

Name:

LINEAR ALGEBRA AND VECTOR ANALYSIS

MATH 22B

Total:

Unit 14: Hourly 1

PROBLEMS

Problem 14.1 (10 points):

Prove by induction that that for every $n \ge 1$ the formula $2\sum_{k=0}^{n-1} 3^k = 3^n - 1$ holds.

Problem 14.2 (10 points):

					1	
a) (5 points) Row reduce the matrix $A =$	4	4	4	4	4	using basic
	2	2	2	2	2	_
	L				_	J

row reduction steps.

b) (5 points) For $B = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ compute either AB or BA depending on which of the two makes sense.

Problem 14.3 (10 points):

a) (2 points) Parametrize the curve $4x^2 + y^2 = 1$ in \mathbb{R}^2 .

- b) (2 points) Parametrize the curve $y e^x = 0$ in \mathbb{R}^2 .
- c) (2 points) Parametrize the curve $x = y^3, z = 4$ in \mathbb{R}^3 .

d) (2 points) Parametrize the line x + y = 4, z = 2 in \mathbb{R}^3 .

e) (2 points) Parametrize the circle $x^2 + y^2 + z^2 = 4, z = 1$ in \mathbb{R}^3 .

Problem 14.4 (10 points):

a) (8 points) Compute arc length of $r(t) = \left[\frac{t^3}{3}, \sqrt{2}\frac{t^4}{4}, \frac{t^5}{5}\right]$ for $0 \le t \le 1$. b) (2 points) Without doing any calculation, what is the arc length of the new parametrization $r(t^3)$ with $0 \le t \le 1$.

Problem 14.5 (10 points):

a) (2 points) Formulate the Al Khashi formula.

b) (2 points) We have seen a theorem of Heine- Fill in the second name!

c) (2 points) The linear space $\{x, Ax = 0\}$ is also called the of A.

d) (2 points) Give the Euler's formula $e^{it} = \dots$ and deduce the "most beautiful formula in math".

e) (2 points) Is $\operatorname{rref}(A) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ row reduced?

Problem 14.6 (10 points):

- a) (2 points) Express $z = e^{i\pi/2} + 3e^{i\pi}$ in the form z = a + ib.
- b) (2 points) Write $(r, \theta, z) = (2, -\pi/2, 0)$ in Cartesian coordinates.
- c) (2 points) Write (x, y, z) = (2, 2, 0) in spherical coordinates (ρ, ϕ, θ) .
- d) (2 points) Write the surface $\rho \cos(\phi) = 2$ in Cartesian coordinates.
- e) (2 points) Write the surface $r \cos(\theta) = 2$ in Cartesian coordinates.

Problem 14.7 (10 points):

a) (5 points) You are given
$$r''(t) = \begin{bmatrix} 0\\1\\\cos(t) \end{bmatrix}$$
 and $r(0) = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$ and

 $r'(0) = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}.$ Find r(1).

b) (2 points) Is there a time t such that the curve r(t) ever reaches the ground z = 0?

c) (3 points) What is the curvature of
$$r(t) = \begin{bmatrix} t^2 \\ \cos(t) \\ \sin(t) \end{bmatrix}$$
 at $t = 0$?

Problem 14.8 (10 points):

We parametrize some surfaces. Chose the parameters on your own.

- a) (2 points) Find a parametrization of the hyperboloid $x^2 + y^2 z^2 = 1$.
- b) (2 points) Find a parametrization of the cylinder $(x-1)^2/4+y^2/9=1$.
- c) (2 points) Find a parametrization of the surface $z = \cos(xy)$.
- d) (2 points) Find a parametrization of the plane x + y 3z = 1.
- e) (2 points) Find a parametrization of the cylinder $x^2/9 + (y-2)^2 = 1$.

Problem 14.9 (10 points):

a) (4 points) Compute the dot product (inner product) $A \cdot B = tr(A^T B)$ of the two matrices

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} , B = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 3 \end{bmatrix} .$$

b) (4 points) Now determine the cosine of the angle between A and B.

c) (2 points) Finally find the distance |A - B| between A and B.

Problem 14.10 (10 points):

a) (4 points) What is the Jacobian matrix dr of the coordinate change

$$r\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}4x+y\\y^2\end{array}\right]?$$

b) (2 points) Now find the first fundamental form $g = dr^T dr$.

- c) (2 points) Compute the distortion factor $|\det(dr)|$.
- d) (2 points) Check in this case that $|\det(dr)| = \sqrt{\det(g)}$.

OLIVER KNILL, KNILL@MATH.HARVARD.EDU, MATH 22B, HARVARD COLLEGE, SPRING 2022