1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Name:

LINEAR ALGEBRA AND VECTOR ANALYSIS

 $\mathrm{MATH}\ 22\mathrm{B}$

Total:

Unit 14: First Hourly (Practice A)

Problems

Problem 14A.1 (10 points): The **Fibonacci numbers** are defined recursively as follows: start with $F_0 = 0, F_1 = 1$ then define $F_{n+1} = F_n + F_{n-1}$, so that $F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5$ etc. Prove that

$$F_0 + F_1 + \dots + F_n = F_{n+2} - 1$$

for every positive integer n.

Problem 14A.2 (10 points):

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

a) (4 points) Compute AB and $\operatorname{rref}(AB)$.

b) (4 points) Now row reduce both A and B and form rref(A)rref(B).

c) (2 points) Is the statement $\operatorname{rref}(AB) = \operatorname{rref}(A)\operatorname{rref}(B)$ true for all A, B?

Problem 14A.3 (10 points):

- a) (2 points) Parametrize the line through (1, 1, 1) and (4, 3, 1) in \mathbb{R}^3 .
- b) (2 points) Parametrize the ellipse $x^2/16 + y^2/25 = 1$ in \mathbb{R}^2 .
- c) (2 points) Parametrize the graph $y = x^5 + x$ in \mathbb{R}^2 .
- d) (2 points) Parametrize the circle $x^2 + (y-2)^2 = 1, z = 4$ in \mathbb{R}^3 .
- e) (2 points) Parametrize the line x = y = z in \mathbb{R}^3 .

Problem 14A.4 (10 points):

Find the arc length of the curve

$$r(t) = [t\cos(t^2), t\sin(t^2), t^2]$$

for $0 \le t \le 2$.

Problem 14A.5 (10 points):

- a) (2 points) What is the Heine-Cantor theorem?
- b) (2 points) Formulate the triangle inequality.
- c) (2 points) What is the Al Kashi identity?
- d) (2 points) Give the name of a nowhere differentiable function.
- e) (2 points) Is it true that a continuous curve r(t) has a finite arc length?

Problem 14A.6 (10 points):

- a) (2 points) Find (3+i)(4+2i)
- b) (2 points) What is $e^{i3\pi/4}$?
- c) (2 points) Convert from cylindrical $(r, \theta, z) = (2, \pi/2, 1)$ to Cartesian.
- d) (2 points) What are the spherical coordinates of $(1, \sqrt{3}, 2)$?
- e) (2 points) What surface is in spherical coordinates given as $\rho \sin(\phi) = 1$?

Problem 14A.7 (10 points):

a) (5 points) You are given
$$r''(t) = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$$
 and $r(0) = (7, 8, 9)$ and $r'(0) = (1, 0, 0)$ and $r''(0) = (1, 0, 0)$. Find $r(1)$.

b) (5 points) What is the curvature of $r(t) = [t, t+t^2, t+t^2+t^3]$ at t = 0?

Problem 14A.8 (10 points):

a) (5 points) Find a parametrization r(u, v) of the cylinder $x^2 + z^2 = 9$.

b) (5 points) Find r(u, v) for the paraboloid $y^2 + 3z^2 = x$.

Problem 14A.9 (10 points):

Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}$. a) (2 points) The image of A is a plane. By using the cross product, write it as ax + by + cz = d. b) (2 points) What is the first fundamental form $g = A^T A$? c) (2 points) From a) you have $[a, b, c]^T = v \times w$. Find $\sqrt{a^2 + b^2 + c^2}$. d) (2 points) Find the distortion factor $||A|| = \sqrt{\det(A^T A)}$ of A. e) (2 points) What theorem was involved to see $||A|| = |v \times w|$?

Problem 14A.10 (10 points):

a) (5 points) What is the Jacobian matrix df of the map

 $f(x, y, z) = [x^2 + y^2 + z^2, x + y, -x^2]^T$?

b) (5 points) Find the distortion factor det(df).