i =Cov[X;,X]
= ZVaI’ (X;] . (independence)
j=1

O

7.3 Important inequalities
Theorem 7.19 (Markov). Let X : Q — R be a random variable and ¢ : R — [0,00) a non-decreasing function so that

poX € L'. Then
p(@)P[X 2a <E[p(X)] (a€R). (7.4)

Proof. We have

Ee ()= [ o(xX@)apw
— [ _e@x@)
zER
= [ c@Px@+ [ c@x@
> [ e@dx () (o 0)
> N v (a)dPx (z) (¢ is nondecreasing)
— p(@P[X >d
O
Theorem 7.20 (Chebyshev). Let X : Q — R be an L' random variable. Then
PIX —E[X]| > 4] < Va;[ L >0 (7.5)

Proof. We apply Markov’s inequality to the variable Y := (X — E[X])® with the function ¢ (a) := a and the value
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a:=¢%to get

Plr>e < E
;
Pl(X-EX)*>e] < Va;m
;
PIX —E[X]|2 < “2rAl

Lemma 7.21 (Borel-Cantelli). Let { E,, }, o € Msrbl(Q) be such that

ZP[EH]<OO.

neN

Then the probability that infinitely many of the E,, occur is zero, i.e.,

P ﬂUEk =0.

neNk>n

We note that w € (,,cy Upsy £ iff w € By for infinitely many &’s:

VneNIk>n:weE.

limsup F,, := ﬂ U Ey .

neN k>n

That set is denoted

One may also prove that

limsup E,, = { weN

limsup xp, (w) =1 }

Proof. Consider the sequence Fy :=J,,~ 5 En- It is non-increasing:

Fy 2 Fnya
and
Fy D ﬂ U Ej.
neNk>n
Hence

= 1 < i = .
PI( U Ex|=Jim P[Fx]< lim > P[E,]=0
neNk>n n=N
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Lemma 7.22 (Second Borel-Cantelli). Let { E, }, . € Msrbl(Q2) be independent such that

> P[E)] =0c0.

neN

Then

Pl U Ex| =1.

neN k>n

Proof. We have

c

1-P | U Ex :P- N U E

neN k>n neN k>n

-e|U N

neN k>n

= lim P ﬂ E; (Approximation property)

n—oo
k>n

Now, { ﬂg:n E; }N is a decreasing sequence of events whose limit is (), E5. Hence by the approximation property

of measures (2.5) in reverse we find
o0

C
(5

k=n
N
c
M &
k=n

1-P| () U EBx| = lim P
neENk>n nree

= lim lim P
n—o00 N —o0

N
= lim lim P[E}] (Independence)

n—00 N—oo
k=n

N
= lim lim (1-PI[E]) .

n—00 N—o0
k=n

But since we assume } -, P[E,] = oo, this implies lim, o [[;>, (1 — P [Ek]) = 0 and we are done. Indeed,

exp | log H(l—P[Ek]) = exp Zlog((l—P[Ek])) <exp —ZP[Ek] =0.

k>n k>n k>n

O

Lemma 7.23 (Kolmogorov’s inequality). On a probability space (2, Msrbl () ,P) let { X,, : Q@ = C }, .\
of independent random variables such that E[X,] =0 for alln € N. Set Sy := X1 + -+ Xi. Then

be a sequence

1
P >e| < =V \ .
[ke{nll?(,n } |kl = 6] =gzver [n] (e>0)

Proof. We note

S| > =Ur_,A
{ke{%l’%?(’nﬂ k_ﬁ} k=14
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with Ay := {|Sk| > e A|S;| < eVj < k }. Hence

i Le{r?f‘.’.‘,n} 191 = } =2 Pl <) B ca s

because on Ay, S > 2. Now,

\E

E[S.] 2 > Elxa.s:]

x>
Il
—

I
M=

E {XA;C (Sk + (S — Sk))ﬂ

x>
Il
—

I
M=

E [XAk (5,3 + 28, (S, — Sk) + (Sp — Sk)zﬂ

b
I
—

>

M=

E [x4,S2] +2>  E[xa.Sk (Sn — Sk)] -
k=1

>
Il
—

Actually, E [xa,Sk (Sn, — Sk)] = 0. Indeed, (S,, — Sk) is independent from x4, Si. The first expression depends on
Xkt1,- -, Xpn whereas the latter on Xy,--- , Xj. But E[S,, — Sg] = 0. Hence

P [ max |Sy| > 5} <e?E[SZ] =e72Var[S,] .
ke{1l,-,n}

7.4 Convergence of sums of random variables: LLN, CLT, LIL and all of that

On a probability space (€2, Msrbl (©2) ,P) we are given a sequence of random variables { X,, : @ — C }, \ and we assume
they are independent, as in (7.3)%. This situation could experimentally arise when we sample many measurements of some
experiment, each time restarting the apparatus from scratch so as to obtain independence. We are then interested in the
distribution of the average of the first N measurements:

Avi=—=> X, (NeN).

Calculating P 4, in and of itself is not that interesting (and also difficult). We are more interested in the behavior of P4,
as N — oo. It turns out that as N — oo, Ay behaves quite deterministically. Just by linearity of the integral we have

1 N
= v D EIX

n=1

and by (7.1) and independence (Proposition 7.18),

Var [Ay] = e ZVar

A natural thing is that all our random variables would be identically distributed, or at least, have the same variance o2.

In this case,

Var [Ay] = NQZJ *—0 —0.

If the variance of Ay becomes arbitrarily small, it is to be expected that it becomes arbitrarily close to a constant (i.e.,
deterministic) random variable:

N
N —o0 1
Ay & E[AN]:NZE[X]
n=1

4For some of our statements independence may actually be dropped
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For example, if all the expectations values are the same, E [X,,] =: pu, we get
AN < W.
In this situation we expect

AN ~ p+ 7« (random fluctuations of order 1in N) +---7.

VN

The above rationale prompts us to define the following random variable

_Av—p
=N

which captures, presumably, scaled (order 1) fluctuations of Ay about its mean. The amazing thing is that the distribution
of Zy as N — oo is universal and completely independent of Px,. In this sense the standard distribution is “universal”
regardless of the distribution of the sequence { X, },, we choose, just the structure of independence and some mild
assumptions, we will establish:

ZN

N—oc0

Zy V2% N (0,1) .

As we shall see, in principle one may continue the asymptotic expansion of Ay to further powers of %:

Apn ::,LL+LZN+RN.

VN

The terms in Ry however do depend on the distribution of Px, and are no longer universal, as we shall see (TODO
CITE).

7.4.1 The law of large numbers

The above intuitive discussion was rather vague about how various random variables converge. We now want to make

this precise. The first form of convergence we want to discuss is

Definition 7.24 (Convergence in probability). Let { Y, }, oy
other random variable. We say that Y,, — Y in probability,

be a sequence of random variables and let Y be some

v, By
iff
PV, —-Y|>e]"=°0  (¢>0).
Remark 7.25. Note that this notion is identical to the notion of convergence in measure which appeared in the

homework, with the specification that the measure is a probability measure.

With this at hand, we want to make precise the statement Ay — p:

Theorem 7.26 (Khinchin’s theorem, the weak law of large numbers (LLN)). On a probability space (€2, Msrbl (2), P)

let { X,,: Q— C} _\ be a sequence of L? independent random variables such that

N—oc0

N

. 1

lim > Var[X,]=0.
n=1

In particular we are not assuming { X,, },, are identically distributed. Then

Ax 5 E[AN].

in the sense that
lim P[|[Ay —E[An]| <e] =1 (e>0).

N—oc0
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Proof. We invoke the Chebyshev inequality Theorem 7.20 on the random variable By := Ay — E [An]| which has,
by construction E [By] = 0 and Var [By] = w 271:/:1 Var [X,]. We obtain

N

1
PlIBN| 2 €] < > var[X,] .
n=1

O

This theorem may be strengthened by dropping the L? assumption and truncating random variables. This allows one to
handle, e.g., Cauchy distributions. One possible phrasing of a generalization is as:

Theorem 7.27 (Better version of WLLN). On a probability space (€2, Msrbl (Q),P) let { X,,: Q@ —=C} _y be a
sequence of independent identically distributed random variables such that
lim «P[|X,| > 2] =0.
Tr—r o0
Then ,
AN_E[X1X[—N,N] (Xl)] =0 (N—)OO) .
The proof may be found in standard probability texts, e.g., | | (Theorem 2.2.7 in the Edition 4.1, April 21, 2013;

Theorem 2.2.12 in Edition 5 online).
Next, we want to strengthen the mode of convergence of the LLN above. We shall build towards

Definition 7.28 (Convergence almost-surely). Let { Y}, }, .\ be a sequence of random variables and let Y be some

other random variable. We say that Y,, — Y almost-surely,
Y, Yy
iff
P[lim Yn:Y} —1.

n—roo

Claim 7.29. If { Y}, },, o\ converges almost-surely to Y then it converges in probability to Y.

Proof. Let Y,, — Y almost-surely. We want to show that Y,, — Y in probability, i.e., we want to show that

lim P|Y, —Y|<el=1 (¢>0).

n—oo

To re-iterate, we are assuming that
P | lim |Yn—Y|:o} ~1.
n—oo

Let € > 0. Then A, :=U,,5, { [Yim — Y| > ¢} defines a decreasing sequence of sets towards (,,cy An. Hence
limP [A,] =P | ) 4n| -
" neN

But, P[A,] =P {U {|Ym —Y|>¢ }] > P[|Y, — Y| > €] by monotonicity. We find

m>n

lim P[Y, ~Y|>¢] <P
n—oo

N 4.

neN

But P [),,en An] = 0. Indeed, this follows from

ﬂAng{ i |Yn—Y|:0}C.

n—00
neN
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To see this, let w € {lim,, 00 [Ys, — Y| =0 }. Then for that w, |Y,, — Y| < e for all n > N (w). For such n, w ¢ A,,.
But since P [lim,_, |Y;, — Y| = 0] = 1, the probability of the complement is zero, so we get our result. O

Theorem 7.30 (Kolmogorov’s strong LLN). On a probability space (2, Msrbl(Q),P) let { X,:Q —C}
sequence of L? independent random variables such that

neN be

N

1
lim —Var [X,] < .
N—o00 n2

N
. 1
g (v ) -

e, imy_ oo (AN — % 25:1 E [Xn]) = 0 almost-surely, that is,

. 1 &
Pl]\;gréo (ANN;E[Xn}> —0] =1.

Then P-almost-surely,

Proof. Define By := Ay — & >N E[X,]. Then E[By] = 0. Let ¢ > 0. For fixed k € N, |B,| > e3n € [2F1,2F]
implies max,,_q ... or 7| By| > g2k—1

P[|Bn| >e3dn e [2’“*1,2]‘3]] <P [ max _ n |Bp| > 52’“1} (Monotonicity)
n=1,---,2

2k 1 — ZIVar (Kolomogrov)
n=

Summing this inequality from k = 1 to co we find

oo o) 2k
_ 1
;P[|Bn|253n€ B < ngvmm
= 22:222_2"“Var
€ k=1n=1
= 72 Z 27?*Var [X,,]
c = oz ()
<

= Z —Var < 00.

Hence
P {limsup{ |Bp| > edn € [2°71,2F] }} =0
k

by the Borel-Cantelli Lemma 7.21. But

limsup { |B,| >edn € [2’“*1,2’“} } = {|Bn| > ¢ for infinitely many N } .
k

Hence
P [liminf { |By| <e}] =1.

If we now take a (countable) limit of € — 0, we conclude that limy |Bx| = 0 almost surely. O
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7.4.2 The central limit theorem

We now return to the asymptotic expansion

ANy ~ p+ 7« (random fluctuations of order 1 in N) +---7..

VN

To study it we have defined

N.:AN*M
=N

We shall see that

N—oc0

Zn RN (0,1)

The mode of convergence of Zy — 1 (0, 1) will be in distribution.

Definition 7.31 (Convergence in distribution). Let { Y, }, oy
other random variable. We say that Y,, — Y in distribution,

be a sequence of random variables and let Y be some

v, v

iff for all bounded continuous functions f : C — C,

lim E[f(Y,)] =E[f(Y)].

n— oo

Claim 7.32. {Y, }, — Y in distribution iff

lim P[Y, > =P[Y > 1

n—oo

pointwise in ¢, for all points ¢ at which ¢ — P [Y" > ] is continuous.

Proof. See HW9Q3. O

Theorem 7.33 (Lévy’s continuity theorem). Let {Y,, }, be a sequence of real-valued random variables and Y be a
real-valued random variable. {Y, }, — Y in distribution iff E [exp (itY,)] — E [exp (itY")] pointwise int ast € C and
t — E[exp (itY)] is continuous at t = 0.

Proof. Let f: C — C be the image of the Fourier transform of some L' function ¢ : C — C. Then
F0) = [ e lw)g )i @).
PER
Then
EF 0] = E|[ ew@w)smarw)
PER
- [ Elew@ulsmnw).
PER

Taking now the limit n — oo on both sides and using the dominated convergence theorem we find

lim E[f(Y,)] =E[f(Y)].

n—oo

We now approximate every continuous bounded f by such functions as above. For the details, see HW9QA4. O

Claim 7.34. Convergence in probability implies convergence in distribution.
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Proof. TODO O

Hence, we have the following hierarchy of convergence modes:
L Almost sure = LP = In probability = In distribution. j

5

We shall prove

Theorem 7.35 (CLT). On a probability space (Q,Msrbl (Q),P) let { X,, : Q@ — C}
L? random variables such that there exists some 6 > 0 with which

nen be a sequence of independent

S E 1% —E X))

lim =0

(Ve ver [XTJ)M

Then Zn — Z (where Z ~ 11 (0,1)) in distribution.

Proof. We shall calculate the characteristic function of Zy. For convenience we denote X,, := X,, — E[X,,] and
o2 :=Var [X,],

and finally, Y,, := X"%E[X"] Note that { Y}, },, is an independent sequence with E [Y,,] = 0 and E [V,?] = 1. Then

¢zy (t) = Elexp (itZn)]

N
= H E [exp it )] (independence)
n=1
N 0 1
= exp Z log (E Z 7 (it)" Y ))
n=1 £=0

2 i

~on T N3 tE[Y2]+0 (N2))>

<
o e (s 2] o)
|

[

- o (e (1t + g ) v )
[
(

n=1

where P; is some polynomial of degree 3j whose coefficients depend on the moments of the Y,’s. We find this

5In principle there is also the total variation convergence: | — vl := sup 4 |1 (A) — v (A)| and we then ask that [Py, —Px|lpy — O.
This mode of convergence implies convergence in distribution but no other implication involves total variation distance. We do not need |||+
yet.
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converges pointwise in ¢ to
L,
Yz (t) = exp _it .

The convergence of the characteristic function implies convergence in distribution by Lévy’s continuity Theorem 7.33.
TODO: make this compatible with the assumption that variables are not identically distributed. O

Corollary 7.36 (“Small” deviations tail bound from CLT). Let { X,,: Q@ - R} be a sequence of IID random

neN
variables with mean p and variance o*. Let Ay = % 25:1 X, as before. Then, for every t > 0 there exists some
Ny (t) such that if N > Ny (t)
AN — K t 1 1 2
P — < = —=t) . 7.6
|#51> ]z iee "

Proof. We have

and Zy converges in distribution to a standard normal RV. Hence,

(|17 1 -

1 t
Pl—=1|Zn| > —
>
= E [X[—t,t]“ (ZN)] c
The CLT now implies that
lim E [X[—t,t]" (ZN)] =E [X[—t,t]“ (Z)]

N—o00

where Z ~ 1 (0,1). For Z, we have

1 1
E [X[*t,t]” (Z)] = \/727 /G[—t - exp (‘22’2> dA (2)

- J% /i _— <—;z‘2) A\ (2)

2 > z il
< 2 [ =z - 1
T Vo S texp( 2° )d)\(z) (

[ ()

INA
N
N

2 1,
= ——¢ ==} . FTC
= xp< . ) (FTC)
Hence,
, Ay — p t] 2 (12>
1 P S | € ——= ——t t>0).
N H z ‘ V) S e P\ e (£>0)

Compare this with Hoeffding’s inequality:

Theorem 7.37 (Heoffding). Let { X,, : Q — [a,b] },, be IID random variables and Ay = & Zgﬂ X,. Then

PHANM

b—a

> t} < 2exp (—2Nt?) (t>0).

7.4.3 Higher order terms in the asymptotic expansion: an Edgeworth expansion

As we see in the above proof of the CLT, we could in principle continue the expansion of ¢, (t) (pointwise in t) to obtain
any order in N =2, Such an expansion is called an Edgeworth expansion. It expands the characteristic function ¢z, in
terms of the characteristic function of the standard normal ¢ — exp (f%tQ).

108



Once we have the characteristic function, we can invert it back to get an expansion for the distribution of Zy:

dPz, 1 .
I () = o7 ) exp (—itz) oz, (t)dA(t)
1 ) 1, 1 3
= % . exp (71t2) exp (Zt ) |:1 — IEHE [Yn}:| dA (t)
= iexp (—122) [1—11E[Y3]z(z2—3)+©(N_l)} .
Ver 2 6Nz “"

Hence the distribution of Zy does depend on Px, just, asymptotically this dependence converges to zero and we just get

a standard normal variable for the zero order term in the asymptotic N —3 expansion.

7.4.4 Law of iterated logarithm (LIL) [extra]

The tail bound derived from the CLT says that given ¢ > 0, there exists some Ny () € N such that if N > Ny (¢), then

PlIZn| > ] <P[Z] > t] .

This situation does not preclude that almost-surely, as N — oo, Z becomes in fact unbounded.

Claim 7.38. Let { X,, : @ — R} be a sequence of IID random variables whose mean is y and variance is 6. Then,
with the convention

1
Ay ==Y X,
N n=1
and -
Ay =: W+ WZN
we have

P [limsupZN = oo} =1.

N—oc0

Proof. Let Y,, := X"{:”. Sy :=Y1+ -+ Yyn. Let M > 0. Let my := 2 and my1 := mj for all k € N. Then
_1
\/%:mk"’ — 0. Then

Skarl = Smk + Ymk-‘rl +ee Ykarl o

=:Bj,

By construction, E [By] = 0 and Var [By| = my41 — my and { By, }, are independent, so we may apply the CLT on
it to get
P[Br > 2M/mi11] = P[Z > 2M] .

.. . VR B
In writing this, we use \/ﬁ — 1. Hence, Y, P [By > 2M,/my31] = co. Thus, by Lemma 7.22,

P [Bk > 2M \/my1 for infinitely many k’s} = 1,
Now, by the strong LLN,
Smk Sm,C mig
= —0
VvV IMEk+1 Mg /Mk41
g Sm

almost-surely. So almost-surely, for sufficiently large k, \/Wkﬂ < M.

Sle

Whenever both By > 2M ,/mj 1 and ‘\/ﬁ < M, we get

Smk+l = Smk + By > By, — |Smk| > 2M\/mk+1 — M\/mk+1 = M\/karl-
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Hence,

Sim
Z = LS M.
i ME+1
This event can be obtained as the countable intersection of the two almost-sure events, so we are done. ]

So if Zn almost-surely grows to +o00, can we characterize how quickly?

Theorem 7.39. Let { X,,: Q@ — R}, be a sequence of IID random variables whose mean is p and variance is o*.
Then, with the convention

n=1
and
o
AN =i p+ ﬁZN
we have
Z Z
P limsup—N:1 =1 A P|liminf ——2N% = 1| =1.
N—ooo 4/2log (log (N)) N—oo 4 /21og (log (N))

Le., almost-surely, the mazimum of |Zx| grows like \/21og (log (N)) as N — co.

Note the contrast between the CLT and the LIL. CLT says that for a single arbitrarily large N, Pz, ~ Pz with
Z ~11(0,1). On the other hand, the LIL says that when taken as a whole, the sequence { |Zxn| }, grows, almost-surely,
like y/21log (log (N)), which is very slow.

Proof of Theorem 7.39. TODO O

7.5 Large deviations [Varadhan)|

In this section we follow Varadhan’s lecture notes | |; see also | |
To motivate the “large deviations” question, recall the approximation theorem due to Laplace:

Theorem 7.40 (Laplace asymptotics). Fiz somen € N. Let f : R* = R, g : R® — C be given. Assume that f has

continuous Hessian

Hf : R = Matyxp (R)

at some xg € R™ and g is continuous and non-vanishing at xo. Assume further that
(V) (xo) = 0 A (Hf) (x0) > 0.
Finally, assume that there exists some n, > 0 such that
/ e @ g (2)dA (z) < 0.
z€R®

Then

i Joern €W g (@)X () g (z0)
e —Z o1/ (o) - '
n n"Ee \/det (s (Hf) (z0))

In particular,
1
lim —=log (/ e M@ g (2)dA (x)) = f (o) -
n—oo N rER™

The proof of this classical result may be found, e.g., in |
We want to ask the following basic question: if we have a sequence of probability measures P,, on a fixed measurable
space (€, Msrbl (2)) and X is some fixed random variable X : Q — C, in analogy with can we compute

lim —= log (E, [¢ (X)]) =7

n—o0 ’r)
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What about 1
lim ——log (E, [g, (X)]) =7

n—oo 7
To see why this might make sense, let us consider the case of IID random variables from the previous section, { X, }, oy
whose mean is y and variance ¢2; with
N
1

n=1

we found that
AN —p

ZN = U/\/ﬁ

asymptotically behaves like a standard normal. This means that the tail bound behaves like

*[1#7]=

g

o
P [|ZN\ > \/Nt}

1 1,
[z (37)
1 1
= Q/ZG[OOO)\/%exp<(z+\Ft> >dz
= 2/26[000) \/lz?exp< 1N<\/1Nz+t)2> dz
- \/ﬁ/ - exp(—;N(z—Ft) >dz

Remark 7.41. Note that the step x above is not justified but only heuristic because we may only apply the CLT with
fized t, which does not depend on N.

[1%

[\

Employing the Laplace asymptotics cited above yields

. 1 AN —p 1,
— i o % = —= .
ngréoNlog (P H . ‘ > t}) 2t (7.7)
+
PHAN_N‘zt] ~ e 3N
o

We thus expect that the sequence of probability measures { P% I }N N will behave, asymptotically, in an exponentially
N €

decaying way.

After these intuitive motivation, let us now make this more precise. In what follows (2, Msrbl (Q2)) is a fixed measurable
space. For simplicity we assume that the ambient space ) is a complete separable metric space and Msrbl (2) = 9B (Q).
We switch from the asymptotic parameter n — oo to e — 0T, with the rule ¢ := % We thus consider sequences of

probability measures P, : B (Q) — [0, 1] parametrized by a continuous parameter € > 0. We want to formalize the relation

PelA] ~supe™=!® (e = 0%)
a

for some function I : @ — [0, 00]. To that end, let us make the
Definition 7.42 (Rate function). A rate function I : Q — [0, 00] is some lower semicontinuous map 2 — [0, o] (i.e.,
for any t € (0,00), I71((t,¢]) € Open () or equivalently, I=! ([0,¢]) € Closed (Q) for any ¢ € (0,00)) such that for

any ¢ € (0, 00),
~1([0,4]) € Compact (2) .
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Remark 7.43. Varadhan uses this notion whereas other authors only require a rate function to be lower semicontinuous
whereas the additional requirement on compactness is called a “good rate function” (see e.g. Dembo’s textbook | -
The difference between the two offers some technical advantages down the road. For now we stick with Varadhan’s
simpler phrasing.

Definition 7.44 (Large deviations principle). Let { P. },.., be a sequence of probability measures. We say that
{ Pe }.o0 obeys a large deviations principle with rate function I : @ — [0, 0o] iff

1. For any F € Closed (©),
limsupelog (P [F]) < — inf I (w) .
e—0+ wekl
2. For any U € Open (Q),

liminf ¢ log (P [U]) > — inf I (w) .
iminf e log (Pe [U]) > — inf I (w)

Claim 7.45. Let { P, }.., be a sequence of probability measures that obeys a large deviations principle with rate

function I as above. If A € B () is such that

inf I(w)= inf I(w)= inf I .
Jof T(w)= inf I'(w) [nf, (w) (7.8)

then
li log (P, [A]) = — inf I .
sl%1+€ og (P. [4]) Jlel (w)

Proof. By definition we have

I log (P, [A]) < — inf I (w) = — inf I(w) < liminfelog (P, [A°]) .
imsupelog (P: [4]) < — inf I (w) in (w)_}_:g(l)ll&‘og( [4°])

e—0t wEA wEA°
Moreover, since A° C A C A, we always have P [4°] < P, [A4] < P. [m Hence

limsupelog (P: [A]) < liminf elog (P, [4])

e—0t e—0t

so the limit exists and equals —inf,c4 I (w) as desired. O

In particular, if @ = R™ and I : Q — [0, 00] is monotone increasing away from the origin, we have

P. (B (0)°] ~ exp (—1 inf I(w)) — oxp (—i](t)) .

€ weB(0)°

Example 7.46. Let Z be a standard normal RV, ie., Z ~ 1 (0,1). Then, we claim, the sequence of measures
{ P ez }E>0 obeys an LDP with the rate function I (z) = 122. To see this, first we note that clearly I : R — [0, o0]
is continuous so it is lower semicontinuous, and moreover,

17 ([0,1]) = [~v/2, V21| € Compact (R) .
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So I is indeed a rate function. Moreover, let C' € Closed (R). Then

P[] = P[VeZeC]
_ p{mkc}
= [ xae@=ew (—é) ar (2)
- =/ xe@ew (—;) ar (2)
1

exp (—2% inf,co 22)

\V2rme

Hence

1
li log (P [C]) < — inf 2® = — inf I (2) .
1i>%1ip5 og (P.[C]) < 9 L7 ot (2)

Moreover, if U € Open (R) and § > 0, let z5 € U be such that
1(25)—6<Zlglfjl(z) .

We may choose some r > 0 such that B, (zs) C U and I (B, (z5)) C Bas (inf,cpy I (2)). Then,

Prz[U] = \/%/ZGUexp (—215%) dA (2)

1 1 1
- ~inf I (z) — -2
opes LGBT(zg) exp < - inf (2) 5 6) dX(z)

2r 1 1
= I i f 1 - 725 .
V2me *p ( 15 zuelU (2) € )

Hence
liminfelog (P [U]) = — inf I (z) — 24.

e—0+ zeU

Since § > 0 was arbitrary we get the result.

Lemma 7.47 (Varadhan’s lemma). Let P, satisfy the LDP with a rate function I. Then for any bounded continuous
random variable X : ) — R

lim clog (Ee {exp (ix)D = sup (X (w) — I (w)) .

weN

Proof. Let M > 0. Note that I : Q — [0, 00] is itself a random variable. Hence

e o (1)) = . o (1) o] & o () o]

Since X is bounded, we get

1 1
E; [exp <5X> XI>M} < exp <€||X||OO> P.[I > M].
By the fact that P. obeys an LDP, we have

P.[I>M]Se M,
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Hence we get
1 1
€. [exp (1) xasad| e (~2 01 - 1x1L0) )
Eventually we shall take M — oo but for now all we need is that

M > | X iy (X () = I (w))

so that )
exp (=2 (M - || X]|,.))

=0+ exp (f% (sup,eq (X (w) — I (w))))

Let us now study the other term. We prove first an upper bound. Let § > 0. By assumption, Ky :={I < M }
is compact, so X is uniformly continuous on it. As such, there exists some 1 > 0 such that if wy,ws € Kj; are such
that

—0. (7.9)

w1 —wa| <7

then
|X (OJ1) — X(WQ)l <9d.

Since K is compact, the open cover { By, (w) } admits a finite sub-cover { By, (w;) } . The collection
2 wEK M 2 Jj=1,-n

{ Cj = W }j:1,~~' n

still covers Ky (it is just bigger), each C is closed, and has diameter less than 7, so obeys uniform continuity of X.

Then
/WGKM exp (iX (“)) dP. (w) < é/wecj exp (iX (w)) dP. (w)
< Z:;/wecj exp (i (X; + 6)) dP. (w)

where X; := inf,cc; X (w). Hence

im sup < Log ( /w e (i_x (w)) dp. (@) = lim supe log ( /w e (ix (w)) dp. (w)) (Using (7.9))

< sup (Xv +0 — inf I(w)>
je{1,~-,n} / wel;

< sup sup (X (w)—1I(w))+4
je{1, ,n}weC;

= sup (X (w)—TI(w))+9.

weEK N
<sup (X (w) —I(w))+4.
weN
Since § > 0 was arbitrary, we are done.
For the lower bound, given some § > 0, by the approximation property of the supremum, there is a point @ € K
such that 5

X(@)-T@)2 sw (X(@)-Iw)-5
weK
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By continuity of X, we may find a neighborhood U C Ky, of @ such that X (w) > X (@) — 16 for all w € U. Then

lim inf ¢ log </ exp <1X (w)) dP. (w)) > liminfelog (/ exp (1X (w)> dP. (w))
e—=0+ weN g e—0+ WEK &

V

1
> liminfelog (/ exp <X (w)) dP. (w))
e—0t welU &
)
- 0
2 X (@) -5~ f I(w)
)
> X@)-1@) -4
> sup (X (w)—I(w))—9d.
weK
Again, since § > 0 and M are arbitrary, we are done. O

We illustrate the utility of these notions by applying them to the sum of IID random variables which we saw before in the
CLT section, Corollary 7.36.

Example 7.48 (CLT Improvement via large deviations, Cramer’s theorem). Let { X,, },, be IID random variables
with mean p and standard deviation o > 0. Define

N
1 o
A ::—g Xn=1p+—=2Zyn.
N N’n,:l K N N

We want to revisit Section 7.5.
We thus want to establish that the sequence of probability measures P4, obeys an LDP with rate function
(Cramer’s function)

I(z):= zlé}R) (6z — log (E [eeXl])) (reR);

(recall that 6 — log (E [eexl]) =: £ (0) is the cumulant generating function). The mapping

(0 k() — {x s sup (2 — n(ﬁ))}

0cR

is called a Legendre transform. The Legendre transform is always lower semicontinuous (prove this). For instance, for
standard normal,

102 1
= 56 = — 2
k(0) =log (e ) 20
and then

1 1
I(z) =su 996—92):952.
(=) eeE( 2 2

Moreover, we have

I(z) > lz“u<p (0z — £k (0))
> alz|— sup k() .

10]<a
Presumably Py, is sufficiently nice so that M, := supg <, % (¢) is finite for some a > 0. If that is the case, then
I(z)>t

for all |z| > % so that { I <t} is necessarily bounded. Since it is a closet subset of R it is compact, and that
makes I a rate function.

We now prove that P4, obeys an LDP with Cramer’s rate function. For convenience, let us instead work with
the normalized
Ay —p
o

By : ZN .

-
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Let now F' € Closed (R) and § € R. Then

P[Bn € F]=P[By=c¢ 3JceF]
<P[By >c¢ 3Fc€F]
=P [eNGBN > V9 for some cEF)|

< o Nocg [GNGBN] (Markov)
— o~ NOc NK(0) _ —N(6c—r(9))

since this holds for every 6 and every c € F', we get

1
< — 1 — = —1 — = —1i .
I log (P[Bn € FJ]) < sgp plglfr (0c — K (0)) Plgg Sl;p (0c — K (0)) Plggl(c)
TODO: complete the lower bound on open sets.

Now that we have the LDP for { Ay }, we get an improvement of (7.6): Let us assume that for any ¢, [u — to, u + to]*
is such that (7.8) is obeyed. Then

. 1 AN—,u o . 1 c
A}gn@}\flog(PH . ‘>t}> = A}gnooﬁlog(P[ANE[ufta,u+ta] D

1(6).

inf
0€[u—to,utto]®

We note in passing that the LDP has also been established for Brownian motion, see | ]

7.6 The Kolmogorov extension theorem [Biskup]

This is also known as the Kolmogorov existence theorem, the Kolmogorov consistency theorem or the Daniell-Kolmogorov
theorem. We follow mostly Folland and [Bis].

Let (€, Msrbl (), P) be some probability space and A be any non-empty index set. Usually we suppose that for any
a € A, we are given a random variable X, : 2 — R. Now we are interested in the following “inverse” problem: given all
laws of all random variables, can we build a mutual probability space (Q, Msrbl (Q2) , P) where all X,, are random variables
on this mutual “sample space”?

Let us make this more precise: given the distributions Px_ for any a € A (these are probability measures on R), can
we reconstruct (£2, Msrbl (§2) ,P), whose marginals are { Px,, },. 47 This question is still too simplistic because sometimes
we may want to encode the dependence structure between the various random variables. So we should rather ask, the
following: For any n < oo and any injective map

a:{1l,---,n}—>A

we are given P( Xy Xay) 35 @ probability measure on R”. Can we then reconstruct (£2, Msrbl (Q2),P) so that for any
aps T Xap

such «, P(Xal,---

There is an obvious solution to this problem in the following special case: say that all variables are independent and
|A] < co. Then we can take

Xa) is indeed the marginal of P?

Q=R Msibl(Q) =B (R‘A‘), P:= ][ Px. .
acA

In principle this product structure is how we want to think of the underlying probability space for any sequence of random
variables, i.e., the random variables are the coordinate projections of {2 into each individual component:

Q:l_[R7 Xo =T .
acA

However, when A is infinite we must be careful with this construction since in principle we do not know how to make
sense of [],c 4 Px, for infinite A.

Moreover, we want to emphasize that any reasonable probability space should obey the following so called Kolmogorov
“consistency” conditions for its marginals:

P(X17X2) [Bl X BQ} = P(X27X1) [BQ X Bl] (BlaBQ €8 (R))
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and in fact this should hold not just for two random variables but for any finite subcollection and any permutation within
that finite subcollection.
Moreover, if k < n,

P(X17,,,7Xn) [Bl X e X Bk X Rn_k] = P(le.A.,Xk) [Bl X o Bk] (Bl,' . ,Bk B (R)) .
This leads us to

Theorem 7.49 (Kolmogorov’s extension). Let A be an arbitrary nonempty set, and define

I,(A):={a:{1,--- ,n} = Al « is injective } , I1(A):= |_| I, (A)
n=1
and -
m,, :={p:B[R") —[0,1] | p is a probability measure } , m:.= |_| m,.
n=1

Assume that we are given a map

m:I(A)—M
such that for any o € I, (A),
1. m(a) € M, i.e., m(a) is a probability measure on R™.
2. For any m € S, the group of permutations,

m (@) (Byx -+ x Bp) =m(aom) (Bry X+ %X Brny) (B, , By € B(R)) .
3. Forany k <n, let o|¢y .,y € Ik (A) be the restriction to the first k indices. Then

m (a) (B1><~~-><Bk><R”*k):m(a\{ljm,k}) (Bix--xBy) (B, ,Bp € B(R)).

Then there exists a unique probability space (2, Msrbl (Q),P) which has a product structure Q := (RU{ oo })A s0
that if mj : Q@ — R is the projection to the jth coordinate, then for all o € I, (A) and { a1, -+, } = im (), then
m(a) = P( . Moreover, the measure P is Radon in the sense of Definition 2.79.

Moy aﬂan)

Proof. The theorem may be proven either using the Kakutani-Markov-Riesz representation Theorem 2.84 or Caratheodory’s
extension Theorem 2.76. We shall use the latter approach as it is more elementary (see Folland for the former). Let

us define
Q:=RA={f:A-R}.

This set is represented with a product structure so it is furnished with a natural o-algebra, the product o-algebra
Definition 5.1:

®acaBR) = o({n;' (Ea) | B« €B(R)AaEAY})

({1

It will also be useful to set, for S C A finite,

55:0({ I1 B«

a€cA

E, € B (R)Va € AN E, #R for at most finitely-many o’s }) .

Ea6%(R)VOLGA/\EQ#Ronlyfora€5}> .

Let
A = U gg.
SCA finite
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We claim that A is an algebra on 2. Moreover, let us define a map
p: A —[0,1].

To do so, for S C A finite, let 75 : @ — RS by the projection onto the S coordinates. given E € A, there is some
S C A finite with n := |S], so that E € Fs. Since E € Fg, really E only has n non-trivial factors and the rest are
factors of R, so it is “encoded” by mg (E) just as well. Let o € I, (A) be so that im (a) = S. Then we set

p(E) :=m(a) (s (E)) .

This map is well-defined (independent of the choices of S C A and a € I, (A)) by the consistency conditions we
stipulate on m. We claim that p is a premeasure on A. Then by Theorem 2.76, there is a unique measure, extending
pon A onto P := i, on o (A) = ®aca® (R). The marginals agree by construction.

To obtain regularity we need to associated the measure P with a measure on an extension onto (R U { oo })A where
RU{ oo } is the one-point compactification, so that by Tychonoff, (RU { co })A is a compact Hausdorff space. The
difference between the original P and the extension to (R U { oo })* is not meaningful is we set (RU { o0 })" \ R™ to
have measure zero for all n. Then the regularity theorems we have imply that the extension is a Radon measure. [J

Corollary 7.50 (Simple random walk stochastic process). We now know that the simple random walk exist. Let g
be any a-priori measure on B (R). Then we construct a measure P on Q := RN as the joint probability distribution of
the sequence of projection maps X,, : RN — R which are independent and identically distributed according to po, i.e.,

P, x5) = 1T #o (J1,-++,Jn €N).
k=1

Then the simple random walk is Sy = Ziv=1 X,,. The simplest model is pg = 1 (6_1 + 1) (i.e. symmetric Bernoulli
RVs). One may think of N as the time variable of a particle proceeding according to a (discrete) diffusion equation.
One may verify the consistency conditions of this definition holds.

Corollary 7.51 (White noise stochastic process). Let @ := CS° (R) be the set of compactly supported smooth “test
functions” R — R. We shall take our index set A = @D. Then we take Q := R? and for any finite sub-collection

Y1, ,on € CD} define the ma7ginal P(\17(¢1)7... W (o)) to be gz’ven by the density
(W (1), (n)) 1 ( K 1 ) R = (@Y, @ n
dF 4% o, Wion ) = - exp x, X)on r eR" ; Kz : iy P35 .
3 ( ) ( ) ( ) X < >R ( ) J < j>L2(R )

One may verify the consistency conditions for this definition hold. Then ‘“white noise” is the resulting stochastic
process { W (p) : @ = R}, which is the coordinate projections (here our coordinates are ¢ € D), i.e.,

(W () (w) =w(p) (w:D—>ReQ).

Even though we would like to really take D as the set of delta functions, i.e., { W () },.g are independent Gaussians
with

AP (1), Wtn)) 1 1 n
d\ (v) = WGXP D) (z, ]1n$>Rn (r € R")
the resulting process R > ¢t — W (t) € R (a random function) is not “regular” in any kind of sense. In fact it turns out

we cannot even prove it is measurable, let alone continuous anywhere. For this reason we work with the dual object
D3 W(p) €R.
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Corollary 7.52 (Brownian motion). Let A := [0,00) be the indexing set, Q := R?, and define a stochastic process
{B:: Q= R}, 4 via the finite marginals, for 0 <t; <--- <ty, P(Bt - B.) given by the density
12 DPtn

dP(p,,,.m.,) 1 1
tys Bty 1 n .
— ()= ————exp | = (v, KTz n) x €R"); K :==min ({t;,t; }) .
Note in particular this implies
Px, =do,

i.e., Xo = 0 almost-surely. One may verify the consistency conditions for this definition hold. In fact, one may prove
(eventually) that almost-surely, the (random) map t — Xy is continuous (Kolmogorov—Chentsov continuity theorem),
but nowhere differentiable. Another way to characterize white noise from above is

Wt ~ atXt

which explains why Wi is “not a function”.

Corollary 7.53 (Brownian bridge). Let T > 0 and A := [0,T]. We want to build Brownian motion which is
conditioned such that By = 0 also. One way to achieve that

; t
EWW:&—T&a

where { By }te[o 7] i standard Brownian motion (as above) which is merely conditioned to have By = 0. Another way
to achieve this is via the joint density

dP(Bbridgc e BLTI9%) 1 1 tit;
fr 2 in )= ——F———exp < o, Kt ﬂ) x €R"); Kij :=min ({t;,8; }) — .
) () o (KT ) @R K= ) -

Corollary 7.54 (Pinned Brownian motion). What is we wanted a skewed Brownian bridge which starts at some x
and ends at some y? Then we could take

t

Béminned =4+ (y o I’) -

t
+ Bt - TBT
where { By }te[O,T] 1s the usual Brownian motion which only has By = 0 almost-surely. Alternatively, we could specify
the joint density

dP ppinnea inned
(Bflwme e }Bf:me ) 1

1 —1 _ T n
EBY (z) = mfmp (—2<(33_N)7K (z ILL)>R1L) (x €R™)

where K;; »==min ({ t;,¢; }) — ti;j and p; =+ 5% (y — x).

7.7 The Wiener measure [Simon functional integration| [extra]

Here we follow, for the most part, | |
We have already seen the “existence” of the Wiener measure as the measure in Corollary 7.52. We would like to
establish some properties of it.

7.7.1 Scaling law
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Theorem 7.55. Let { By },~ be the usual Brownian motion (which only has the By = 0 conditioning). Then for
any ¢ > 0, B
B, < \/cB: .

The equivalence in distribution is meant in the sense that for any 0 <t; < -+ < t,,

o les

P(Bf,lwatn) - P(\/EBH 7""‘/63%") .

c

Proof. Calculate the density function for any finite sample vector of Brownian vector and conclude by uniqueness of
Kolmogorov extension. Let S € B (R™). Then

N—
)
1l
o
—
S
@
S
oy
L
Mm
=y

1
— P[(B?, ,BQ)GCS]
1
- P<BL17 7Bm> [\ﬁs]
Now,
dP
(3500 1
E = (z) = - exp<—<x,cK_1m>Rn) (x €R"); K;j :==min ({t;,t; }) .
ey (2m)% | /det (1K)
Hence
dP
p . B22) o
() WL 7 aegs™ A

7.7.2 The Markov property

Definition 7.56 (Filtration). Let (2,2, P) be a probability space. For every ¢ > 0, let §; be a sub-c-algebra of 2.
Then (§+t);> is a filtration, iff
S’s g gt (8 S t) .

Then (2,2, P,F) is called a filtered probability space.

Definition 7.57 (Markov property). Let (Q,%,P,§) be a filtered probability space and (X;),., be a stochastic
process. Then (X¢), is said to have the Markov property iff B

Elf (Xy)|5s] = Ef (Xp) |o (X)) (s <t, f:Q — R bounded and msrbl) .

Le., if the conditional expectation w.r.t. the entire past is the same as the conditional expectation w.r.t. the last
point in the past.
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Definition 7.58 (Stopping time). Let (€2, 2(, P, ) be a filtered probability space and 7 : £ — R be a random variable.

Then 7 is called a stopping time w.r.t. § iff
{ T<t } S St .

In words, that means that the set { T <t} is “determined” only by everything that happened until time t.

Definition 7.59 (Strong Markov property). Let (2,2, P, §) be a filtered probability space and (X;),~, be a stochastic
process. Then (X;), is said to have the strong Markov property iff for any stopping time 7, conditioned on { 7 < 0o },
X4 is independent of F. given X, .

Remark 7.60. Let Q = RI®%) be the sample space for Brownian motion taken with the product o-algebra from the
Borel o-algebra on each copy of R. For Brownian motion (By),~, a natural filtration is given by

St:=0({Bs|s€0,t]}).

Claim 7.61. Brownian motion (B;),-, obeys the Markov property.

Proof. By definition, we have that B; — By is independent of §s and By — Bs ~ 1 (0,¢ — s). For t > s, write
By =B, + X
with X := B; — Bs. We note X is independent of §,. Then

E [f (Bt) |gs} = E [f (Bs + X) |33]
= E[f (Bs+X)|U(Bs)]
e_%fiis)

Bs +y) ——=d

/yeRf( v) 2r (t—s) Y
=t ¢ (Bs).

Hence E [f (B;)|3s] is o (Bs)-measurable so that

E[f (B)[8s] = E[f (Bt) lo (Bs)] -

Claim 7.62. Brownian motion (B;),-, obeys the strong Markov property.

Proof. Let T be a stopping time. Our goal is to show that within the event { 7 < 0o }, (Bry; — B7),~ is standard
Brownian motion which is independent of §.. To that end, let -

T =27 2% > 71 (neN).

Then 7, — 7 from above, and each 7, is itself a stopping time. TODO: complete this. O

7.7.3 Donsker’s theorem

Another way to think about Brownian motion is as follows. Let { X, }, .y be an IID sequence of Bernoulli +1 random

variables, each with Bernoulli parameter % Then 25:1 X, is a random walk up to time N € N. As we have seen, using

the central limit Theorem 7.35,

1 N
—ZXH%Z
\/N’ﬂ,:].
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in distribution, where Z ~ 11 (0,1). What about the process { By },q ) defined via

CY
= lim ——
B ‘/iNinoo VIN nzl Xn

By the central limit Theorem 7.35, we only have B; — 11 (0, 1) in distribution. But what about other ¢ € [0,1]? It turns
out B; converges, in distribution, to the same Brownian motion we have already seen (we shall not prove this fact here

but this statement is known as Donsker’s theorem).

7.7.4 Continuity of Brownian motion

As constructed so far, Brownian motion By is an arbitrary function, it need not even be measurable. Here we want to
establish that it is almost-surely continuous. By definition, given 0 < ¢ < s, the joint distribution of B; and By is ac and

is given by the density

dP(BtB,) 1 < 1 —1 )
— (z) = = exp | —=(z, K "x)_,
dA (@) (2m)2 \/det (K) 2< Jr
t ot L [ 4
where K := P so K77 = = jl 1 . We can thus calculate
1 1 1 /|x T
E|(B, — B,)*™| = / TS b S (—<{1},K‘1[1]> )d)\x
(B - B,)™"] o e (=5 (| ) )@
om 1 1 ( 1 <s:z:%2tx1:r2+tx§>)
= T —T ——————exp | —= dX (z
/< " e (e ()
om 1 1 1 (S—t)I%+t($1—$2)2
= T —T ——————exp | —= dA (z
/< S N (e p< 2( e ()
om 1 1 1 (2} (21— 2)
= T —T ————exp|—= | — + d (z
/meRz(l 2) o CED) p( 2<t —7 ()
yi . v

1 1 / om ( 1 <
e — exp | —= +
27r4/t(5ft) yER2y2 P 2\t s—t

= \/127\/;716/@,2@7!5%}{1) <—;Sy_§t> dX (y)
= om (1+(—1)2’") (s—t)mf(;—i-m) .

In particular, for m = 2 we get
1
E [(Bt—Bs)ﬂ =36-0"  (0<t<s).

Theorem 7.63 (Kolmogorov continuity). Let (S, d) be a complete separable metric space and X : [0,00) x & — S be

a stochastic process. Assume that for all T > 0, there are some «, 3, K positive constants such that

Eld(X:, X,)*]| < K|t—s/"T"  (0<s,t<T).

Then there exists a modification X of X which is a continuous process, i..e, X : [0,00) X Q@ — S such that:

1. Foranyt>0,P [Xt = Xt} =1.
2. P {t — X, is continuous} =1.

3. In fact, P [t — X is locally v-Hélder continuous for every 0 <y < g} =1.
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Proof. Pick some v € (O, g) Then 1+ 8 — ay =: 6 > 1. For any m € N, partition [0, 7] into 2™ equal subintervals

of length A,, := T27™. The grid points are t,, , := kA,, with k =0,---,2™. A “bad” event is when we violate the
Hoelder continuity we are seeking, i.e.,

Ap={3k=1,--- 2" :|X,, . — X | >27™7}.

m,k m,k—1

We bound the probability of A, via Markov’s inequality:

-
PlAn] < D P[|Xe,., — Xt 0| >27™]
k=1

gom

E ([ Xtk = Xt ,h—1|"]
S Z 2—may
k=1
1+
< 2mKAm o _ KTH_BQ_m(S.
— 2—mary

Since & > 1, this is finite. Applying now Lemma 7.22, we get that almost-surely, only finitely many of the A,,’s may
occur. Hence, there is a (random) M (w) such that for all m > M (w), and all k,

| Xt ke — Xt k1| <2777

Now, if s < t on the m-grid, i.e., t — s = JA,, for some J € N, then

J
X = Xl D | Xty = Xeyim1] S J27™7 =
i=1

t_
L Sgmmy v — )7

m

But the dyadic grid for all m is dense in [0, T'], and the grid-paths are uniformly Hélder continuous for all m > M (w),
X, (w) admits a unique continuous extension to all of ¢:

Xt ;= lim Xtm

m— oo

where t,, is a sequence which converges to t. O

7.7.5 The Feynman-Kac formula

TODO: complete this.
Let V : R — R be some sufficiently nice function. We want to prove the identity

(exp (-t (A +V (X)) o) (z) =E [wo (x + By) exp (/0 V(z+ Bs)dsﬂ (vo € L*(R),t > 0) .

To do so, we can use the Trotter product formula to build the path integral out of small increments. Another possibility
is to use the fat that the heat kernel is the unique solution to the heat equation, so if

t
Uy, (t, ) :=E [1/}0 (x4 B:)exp (—/ V(x—l—Bst)} (t>0,zeR).
0
then we should show
atUwo = —HU¢0
for H=—-A+V (X). Clearly uy, obeys the initial condition, since

U (07 ) =E W)O ( + BO)} = o .

Hence let us calculate Oyuqy,. We note that because Brownian motion has independent increments and is conditioned to
start at the origin at time zero, we actually have

Bt+5 i Bt + BE (t Z 0,5 > 0)
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where <3t> is another independent copy of Brownian motion. Moreover,
t

t+e t t+e
/ V(r+ Bs)ds = /V(x+Bs)ds+/ V(x4 Bs)ds
0 0 ¢

t €
/ V(m+Bs)ds+/ V(x4 Biis)ds
0 0

t €
= /V(I+Bs)ds+/V(I+Bt+Bs>dS
0 0

As a result, we may separate the expectation to expectation w.r.t. B and w.r.t. B. Using Fubini we then have

t+e

Ep |0 (x + Biye) exp (— V(x-i—Bs)ds)] Es [EB [¢0 <x+BE+Bt) exp (—/ V(x+Bs)ds+/ V<x+B€+BS>
0 0

0

Es [u% (6,2 + By) exp ( /O V(x4 B,) ds)] .

Now, for infinitesimal times,
Uy, (6,2) =E {1/10 (z + Be) exp (/ V (z + Bs) ds)]
0

and
exp(/OEV(:L‘+BS)ds) = 1/06V(I+Bs)ds+(9(€2).

Moreover,
E [0 (z + B:)] = E[¢o (z + B:)]
7.7.6 The Karhunen—Loéve expansion

Derive a spectral expansion of the random stochastic process of the form
o0
Xi = Zipr (t)
k=1

where { Z;, }, are pairwise uncorrelated random variables and ¢, are continuous real-valued functions on [a,b] that are
pairwise orthogonal in L? ([a,b]) and are the eigenfunctions of the covariance matrix of the process X;.

7.8 Conditional expectation and probability [extra]
Let (©2,F,P) be a probability space and X : @ — R be a random variable (i.e., it is F-measurable). Let & C F be a

sub-g-algebra. In general there is no guarantee that X is &-measurable!

Example 7.64. Let Q := R, F := B (R) and P be the standard normal Gaussian distribution. Then X : 2 — R is
given by X (w) = w and hence X ~ 11(0,1). Clearly, |X]| is also a random variable (it is also a measurable function)

and now we let
& =0 (|X]) .

One may see that & consists of all Borel subsets of R which are symmetric w.r.t. = — —z. We claim that X
is not ®-measurable. Indeed, take (0,00) € B (R). Then X! ((0,00)) should be in &, but since X (w) = w,
X71((0,00)) = (0,00) ¢ B! So X is not B-measurable.

The conditional expectation “solves” this problem by introduction a new random variable,
EX|6]: Q—R (this is merely a matter of conventional notation)
which is constructed to be &-measurable so that for all G € &,

E[E[X|®]xd] ElXxe] (Ge©).

0
/E[X|Q5}dP = [ XdP (Gew®).
G G
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To see that such E [X|®] exits, let ¢ : & — § be the natural injection. Then
Fo25F— E[XXF} = ux (F)

defines a finite measure on (2, §) which is absolutely continuous w.r.t. P (do not confuse it with the marginal Px, which
equals P o X! and is a measure on B (R)). Moreover, ux o ¢ is absolutely continuous w.r.t. P o:. We then define

dux ot
dPo:

This is automatically a random variable E [X|®] : @ — R which is &-measurable and L' (P o ¢). Moreover, we have for all
Geas,

Emwwu4=/

G

E[X|6] =

E[X\@]dPE/E[X\es]dPOLz/ d”XOLdPOLz/dMXOLz/dMXEE[XXG].
G G G

g dPouy

Definition 7.65 (Conditional expectation w.r.t. a sub-o-algebra). The &-measurable random variable E [X|®] :
Q0 — R is called “the conditional expectation of X given the o-sub-algebra &”.

Claim 7.66 (Uniqueness). Note that once we find any RV which is the conditional expectation it is (almost-surely)
unique.

Proof. Let Z be any other &-measurable random variable such that E [Zxg] = E[Xx¢] for all G € &. Our goal is
to show that Z = E [X|®] almost-surely. Assume that
P[Z #E[X]|&]] > 0.
Then either
P[Z>E[X|8]|+P[Z<E[X|&]] > 0.

Consider D := Z > E[X|®]. It is &-measurable since both variables are. Hence, by hypothesis,

E[ZXD] = E[E[X|Q5}XD]
1
E[Zxp] —E[E[X[&]xp] = 0
J
El(Z-E[X|®])xp] = 0
1
P[D] = 0

the last step being true since on D, (Z — E[X|®]) > 0 by definition. Similarly we can show that the other set has
zero probability. U

As a result, any way we have to calculate the conditional expectation works.

Remark 7.67 (Functional analytic perspective). Since & C §, one may think of
L*(,6,P)

as a Hilbert subspace of L? (Q, §, P) naturally by considering maps which are ®-measurable as a subset of those which
are F-measurable. Now, if X € L? (Q,F,P) then E[X|®] is the projection of X onto the closed subspace L? (2, &, P).

We also find it useful to have the

Definition 7.68 (Conditional expectation w.r.t. another random variable). Given a random variable Y : @ — R, a
sub-o-algebra of § is the smallest one generated by Y, o (Y). Then

E[X|Y]:=E[X]|o (V)] .
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Once we have the conditional expectation, the conditional probability is merely a special case:
PlA[B] =E[xal®] (A€3).

Hence the conditional probability is still a random variable.

Example 7.69. Going back to Example 7.64, one may verify
E[X|6] = % (X + X (=) =0.
So this example is not very interesting. If instead we take
&:=o0(sgn(X))={2,R,[0,0),(—00,0) }

then X is again not G-measurable, since, X1 ({1}) ={1} ¢ &. Now however we may verify that

E[X|8] = \/ngn(X) .

Remark 7.70. One should not confuse P [A|®] with the more naive conditional probability (7.2) given above,

[ANG]

P[A|G]PP[G] (AGeF:PG]>0).

There is. however, a connection between the two: If G € &

P[A|G]P[G]:/GXAdP:/GP[A|Q5]dP.

Example 7.71. One should think of E [X|®] as averaging over only the information NOT contained in &. Thus, the
notation is actually confusing, as
EX[§] =X

whereas if & = { @,Q },
E[X|6] =E[X].

Example 7.72 (Marginals forget, conditionals refine). Contrast the notion of conditional expectation with marginals.
Say we have two random variables X,Y : @ — R. Then Px integrates “out” the information of Y, whereas E [X|Y]
integrates out all information of X which does not depend on Y. To see this more clearly, let us consider the following
concrete example: Let 2 = R? and (X,Y) be a two dimensional Gaussian whose density is given so that E [X] = ux,
E[Y] = uy, Var[X] = ¢%, Var[Y] = 02 and Cov[X,Y] =: oxoy > 0 for some p > 0. Then we may calculate
the marginal Px which has one dimensional Gaussian density with E[X] = ux and Var [X] = o%. However, the
conditional expectation is given by

g
EXIY] = px+pZ5 (Y —py) .
Oy

We have
E[E[X|Y]] =E[X].

Claim 7.73 (Linearity). E [aX + 8Y|®] = oE [X|8] + BE [Y|8)].
Claim 7.74 (Iterated property). Let £ C & C §F. Then

E[E[X|®][H] =E[X]|9)] .
Claim 7.75 (Pull out). If Y is ®-measurable and X is not, then

E[XY|6] =E[X|6]Y .
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Claim 7.76 (Law of total variance).

Var [X| = E|Var [X|®]] + Var [E[X|®]] .
Claim 7.77. If X is independent of & (i.e., if X is independent of x¢ for any G € &) then E [X|&] = E[X].

Claim 7.78. If X happens to be B-measurable, then E[X|6] = X.

Most of the theorems for the Lebesgue integral hold for the conditional expectation, as one may verify: positivity,
monotonicity, Jensen, etc.
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A The extended real line

We shall frequently use the symbol [—00, 0] or R to denote the extended real line. As a set it is given by

R =

RU{+o00}

and topologically we add the neighborhoods of +oco as those sets which contain the basic open sets

(a, o]
and

[_0070’)
respectively.
B Elementary families

Definition B.1 (elementary family). Let X be a non-empty set. An elementary family & is a subset & C # (X) such
that

e Jcé.
o (closed under intersection) If E,F € & then ENF € &.
o If F € & then X \ E is a finite disjoint union of members of &.

Claim B.2. If € is an elementary family then the collection A of finite disjoint unions of members of & is an algebra,
i.e., it contains X, it is closed under complements, and it is closed under finite unions.

Proof. Since @ € &, then X is a finite disjoint union of members of &, and so it is in A as desired.
Next, assume that A € A. We want to show that X \ A € A. We know that A = |J;_; A; where 4; € & and
AjNA, =0 if j #k. Hence

(6]

A=U4) =) 4.
j=1 j=1

But since A; € &, its complement is by assumption equal to (J;2, Bj; with B;; N B;; = @ for | # I’ and B;, € .
Hence

so A€ is also the finite union of disjoint members of &.

Next, we want to establish that A is closed under finite unions. To that end, let A, B € A. Then

AUB=(A\B)UB=(ANB°)UB
now if

A:OAJ-

Jj=1
where A; N A = & for j # j’ and A; € € and similarly,
B = |JB;.
j=1
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Then clearly (AN B°) U B is a finite disjoint union of elements from &. O

C Banach spaces

Definition C.1 (Norm). A vector space V is called a normed vector space iff there is a map
[l : V=10, 00)
which obeys the following axioms:

1. Absolute homogeneity:
le]l = [el[¥f]  (aeCypeV).

2. Triangle inequality:
10+l <ol +llell (W,eeV).

3. Injectivity at zero: If ||3|| = 0 for some ¢ € V then ¢ = 0.
Example C.2. Of course the first example of a normed vector space is simply C", with the Euclidean norm:

n
2
>zl
j=1

C'sz— 2| =

To show this is a norm we only need to establish the triangle inequality (the other two properties being easy). To
that end, From the Cauchy-Schwarz inequality:

{2, w)en| < |2][[]w]]

we get

||z + wl||® (2 +w, 2 +w)

2 2
1217 + [lw]” + 2Re {(z, w) }

2 2
< =T+ flwll” + 2(z, w)
C.S. 2 2
< =T+ llwll” + 212wl

(=l + llwll)? -

Hence we merely need to show the Cauchy-Schwarz inequality. To that end, if w = 0 there is nothing to prove. So
define

)
o
By construction, (Z,w) = 0 so
ooy o) | e el e s el
121l =‘5+ : ng = 1217 + = lwl” = === [lw”.
[Jw]] ]l [[w]]

Remark C.3. Be careful that in the foregoing example we have used the inner-product structure of C™, but more
generally, a norm need not be associated with an inner product.
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Definition C.4 (Inner product space). An inner-product space is a vector space # along with a sesquilinear map
(,):HxFH—C
such that

1. Conjugate symmetry:

(¥, 0) = (p, ) (o, ed).

2. Linearity in second argument:
{00+ @) =a(y,0)+ (¥, 0) (ppPeH,aeC).

3. Positive-definite:
() >0 (peFH\{0}).

Example C.5. Of course C" with
n
<27 w)C” = Z Tjwj
j=1
is an inner-product space.
To every inner product one immediately may associate a norm, via
[l =V (h,9) (P eF).
The converse, however, hinges on the norm obeying the parallelogram law

Claim C.6. If a norm satisfies the parallelogram law:

1o+ ol® + v —l® < 210" +20el®  (p,9 € #)

then 1
2 2 2 . 2
W) =7 [l + el = v = eIl + il = l* = illiv + )’
defines an inner product whose associated norm is ||-|| = 1/(, ). Conversely if the parallelogram law is violated then

no inner-product may be defined compatible with that norm.

Proof. Left as an exercise to the reader. O

Example C.7 (Normed vector space which is not an inner product space). Consider the space C", but now with the

L' norm
n
Izl == 1z -
j=1

Convince yourself that it is indeed a norm, and furthermore, that it violates the parallelogram law and hence cannot
be associated with any inner product.

Another example we will see later is that the space of bounded linear operators on a Hilbert space is a normed vector
space which is not an inner-product space.
We will continue with inner product spaces a little later, but for now we focus on normed vector spaces.
To any norm ||-|| a metric is associated via
d:V? — [0,00)
W) ~ o=l

Hence every normed vector space is also a metric space automatically. Recall that a metric space is termed complete if
every Cauchy sequence on it converges.
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Definition C.8 (Banach space). If a normed vector space (V,||-]|) is complete when regarded as a metric space, then
we refer to it as a Banach space.

Example C.9. It is clear that C™ as a TVS is also a Banach space with the Euclidean norm.

Example C.10 (Counter-example). Let X := { f:[0,1] — C| f is continuous }. On X define pointwise addition
and multiplication, which makes it into a VS. We furthermore define on it the L2-norm

o 2
11l == /tem 0Pt

One shows that on X, |||, is indeed a norm. However, one may find Cauchy-sequences in X which converge to
discontinuous functions (i.e. do not converge in X)) and thus X is incomplete. Contrast this with (X, ||-||.,) which is
a Banach space.

Here is an L2-Cauchy sequence of continuous functions converging to a discontinuous function:

_ " 1
fn (t) = X[%-&-Q*",l] (t) + X[%_Q*n,%_’_an] (t) (271 lt -2 2 + 2) (t S [0, 1] ,n e N) .
One shows that

[fo—fmlly, < 27" (m>n)

and the sequence is hence Cauchy. But alsom, ’ X[31] ~ fnll — 0 and X[1.1] ¢ X.
27 2 29

Definition C.11 (Dense subsets). If (V,|-]|) is a Banach space and S C V then we say S is dense in V iff for any
1 € V and any € > 0 there exists some ¢ € S such that

d(Y,p) <e.

This definition agrees with the topological one (S is dense iff S = V).

Definition C.12 (Separable spaces). If (V,||-]|) is a Banach space which contains a countable, dense subset then V'
is called separable.

C.1 The operator norm
Given any two Banach spaces X,Y, we may consider a continuous linear map
A: X —>Y.

Such maps are automatically bounded: If A is continuous then A maps bounded sets of X to bounded sets of Y. We
rephrase this as saying: If A : X — Y is continuous, then

A(B,(0x)) C B (0y).
In other words,

sup [|Azlly, < oo.

llzllx <r

An extremely useful notion in this regard for continuous linear maps is that of the

Definition C.13 (The operator norm). Given a linear map A : X — Y between Banach spaces, we define its operator
norm as

[Allgxoyy = sup({[[Azlly [z € X |z <1})

and B (X — Y) as the space of all bounded linear maps. Le., the operator norm gives us the maximal scaling of the
unit ball in the domain.
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Claim C.14. The “operator norm” is indeed a norm.
Proof. Absolute homogeneity is clear. Now if ||Al|g x_,y = 0 then [[Az|y- = 0 for all ||lz|| < 1, which implies that
Az = 0 for all z, and hence A = 0. Finally, the triangle inequality follows by that of |||
I(A+ B)zlly <[lAzlly +[Bzlly  (lzll <1)-
Take now the supremum over ||z|| < 1 of both sides to obtain

sup [[(A+B)zlly < sup [[[Azfly +[Bz|y]
lell<1 lell<1

(sup IAfvlly> - Stllp | Bzlly -
<1

llzll<1 llz|

IN

Summarizing the above succinctly, if A : X — Y is linear and continuous, then

[Allg(x—y) <00

Claim C.15. If A: X — Y is a linear map between two Banach spaces and if [|A[|4(x_,,- < oo then A is continuous.

Proof. Given x € X and € > 0, we show continuity at « as follows: for any & € B 5T (z), we have (using Lemma C.16
right below)

Az — AzZ|| = [|A(z—2)]
< |Allllz -z
< €.
O
Lemma C.16. If A: X — Y is a bounded linear map between two Banach spaces then
1A2lly < [ Allyx oy 1ol x -
Proof. We write thanks to the homogeneity of the norm,
| Az]ly
(| Az|] [l
v el X
e
= — x|y -
lllx [y
But since
[
el x Nl x
we must have
78
A——II <A :
H el x lly AT
O

Lemma C.17. The operator norm is submultiplicative: If A, B : X — X then

[ABllgx) < 1 Allgx) 1 Bllgcxy -
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Proof. We have thanks to the above
|ABz|| < || Ally x| B

taking the supremum over ||z|| < 1 on both sides we obtain the result. O

Claim C.18 (R&S Thm. II1.2). If X, Y are two Banach spaces then B (X,Y") together with the operator norm is itself
a Banach space.

Proof. Thanks to Claim C.14 we know that (@ (X,Y), ||~||@(X7y)) is indeed a normed vector space (with pointwise

addition and scalar multiplication). To show it is a Banach space we need to show it is complete. Let { 4, }, be
Cauchy. Then that means that ||A, — Am”@(X yy is small as n,m are large. This implies that for any = € X,

[(An — A) zlly = |Anz — Amz||

is small. Le., the sequence { A,z }, is Cauchy in Y. Since Y itself is a Banach space (and is hence complete) that
means it converges to some y € Y. Define a new operator, B, via

X3z lim A,z €Y
n—o00

which is clearly linear too since the limit is linear.
From the triangle inequality we have

[An — Amll 2 ([ Anl = [l Am]
so that { ||4,|| },, is a Cauchy sequence of real numbers, and so converges to some a € R. Hence, by definition of B,

|Bally = lim [ Ayally

IN

nlggo||An||@(X—>Y)||$”X
= afz|x-
Hence B is bounded, and so continuous. We want to show that lim,, A, = B in operator norm. We have, by
definition of B,
(B — Am) z|ly = nh_{r;oH(An — Ap)zlly
so that for ||z|| < 1 we have

(B —Am)zlly < nILH;O”An - Am”@(x—)Y)

which implies
HB - AWHCB(XHY) = nILH;OHAn - Am”@(X%Y) :

The right hand side however becomes arbitrarily small for large m. O

Definition C.19. A linear map A : X — Y between Banach spaces is called an isometry iff [|Az|, = ||z||y for any
z e X.

Claim C.20. A closed vector subspace of a Banach space is itself a Banach space.

D Hilbert spaces
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Definition D.1 (Inner product space). An inner-product space is a C-vector space # along with a sesquilinear map
(,):HxFH—C
such that

1. Conjugate symmetry:

(¥, 0) = (p,¥) (o, ed).

2. Linearity in second argument:
(W ap+ @) =al,p)+ (@)  (pgped,acC).
3. Positive-definite:
(W) >0 (ped\{0}).
To every inner product one immediately may associate a norm, via
[0l ==V {w,9) (W edH).
The converse, however, hinges on the norm obeying the parallelogram law as we have seen in Claim 5.32.

Claim D.2. Once we have an inner-product, we immediately have the Cauchy-Schwarz inequality

o0 < llellliell (p,9 € ).

Definition D.3 (Hilbert space). A Hilbert space # is a inner-product space with (-,-) such the induced norm ||-||
from this inner product makes #¢ into a Banach space (i.e. a complete metric space w.r.t. to the metric induced by

11D

Hence we identify a Hilbert space as a Banach space whose norm satisfies the parallelogram identity.
One of the central notions available to us now in Hilbert space, which was not available before, is the notion of
orthogonality of vectors:

Definition D.4 (Orthogonality). Two vectors o, € # in a Hilbert space are dubbed orthogonal iff

{0, ¥)z = 0.

A collection { ¢; }, is called orthonormal iff
(ir ©5) = bij -
The following two claims involving orthogonality will be useful. Their proof will be a homework assignment.

Claim D.5. ¢ L iff

el <llzg+eoll  (Vz€C).
Proof. We have
0 < |29 + ll* = |2” [ + llell* + 2Re {(29, )} - (D.1)
Hence if (1, 9) = 0 we have [|2¢) + ] > [|o]]*
Conversely, if ¥ = 0 we are finished. Otherwise, let z := —%. Plugging this into (D.1) we find

liell* + =1 %11 + 2Re {{z4), o)}

S (Xl R®{<_<w,¢> >}
bl e 2 iz ?

_ 2 1w, 0)
el e

0 < |z + ol
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which is coincidentally a proof of the Cauchy-Schwarz inequality. But this also shows that

2 2
129 + ol <l

for one z if {p, ) # 0. O

Claim D.6 (Cauchy-Schwarz). For any f,g € L? (i) we have

[(£:9) 20| < 171220 902 -
Theorem D.7. Every nonempty closed conver set E C # contains a unique element of minimal norm.

Proof. Let
d:=inf({||z] |z € E}).

Let { y, },, C E so that { ||z,|| },, = d. Since E is convex,

1
i(l‘n—l—xm)EE

and hence )
1
xn+xm|24H2(fEn+xm) Z4d2~

Then the parallelogram law Claim 5.32
2 2 2 2
20 + 2™ + [[2n = Zm|” = 2[|zall” + 2[2m]|

has its right hand side tend to 4d? also, so ||z, — :Em||2 — 0 and hence { z,, },, is Cauchy, which hence converges to
some z € E (as E is closed) and we have ||z|| = d.
For uniqueness, if y € E with ||y|| = d, then

{z,y,2,9,... }

must converge by the above, so y = x. O

Theorem D.8. Let M be a closed subspace of #. Then
Mt={pc#H|p LyVpecM}
is also a closed subspace of # and M N M+ = {0}, and

FH=MaoM™.

Proof. Since (i, -) is linear, M~ is linear. Also,

M= () {p,) ({0} (D.2)

pEM

and (g, -) is continuous by the Cauchy-Schwarz inequality, so M~ is closed. Next, if ¢ € M N M~ then in particular

(¢, ) =080 p=0.
Finally, let ¢ € #. The set ¢ — M is a convex, closed subset and hence by Theorem D.7 we get some ¢ € M
such that || — || is minimal. Let

ni=¢—9.
Then
lInll < lin + &l (e M)
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by the minimizing property. So by Claim D.5, n € M+. But
p=v+neM+M*.
O

An important structural feature of the Hilbert space structure for us will be the Riesz representation theorem (not to be
confused with the related Kakutani-Markov-Riesz representation theorem appearing in Theorem 2.84).

Definition D.9 (Bounded linear functionals). A bounded linear functional on a Hilbert space # is a C-linear map
A:#H —C

whose operator norm is finite:

!
||AHOp = sup ({ [Ay ’ peH plly,=1 }) < 00.
The space of all bounded linear functionals on a Hilbert space # is denoted by #*: it is the dual space.

Unlike for Banach space, the fact these maps act on a Hilbert space exhibits B (# — C) = #*, the dual, as isomorphic
to # itself. I.e., Hilbert spaces are self-dual, or reflexive. This is the Riesz theorem:

Theorem D.10. There is an anti-C-linear isometric bijection K : # — #* given by
=)
In particular, every bounded linear map A : # — C is the result of an inner product with some vector pp € #:

A = <90A7'><7€ .

Proof. Clearly K is anti-C-linear. To show it is isometric, we have by the Cauchy-Schwarz inequality

K @llep = sup ({ (K () (@) [ ¥ =1})
sup ({ (@, )] [ [l =11})

sup ({ [l | 1] = 1})
el -

ING Il

But also,
lell® = (0,0} = (K (9)) (#) < IK (@)l

where the last inequality was Lemma C.16. Hence || K (¢)|| = ||¢|| so K is an isometry. But an isometry is always
injective, is it merely remains to show that K is surjective.
Let then A € #*. If A = 0 then K (0%) = 0 = A. Otherwise, since ker (A) is a closed linear subspace, the proof
above in Theorem D.8 says
F = ker (\) @ ker (A) " .

Let therefore n € ker (/\)L and 1 # 0. Since by linearity we have

(M) — (An)¢] € ker (A) (¢ € #)

we have

0 = (n[(A)n—(An)Y])
= (M) (m,m) — (An) (n,¢)

AP = <<A”ln,w>
(Il
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A= <()\ngn, > .
Inll

E Urysohn’s Lemma [Rudin]

Thanks to Olivia Kwon for contributing this section about the Urysohn lemma.
The purpose of this section is to prove Urysohn’s Lemma, which will be used in proving Theorem 2.84.

Definition E.1. We denote the space of all continuous compactly supported function by C.(X).
Given compact set K, if f € C.(X) such that f(z) =1 for all z € K and f(z) € [0,1] for all z € X, we write

K< f.
Moreover, if V' open such that f € C.(X) has range in [0, 1] and satisfies satisfying supp(f) C V, we write

=W

Remark E.2. Notice that f < V is stronger statement than 0 < f < yy which only implies that supp(f) C V.

Proposition E.3. Suppose X is locally compact Hausdorff space. Suppose V is open set containing a compact set
K. Then, there exists some open set U with compact closure such that K CU C U C V.

Proof. Observe that every point of K has a neighborhood with compact closure by definition of locally compact
space. Also, observe that finitely many of these neighborhoods cover K. Therefore, we have that K lies in an open
set O with a compact closure.

If V=X, simply take U = O.

Suppose V # X. Let C' = V*°.

For every point p € C, we can construct an open set O, such that p ¢ O, and K C O,. To do so, for all z € K,
using the definition of Hausdorff and the fact that K N C = ), we find a neighborhood of =, G, such that p ¢ G,.
Because K is compact, K can be covered by finitely many such G/s, say G, , -+ , Gy, . Now define O, = Ui:/:l Gy, -
One can check easily that this O, has all the desired properties.

Define F, = CNONO, for each p € C. Then, we have a collection of compact sets {F,},cc with empty
intersection, i.e. (,cc £p = 0.

We claim that we can find some finite subcollection Fj, ,--- , F},, such that ﬂﬁil F,, = (. This will finish the
proof. Observe that ﬂf\f:l F,, = 0 implies O N Oy, N---NO,,, C V. Therefore, let

U=0N0p N---NO0,,.

Note that because U C ONO,, N---NOp,, CV and because K C U, we are done.

pPM

Hence it only remains to show the existence of such F, ,---,Fp, . For every p € C, let W), = Fy. Fix F} in
{F,}pec. Because no point of F; belong to every F, € {F,},ec, we see that {W,} is an open cover of Fj. Take a
finite subcover using compactness, say Wy, ,--- , Wy, _,. LetF,, =W¢ ,--- | F,, , =Wy, and Fy = F),,. Then,
by construction, we get that: ﬂanl F,, =0. O

Definition E.4. Let f be a real function on a topological space. If {z : f(z) > «a} is open for every o € R, we say f
is lower semicontinuous. If {x : f(x) < a} is open for every o € R, we say f is upper semi-continuous.

Remark E.5. Notice that a real function is continuous if and only if it is both upper and lower semicontinuous.
Moreover, The supremum of lower semicontinuous functions is lower semicontinuous and the infimum of upper semi-
continuous is upper semicontinuous.
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Theorem E.6. (Uryshon’s Lemma) [Rudin’s Proof] S Given X a locally compact Hausdorff space, V' open in X and
compact K C V, there exists some f € Co(X) such that K < f < V.

Proof. Put r1 = 0, o = 1, and {r,},>3 be enumeration of rationals in (0, 1). Because X is locally compact and
Hausdorff, by applying Proposition Proposition E.3 we can find open set V;; with compact closure such that

KcVocWcV.
Now applying it again on K and Vp, we can find V; such that
KcvicVicVocVocCV.

For fixed n > 2, choose open sets with compact closures V;.,---, V. such that r; < r; implies V;j C V,., using above
proposition again. Find r; among ri,--- ,r, such that r; is the biggest one smaller than 7,41. Moreover, find r;
among r1, - - - , Ty, such that it is the smallest one bigger than r,, 1. We know the existence of 7; and r; are guaranteed
because 71 = 1 and 7o = 1. They are unique because rationals are well-ordered. Now using the proposition again,
we can find V, such that

Tn41

Vi, CViriy CVinsy C Vi

Recursively, we can define {V,., },en such that K C Vi,Vo C V, and for every rationals of [0,1] » and s, each V.
compact and s > r implies V5 C V..
Now, for all r € QN[0, 1], define f,, g, : X = R, fr, gr € C.(X), by:

rifzeV, 1ifz €V,
fr(x){ and gr<x>{

0 else. r else.
Observe that for every r, f, is lower semicontinuous while g, is upper semicontinuous. Moreover, define
f=supf, and g¢g=infg,.
r T

By construction, because f is the supremum of lower semicontinuous functions, f is lower semicontinuous. Similarly,
because g is the infimum of upper semicontinuous, ¢ is upper semicontinuous.

We claim that f = g. This will finish the proof because if f = g, then f is both lower and upper semicontinuous
implying that it is continuous. Moreover, it is visible that f(z) = 1 if + € K and supp(f) C Vo C V, , so we get that
K < f <V, as desired.

To show f = g, we first show that f < g then show that f < g is impossible.

Notice that f.(z) > gs(z) is only possible if 7 > s,z € V., and = ¢ V,. However, r > s implies V,. C V; and hence
this is impossible. Therefore, for all r; s, we have that f,. < g, and thus limits, we get f < g.

Now suppose for the sake of contradiction that there exists some x € X such that f(x) < g(x). This means that
there are rationals r and s such that f(z) < r < s < g(x). Since f(x) < r, we get that « ¢ V... Since g(z) > s, we
get that = € V,. However, this contradicts the constructions of {V,.} because s > r implies V, C V.. Therefore, this
is impossible and we get that f(z) = g(x) for all z € X. O

Corollary E.7. (Corollary to Uryshon’s Lemma) Given Vi,--- Vi open subsets of X and K compact such that
K CViU---UVy, there exists hy,-+- ;hn € Co(X) such that hy < V; for all1 <i < N and hy(z)+ -+ hy(z) =1
forall x € K.

Proof. We know for each x € K, there exists some ¢ such that z € V;. Using Prop Proposition E.3, find an open

neighborhood W, such that  C W, and W, C V;. By compactness, we can find finite points z1,- -,y such that

K Cc Wy, U---UW,,, . For every 1 < i < n, let H; = Uy: .y, Wa,. By construction, each H; is compact and
zj i

contained in Vj.
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Using Uryshon’s Lemma, find g; satisfying H; < g; < V;. Now, define hq,--- , h, € C.(X) by:

h1:g1
ha=(1—-g1)- g2
hs=(1-g1)(1—g2)- g3

hn=(1=g1) (1= gn-1)gn-
Notice by construction that each h; < V;. Moreover, we can easily compute, using induction, that
hi+ha+--4+h,=1—(1—=9g1)(1—g2)-- (1 —gn).
Because K C Hy U---U H,,, we see that for all z € K, there exists g; such that ¢g;(z) = 1 and therefore we get that
hi(z) 4+ - -+ hp(z) =1on K. O
F Glossary of mathematical symbols and acronyms

Sometimes it is helpful to include mathematical symbols which can function as valid grammatical parts of sentences. Here
is a glossary of some which might appear in the text:

e im (f) is the range or image of a function: If f : X — Y then
m(f)={f(x)eY|zeX}.
e The bracket (-,-);, means an inner product on the inner product space V. For example,
(U, V)ge = U101 + UgV2 (u,v € R2)

and
(U, V)2 = UTv1 + U2 (u,v € C?) .

e Sometimes we denote an integral by writing the integrand without its argument. So if f : R — R is a real function,
we sometimes in shorthand write .
[
a

b

Fb)dt.

t=a

when we really mean

This type of shorthand notation will actually also apply for contour integrals, in the following sense: if 7 : [a,b] — C
is a contour with image set I' := im () and f : C — C is given, then the contour integral of f along ~ will be denoted

equivalently as b
[1=[r@a= [ ramy o

depending on what needs to be emphasized in the context. Sometimes when the contour is clear one simply writes

/Z:I f(z)dz

e iff means “if and only if”, which is also denoted by the symbol <.

for an integral along any contour from zy to z;.
e WLOG means “without loss of generality”.
e CCW means “counter-clockwise” and CW means “clockwise”.

e 3 means “there exists” and 3 means “there does not exist”. 3! means “there exists a unique”.
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v

means “for all” or “for any”.

: (i.e., a colon) may mean “such that”.

e | means negation, or “not”.

o A

means “and” and V means “or”.

e — means “and so” or “therefore” or “it follows”.

€

Bl

denotes set inclusion, i.e., a € A means a is an element of A or a lies in A.

denotes set inclusion when the set appears first, i.e., A 3 @ means A includes a or A contains a.

Speaking of set inclusion, A C B means A is contained within B and A O B means B is contained within A.
o is the empty set { }.

Ny is the cardinality of N: Rg := [N|. ¢ := 2% = |R| is the cardinality of the continuum.

e While = means equality, sometimes it is useful to denote types of equality:

F.1

— a := b means “this equation is now the instant when a is defined to equal b”.
— a = b means “at some point above a has been defined to equal b”.
— a = b will then simply mean that the result of some calculation or definition stipulates that a = b.

— Concrete example: if we write i> = —1 we don’t specify anything about why this equality is true but writing
iZ = —1 means this is a matter of definition, not calculation, whereas i?> := —1 is the first time you’ll see this
definition. So this distinction is meant to help the reader who wonders why an equality holds.

Important sets

1. The unit circle

S' = {zeC||z|=1}.

2. The (open) upper half plane

H = {zeC|lm{z}>0}.
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